mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-26 19:55:04 +00:00
* convert ok, load ok * warmup ok * test * still does not work? * fix padding * temporary give up * fix merge conflict * build_ultravox() * rm test * fix merge conflict * add necessary mtmd APIs * first working version (only 4s of audio) * will this monster compile? * fix compile * please compile * fPIC * fix windows * various fixes * clean up audio_helpers * fix conversion * add some debug stuff * long audio input ok * adapt the api * add --audio arg * final touch UX * add miniaudio to readme * fix typo * refactor kv metadata * mtmd_default_marker()
318 lines
12 KiB
C++
318 lines
12 KiB
C++
#include "mtmd.h"
|
|
#include "llama.h"
|
|
|
|
#include <algorithm>
|
|
#include <cinttypes>
|
|
#include <vector>
|
|
|
|
#define LOG_INF(...) fprintf(stdout, __VA_ARGS__)
|
|
#define LOG_ERR(...) fprintf(stderr, __VA_ARGS__)
|
|
|
|
size_t mtmd_helper_get_n_tokens(const mtmd_input_chunks * chunks) {
|
|
size_t n_tokens = 0;
|
|
for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
|
|
auto chunk = mtmd_input_chunks_get(chunks, i);
|
|
auto chunk_type = mtmd_input_chunk_get_type(chunk);
|
|
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
|
|
size_t n_tokens_text;
|
|
mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
|
|
n_tokens += n_tokens_text;
|
|
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
|
|
auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
|
|
n_tokens += mtmd_image_tokens_get_n_tokens(tokens_image);
|
|
} else {
|
|
GGML_ASSERT(false && "chunk type not supported");
|
|
}
|
|
}
|
|
return n_tokens;
|
|
}
|
|
|
|
llama_pos mtmd_helper_get_n_pos(const mtmd_input_chunks * chunks) {
|
|
llama_pos n_pos = 0;
|
|
for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
|
|
auto chunk = mtmd_input_chunks_get(chunks, i);
|
|
auto chunk_type = mtmd_input_chunk_get_type(chunk);
|
|
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
|
|
size_t n_tokens_text;
|
|
mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
|
|
n_pos += n_tokens_text;
|
|
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
|
|
auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
|
|
n_pos += mtmd_image_tokens_get_n_pos(tokens_image);
|
|
} else {
|
|
GGML_ASSERT(false && "chunk type not supported");
|
|
}
|
|
}
|
|
return n_pos;
|
|
}
|
|
|
|
// helper struct to make working with embd batch easier
|
|
// note: this will be removed after llama_batch_ext refactoring
|
|
struct decode_embd_batch {
|
|
int n_pos_per_embd;
|
|
int n_mmproj_embd;
|
|
std::vector<llama_pos> pos;
|
|
std::vector<llama_pos> pos_view; // used by mrope
|
|
std::vector<int32_t> n_seq_id;
|
|
std::vector<llama_seq_id> seq_id_0;
|
|
std::vector<llama_seq_id *> seq_ids;
|
|
std::vector<int8_t> logits;
|
|
llama_batch batch;
|
|
decode_embd_batch(float * embd, int32_t n_tokens, int n_pos_per_embd, int n_mmproj_embd) : n_pos_per_embd(n_pos_per_embd), n_mmproj_embd(n_mmproj_embd) {
|
|
pos .resize(n_tokens * n_pos_per_embd);
|
|
n_seq_id.resize(n_tokens);
|
|
seq_ids .resize(n_tokens + 1);
|
|
logits .resize(n_tokens);
|
|
seq_id_0.resize(1);
|
|
seq_ids [n_tokens] = nullptr;
|
|
batch = {
|
|
/*n_tokens =*/ n_tokens,
|
|
/*tokens =*/ nullptr,
|
|
/*embd =*/ embd,
|
|
/*pos =*/ pos.data(),
|
|
/*n_seq_id =*/ n_seq_id.data(),
|
|
/*seq_id =*/ seq_ids.data(),
|
|
/*logits =*/ logits.data(),
|
|
};
|
|
}
|
|
|
|
void set_position_normal(llama_pos pos_0, llama_seq_id seq_id) {
|
|
seq_id_0[0] = seq_id;
|
|
for (int i = 0; i < batch.n_tokens; i++) {
|
|
batch.pos [i] = pos_0 + i;
|
|
batch.n_seq_id[i] = 1;
|
|
batch.seq_id [i] = seq_id_0.data();
|
|
batch.logits [i] = false;
|
|
}
|
|
}
|
|
|
|
void set_position_mrope(llama_pos pos_0, int nx, int ny, llama_seq_id seq_id) {
|
|
GGML_ASSERT(n_pos_per_embd == 4);
|
|
seq_id_0[0] = seq_id;
|
|
for (int y = 0; y < ny; y++) {
|
|
for (int x = 0; x < nx; x++) {
|
|
int i = y * nx + x;
|
|
pos[i ] = pos_0;
|
|
pos[i + batch.n_tokens ] = pos_0 + y;
|
|
pos[i + batch.n_tokens * 2] = pos_0 + x;
|
|
pos[i + batch.n_tokens * 3] = 0; // last pos dim is unused
|
|
}
|
|
}
|
|
for (int i = 0; i < batch.n_tokens; i++) {
|
|
batch.n_seq_id[i] = 1;
|
|
batch.seq_id [i] = seq_id_0.data();
|
|
batch.logits [i] = false;
|
|
}
|
|
}
|
|
|
|
llama_batch get_view(int offset, int n_tokens) {
|
|
llama_pos * pos_ptr;
|
|
pos_view.clear();
|
|
pos_view.reserve(n_tokens * n_pos_per_embd);
|
|
if (n_pos_per_embd > 1) {
|
|
// mrope
|
|
// for example, with layout of src: 1234...1234...1234...1234...
|
|
// offset 2 will give us dst: 34...34...34...34...
|
|
for (int i = 0; i < n_pos_per_embd; i++) {
|
|
// assume n_tokens is less than or equal to batch.n_tokens
|
|
// batch.n_tokens is number of **total** tokens
|
|
// n_tokens is number of viewed token
|
|
size_t src_idx = i * batch.n_tokens + offset;
|
|
pos_view.insert(pos_view.end(),
|
|
pos.data() + src_idx,
|
|
pos.data() + src_idx + n_tokens);
|
|
}
|
|
pos_ptr = pos_view.data();
|
|
} else {
|
|
// normal
|
|
pos_ptr = pos.data() + offset;
|
|
}
|
|
return {
|
|
/*n_tokens =*/ n_tokens,
|
|
/*tokens =*/ nullptr,
|
|
/*embd =*/ batch.embd + offset * n_mmproj_embd,
|
|
/*pos =*/ pos_ptr,
|
|
/*n_seq_id =*/ batch.n_seq_id + offset,
|
|
/*seq_id =*/ batch.seq_id + offset,
|
|
/*logits =*/ batch.logits + offset,
|
|
};
|
|
}
|
|
};
|
|
|
|
// Helper function for decoding an image whose embeddings have already been calculated
|
|
int32_t mtmd_helper_decode_image_chunk(
|
|
mtmd_context * ctx,
|
|
struct llama_context * lctx,
|
|
const mtmd_input_chunk * chunk,
|
|
float * encoded_embd,
|
|
llama_pos n_past,
|
|
llama_seq_id seq_id,
|
|
int32_t n_batch,
|
|
llama_pos * new_n_past) {
|
|
auto chunk_type = mtmd_input_chunk_get_type(chunk);
|
|
const char * name = chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE ? "image" : "audio";
|
|
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
|
|
LOG_ERR("failed to decode chunk: input chunk not of image/audio type\n");
|
|
return -1;
|
|
}
|
|
|
|
const llama_model * model = llama_get_model(lctx);
|
|
int n_mmproj_embd = llama_model_n_embd(model);
|
|
int n_pos_per_embd = mtmd_decode_use_mrope(ctx) ? 4 : 1;
|
|
|
|
int32_t n_tokens = mtmd_input_chunk_get_n_tokens(chunk);
|
|
int32_t i_batch = 0;
|
|
int32_t n_img_batches = GGML_PAD(n_tokens, n_batch) / n_batch;
|
|
decode_embd_batch batch_embd(encoded_embd, n_tokens, n_pos_per_embd, n_mmproj_embd);
|
|
|
|
if (mtmd_decode_use_mrope(ctx)) {
|
|
const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk);
|
|
if (chunk_type != MTMD_INPUT_CHUNK_TYPE_IMAGE) {
|
|
LOG_ERR("failed to decode chunk: M-RoPE only accepts image chunk\n");
|
|
return -1;
|
|
}
|
|
if (!image_tokens) {
|
|
LOG_ERR("failed to decode chunk: image tokens are null\n");
|
|
return -1;
|
|
}
|
|
const int nx = mtmd_image_tokens_get_nx(image_tokens);
|
|
const int ny = mtmd_image_tokens_get_ny(image_tokens);
|
|
batch_embd.set_position_mrope(n_past, nx, ny, seq_id);
|
|
} else {
|
|
batch_embd.set_position_normal(n_past, seq_id);
|
|
}
|
|
|
|
if (mtmd_decode_use_non_causal(ctx)) {
|
|
llama_set_causal_attn(lctx, false);
|
|
// TODO @ngxson : need to make sure only one image is processed at a time, and n_ubatch must be enough to hold the image
|
|
}
|
|
|
|
while (i_batch < n_img_batches) { // split into batches
|
|
int pos_offset = i_batch*n_batch;
|
|
int n_tokens_batch = std::min(n_batch, n_tokens - pos_offset);
|
|
llama_batch batch_embd_view = batch_embd.get_view(pos_offset, n_tokens_batch);
|
|
|
|
LOG_INF("decoding %s batch %d/%d, n_tokens_batch = %d\n", name, i_batch+1, n_img_batches, n_tokens_batch);
|
|
|
|
int64_t t1 = ggml_time_ms();
|
|
int32_t ret = llama_decode(lctx, batch_embd_view);
|
|
if (ret != 0) {
|
|
LOG_ERR("failed to decode %s\n", name);
|
|
llama_set_causal_attn(lctx, true); // restore causal attn
|
|
return ret;
|
|
}
|
|
|
|
LOG_INF("%s decoded (batch %d/%d) in %" PRId64 " ms\n", name, i_batch+1, n_img_batches, ggml_time_ms() - t1);
|
|
|
|
i_batch++;
|
|
}
|
|
|
|
n_past += mtmd_input_chunk_get_n_pos(chunk);
|
|
*new_n_past = n_past;
|
|
|
|
if (mtmd_decode_use_non_causal(ctx)) {
|
|
llama_set_causal_attn(lctx, true);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx,
|
|
struct llama_context * lctx,
|
|
const mtmd_input_chunk * chunk,
|
|
llama_pos n_past,
|
|
llama_seq_id seq_id,
|
|
int32_t n_batch,
|
|
bool logits_last,
|
|
llama_pos * new_n_past) {
|
|
int32_t ret;
|
|
llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
|
|
auto chunk_type = mtmd_input_chunk_get_type(chunk);
|
|
|
|
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
|
|
size_t n_tokens;
|
|
const auto tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
|
|
// LOG_INF("decoding text chunk, n_tokens = %zu\n", n_tokens);
|
|
size_t i = 0;
|
|
while (i < n_tokens) { // split into batches
|
|
text_batch.n_tokens = 0; // clear the batch
|
|
for (; i < n_tokens && text_batch.n_tokens < n_batch; i++) {
|
|
int32_t j = text_batch.n_tokens;
|
|
text_batch.token [j] = tokens[i];
|
|
text_batch.pos [j] = n_past++;
|
|
text_batch.n_seq_id[j] = 1;
|
|
text_batch.seq_id [j][0] = seq_id;
|
|
text_batch.logits [j] = false;
|
|
|
|
text_batch.n_tokens++;
|
|
}
|
|
bool is_last_token = (i == n_tokens);
|
|
if (logits_last && is_last_token) {
|
|
text_batch.logits[text_batch.n_tokens - 1] = true;
|
|
}
|
|
ret = llama_decode(lctx, text_batch);
|
|
if (ret != 0) {
|
|
LOG_ERR("failed to decode text\n");
|
|
llama_batch_free(text_batch);
|
|
return ret;
|
|
}
|
|
*new_n_past += text_batch.n_tokens;
|
|
}
|
|
|
|
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE || chunk_type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
|
|
const char * name = chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE ? "image" : "audio";
|
|
int64_t t0 = ggml_time_ms();
|
|
|
|
LOG_INF("encoding %s slice...\n", name);
|
|
|
|
ret = mtmd_encode_chunk(ctx, chunk);
|
|
if (ret != 0) {
|
|
LOG_ERR("failed to encode %s slice\n", name);
|
|
llama_batch_free(text_batch);
|
|
return ret;
|
|
}
|
|
|
|
LOG_INF("%s slice encoded in %" PRId64 " ms\n", name, ggml_time_ms() - t0);
|
|
|
|
float * embd = mtmd_get_output_embd(ctx);
|
|
ret = mtmd_helper_decode_image_chunk(ctx, lctx, chunk, embd, n_past, seq_id, n_batch, new_n_past);
|
|
if (ret != 0) {
|
|
LOG_ERR("failed to decode %s\n", name);
|
|
llama_batch_free(text_batch);
|
|
return ret;
|
|
}
|
|
} else {
|
|
GGML_ABORT("chunk type not supported");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int32_t mtmd_helper_eval_chunks(mtmd_context * ctx,
|
|
struct llama_context * lctx,
|
|
const mtmd_input_chunks * chunks,
|
|
llama_pos n_past,
|
|
llama_seq_id seq_id,
|
|
int32_t n_batch,
|
|
bool logits_last,
|
|
llama_pos * new_n_past) {
|
|
size_t n_chunks = mtmd_input_chunks_size(chunks);
|
|
if (n_chunks == 0) {
|
|
LOG_ERR("no chunks to eval\n");
|
|
return 0;
|
|
}
|
|
|
|
for (size_t i = 0; i < n_chunks; i++) {
|
|
bool chunk_logits_last = (i == n_chunks - 1) && logits_last;
|
|
auto chunk = mtmd_input_chunks_get(chunks, i);
|
|
|
|
int32_t res = mtmd_helper_eval_chunk_single(ctx, lctx, chunk, n_past, seq_id, n_batch, chunk_logits_last, &n_past);
|
|
if (res != 0) {
|
|
LOG_ERR("failed to eval chunk %zu\n", i);
|
|
return res;
|
|
}
|
|
*new_n_past = n_past;
|
|
}
|
|
|
|
return 0;
|
|
}
|