mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-29 12:35:16 +00:00
* memory : rename interface to llama_memory_context_i ggml-ci * cont : fix comments * cont : use "mctx" for referencing a memory context ggml-ci
247 lines
8.0 KiB
C++
247 lines
8.0 KiB
C++
#include "llama-memory-hybrid.h"
|
|
|
|
#include "llama-impl.h"
|
|
#include "llama-model.h"
|
|
#include "llama-context.h"
|
|
|
|
//
|
|
// llama_memory_hybrid
|
|
//
|
|
|
|
llama_memory_hybrid::llama_memory_hybrid(
|
|
const llama_model & model,
|
|
/* attn */
|
|
ggml_type type_k,
|
|
ggml_type type_v,
|
|
bool v_trans,
|
|
uint32_t kv_size,
|
|
uint32_t n_pad,
|
|
uint32_t n_swa,
|
|
llama_swa_type swa_type,
|
|
/* recurrent */
|
|
ggml_type type_r,
|
|
ggml_type type_s,
|
|
uint32_t rs_size,
|
|
/* common */
|
|
uint32_t n_seq_max,
|
|
bool offload,
|
|
/* layer filters */
|
|
layer_filter_cb && filter_attn,
|
|
layer_filter_cb && filter_recr) :
|
|
hparams(model.hparams),
|
|
mem_attn(new llama_kv_cache_unified(
|
|
model,
|
|
filter_attn == nullptr ?
|
|
[&](int32_t il) { return !hparams.is_recurrent(il); }
|
|
: filter_attn,
|
|
type_k,
|
|
type_v,
|
|
v_trans,
|
|
offload,
|
|
kv_size,
|
|
n_seq_max,
|
|
n_pad,
|
|
n_swa,
|
|
swa_type
|
|
)),
|
|
mem_recr(new llama_memory_recurrent(
|
|
model,
|
|
filter_recr == nullptr ?
|
|
[&](int32_t il) { return hparams.is_recurrent(il); }
|
|
: filter_recr,
|
|
type_r,
|
|
type_s,
|
|
offload,
|
|
rs_size,
|
|
n_seq_max
|
|
)) {}
|
|
|
|
llama_memory_context_ptr llama_memory_hybrid::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
|
|
do {
|
|
balloc.split_reset();
|
|
|
|
// follow the recurrent pattern for creating the ubatch splits
|
|
std::vector<llama_ubatch> ubatches;
|
|
|
|
while (true) {
|
|
llama_ubatch ubatch;
|
|
|
|
if (embd_all) {
|
|
// if all tokens are output, split by sequence
|
|
ubatch = balloc.split_seq(n_ubatch);
|
|
} else {
|
|
ubatch = balloc.split_equal(n_ubatch);
|
|
}
|
|
|
|
if (ubatch.n_tokens == 0) {
|
|
break;
|
|
}
|
|
|
|
ubatches.push_back(std::move(ubatch)); // NOLINT
|
|
}
|
|
|
|
// prepare the recurrent batches first
|
|
if (!mem_recr->prepare(ubatches)) {
|
|
// TODO: will the recurrent cache be in an undefined context at this point?
|
|
LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
|
|
return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
|
}
|
|
|
|
// prepare the attention cache
|
|
auto heads_attn = mem_attn->prepare(ubatches);
|
|
if (heads_attn.empty()) {
|
|
LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
|
|
return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
|
}
|
|
|
|
return std::make_unique<llama_memory_hybrid_context>(
|
|
this, std::move(heads_attn), std::move(ubatches));
|
|
} while(false);
|
|
|
|
return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
|
}
|
|
|
|
llama_memory_context_ptr llama_memory_hybrid::init_full() {
|
|
return std::make_unique<llama_memory_hybrid_context>(this);
|
|
}
|
|
|
|
llama_memory_context_ptr llama_memory_hybrid::init_update(llama_context * lctx, bool optimize) {
|
|
return std::make_unique<llama_memory_hybrid_context>(this, lctx, optimize);
|
|
}
|
|
|
|
bool llama_memory_hybrid::get_can_shift() const {
|
|
// Shifting is trivially supported for recurrent
|
|
return mem_attn->get_can_shift();
|
|
}
|
|
|
|
void llama_memory_hybrid::clear(bool data) {
|
|
mem_attn->clear(data);
|
|
mem_recr->clear(data);
|
|
}
|
|
|
|
bool llama_memory_hybrid::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
|
|
// Try removing from the recurrent cache first since it may fail. If it does
|
|
// fail, the cache will not have been mutated.
|
|
if (!mem_recr->seq_rm(seq_id, p0, p1)) {
|
|
return false;
|
|
}
|
|
return mem_attn->seq_rm(seq_id, p0, p1);
|
|
}
|
|
|
|
void llama_memory_hybrid::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
|
|
mem_attn->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
|
mem_recr->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
|
}
|
|
|
|
void llama_memory_hybrid::seq_keep(llama_seq_id seq_id) {
|
|
mem_attn->seq_keep(seq_id);
|
|
mem_recr->seq_keep(seq_id);
|
|
}
|
|
|
|
void llama_memory_hybrid::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
|
|
mem_attn->seq_add(seq_id, p0, p1, shift);
|
|
mem_recr->seq_add(seq_id, p0, p1, shift);
|
|
}
|
|
|
|
void llama_memory_hybrid::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
|
|
mem_attn->seq_div(seq_id, p0, p1, d);
|
|
mem_recr->seq_div(seq_id, p0, p1, d);
|
|
}
|
|
|
|
llama_pos llama_memory_hybrid::seq_pos_min(llama_seq_id seq_id) const {
|
|
// the min of the total cache is the max of the two caches' min values
|
|
return std::max(mem_attn->seq_pos_min(seq_id), mem_recr->seq_pos_min(seq_id));
|
|
}
|
|
|
|
llama_pos llama_memory_hybrid::seq_pos_max(llama_seq_id seq_id) const {
|
|
// the max of the total cache is the min of the two caches' max values
|
|
return std::min(mem_attn->seq_pos_max(seq_id), mem_recr->seq_pos_max(seq_id));
|
|
}
|
|
|
|
void llama_memory_hybrid::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
|
|
mem_attn->state_write(io, seq_id);
|
|
mem_recr->state_write(io, seq_id);
|
|
}
|
|
|
|
void llama_memory_hybrid::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
|
|
mem_attn->state_read(io, seq_id);
|
|
mem_recr->state_read(io, seq_id);
|
|
}
|
|
|
|
llama_kv_cache_unified * llama_memory_hybrid::get_mem_attn() const {
|
|
return mem_attn.get();
|
|
}
|
|
|
|
llama_memory_recurrent * llama_memory_hybrid::get_mem_recr() const {
|
|
return mem_recr.get();
|
|
}
|
|
|
|
llama_memory_hybrid_context::llama_memory_hybrid_context(llama_memory_status status) : status(status) {}
|
|
|
|
llama_memory_hybrid_context::llama_memory_hybrid_context(llama_memory_hybrid * mem) :
|
|
ctx_attn(mem->get_mem_attn()->init_full()),
|
|
ctx_recr(mem->get_mem_recr()->init_full()),
|
|
status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
|
|
}
|
|
|
|
llama_memory_hybrid_context::llama_memory_hybrid_context(
|
|
llama_memory_hybrid * mem,
|
|
llama_context * lctx,
|
|
bool optimize) :
|
|
ctx_attn(mem->get_mem_attn()->init_update(lctx, optimize)),
|
|
ctx_recr(mem->get_mem_recr()->init_update(lctx, optimize)),
|
|
status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
|
|
}
|
|
|
|
llama_memory_hybrid_context::llama_memory_hybrid_context(
|
|
llama_memory_hybrid * mem,
|
|
std::vector<uint32_t> heads_attn,
|
|
std::vector<llama_ubatch> ubatches) :
|
|
ubatches(std::move(ubatches)),
|
|
// note: here we copy the ubatches. not sure if this is ideal
|
|
ctx_attn(new llama_kv_cache_unified_context(mem->get_mem_attn(), std::move(heads_attn), this->ubatches)),
|
|
ctx_recr(new llama_memory_recurrent_context(mem->get_mem_recr(), this->ubatches)),
|
|
status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
|
|
}
|
|
|
|
bool llama_memory_hybrid_context::next() {
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
|
|
ctx_attn->next();
|
|
ctx_recr->next();
|
|
|
|
if (++i_next >= ubatches.size()) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool llama_memory_hybrid_context::apply() {
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
|
|
bool res = true;
|
|
|
|
res = res & ctx_attn->apply();
|
|
res = res & ctx_recr->apply();
|
|
|
|
return res;
|
|
}
|
|
|
|
llama_memory_status llama_memory_hybrid_context::get_status() const {
|
|
return status;
|
|
}
|
|
|
|
const llama_ubatch & llama_memory_hybrid_context::get_ubatch() const {
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
return ubatches[i_next];
|
|
}
|
|
|
|
const llama_kv_cache_unified_context * llama_memory_hybrid_context::get_attn() const {
|
|
return static_cast<const llama_kv_cache_unified_context *>(ctx_attn.get());
|
|
}
|
|
|
|
const llama_memory_recurrent_context * llama_memory_hybrid_context::get_recr() const {
|
|
return static_cast<const llama_memory_recurrent_context *>(ctx_recr.get());
|
|
}
|