Files
llama.cpp/ggml/src/ggml-cuda/ssm-scan.cu
compilade 5d46babdc2 llama : initial Mamba-2 support (#9126)
* llama : initial Mamba-2 support

* ggml : SIMD ggml_ssm_scan for Mamba-2

* ggml : improve ggml_mul speed when masking recurrent states

* llama : support running Mamba-Codestral-7B-v0.1

* llama : fix Mamba-2 conv state saving

* ggml : make the ggml_mul fast broadcast path more consistently formatted

* llama : remove unused variable

* llama : add missing break

* convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present

The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires
workarounds to work correctly.

* llama : avoid redundant state copy for Mamba 1 and 2

* metal : attempt to adapt SSM_SCAN for Mamba-2

* metal : fix SSM_SCAN pipeline scope

* metal : use log and exp instead of log1pf and expf in SSM_SCAN

* metal : remove unused arguments for SSM_SCAN

The max index is 31, so trimming the arguments is necessary.

* metal : add back n_seqs to SSM_SCAN args

Whoops, this is needed for the offset in the concatenated output.

* metal : fix SSM_SCAN state head offset

* metal : fix wrong number of tokens per sequence in SSM_SCAN

* ggml : remove unused fast broadcast path in GGML_MUL

This was initially added because states were masked with ggml_mul,
but this is no longer done and so this "optimisation" is no longer
necessary, or at least not worth the additional code complexity.

* ggml : avoid multiply by D in GGML_OP_SSM_SCAN

This makes the weight buft detection in src/llama.cpp simpler.

* convert : transpose Mamba-2 A, D and reshape SSM_NORM

This breaks existing conversions of Mamba-2 models
to avoid some reshapes.

Not sure if it's a good idea,
but it makes the graph slightly cleaner.

* llama : more appropriate SSM_SCAN and SSM_CONV buft support checks

* convert : fix flake8 lint

* metal : fix confusion between ; and ,

* metal : add missing args for nb references in ssm_scan_f32_group

* metal : single-user mamba2 inference works

* kv-cache : remove const_cast when setting inputs for s_copy

And also fix multi-user inference for recurrent models
by using cell_id instead of i as the kv cell index
when populating s_copy.

* convert : avoid AutoConfig for Mamba and Mamba2 hparams

* kv-cache : allow context shift for recurrent models

* graph : fix recurrent state copies when avoiding copies

Works, but using lambda functions might not be that clean.

* ggml : fix mamba2 ssm scan when compiled with SVE

* ggml-cpu : reorder SVE FMA for consistency with other SIMD arches

* cuda : implement ssm scan for Mamba2

There is still room for improvement, but it works!

* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2

* mamba : fix mismatched new and delete size for llm_build_mamba

Subclasses of llm_graph_context cannot have extra fields,
because the called destructor is not the one from the subclass.
This otherwise would cause problems when runnning Mamba-(1|2) inference
when compiled -DGGML_SANITIZE_ADDRESS=ON

* cuda : graceful fallback for Mamba-1 models with weird embd size
2025-07-02 13:10:24 -04:00

285 lines
14 KiB
Plaintext

#include "ssm-scan.cuh"
template <size_t splitD, size_t N>
__global__ void __launch_bounds__(splitD, 2)
ssm_scan_f32(const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2,
const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5,
const int32_t * __restrict__ src6, float * __restrict__ dst,
const int src0_nb2, const int src0_nb3, const int src1_nb2, const int src1_nb3,
const int src2_nb1, const int src2_nb2, const int src3_nb1,
const int src4_nb2, const int src4_nb3, const int src5_nb2, const int src5_nb3,
const int64_t s_off, const int64_t d_inner, const int64_t L) {
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
const int bidx = blockIdx.x; // split along B (sequences)
const int bidy = blockIdx.y; // split along D (d_inner)
const int tid = threadIdx.x;
const int wid = tid / 32;
const int wtid = tid % 32;
extern __shared__ float smem[];
const int stride_sA = N + 1;
const int stride_ss0 = N + 1;
float * smem_A = smem;
float * smem_s0 = smem_A + splitD * stride_sA;
const float * s0_block = (const float *) ((const char *) src0 + src6[bidx] * src0_nb3 + bidy * splitD * src0_nb2);
const float * x_block = (const float *) ((const char *) src1 + (bidx * src1_nb3) + bidy * splitD * sizeof(float));
const float * dt_block = (const float *) ((const char *) src2 + (bidx * src2_nb2) + bidy * splitD * sizeof(float));
const float * A_block = (const float *) ((const char *) src3 + bidy * splitD * src3_nb1);
const float * B_block = (const float *) ((const char *) src4 + (bidx * src4_nb3));
const float * C_block = (const float *) ((const char *) src5 + (bidx * src5_nb3));
float * y_block = (float *) ((char *) dst + (bidx * d_inner * L * sizeof(float)) + bidy * splitD * sizeof(float));
float * s_block = (float *) ((char *) dst + s_off + bidx * src0_nb3 + bidy * splitD * src0_nb2);
const int stride_s0 = src0_nb2 / sizeof(float);
const int stride_x = src1_nb2 / sizeof(float);
const int stride_dt = src2_nb1 / sizeof(float);
const int stride_A = src3_nb1 / sizeof(float);
const int stride_B = src4_nb2 / sizeof(float);
const int stride_C = src5_nb2 / sizeof(float);
const int stride_s = stride_s0;
const int stride_y = d_inner;
// can N not be 16? for example 32?
if (N == 16) {
#pragma unroll
for (size_t i = 0; i < splitD / 4; i += 2) {
float value = A_block[(wid * warp_size + i) * stride_A + wtid];
// todo: bank conflict
// I am always confused with how to use the swizzling method to solve
// bank conflit. Hoping somebody can tell me.
smem_A[(wid * warp_size + i) * stride_sA + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value;
}
#pragma unroll
for (size_t i = 0; i < splitD / 4; i += 2) {
float value = s0_block[(wid * warp_size + i) * stride_s0 + wtid];
smem_s0[(wid * warp_size + i) * stride_ss0 + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value;
}
}
__syncthreads();
for (int64_t i = 0; i < L; i++) {
float dt_soft_plus = dt_block[i * stride_dt + tid];
if (dt_soft_plus <= 20.0f) {
dt_soft_plus = log1pf(exp(dt_soft_plus));
}
float x_dt = x_block[i * stride_x + tid] * dt_soft_plus;
float sumf = 0.0f;
#pragma unroll
for (size_t j = 0; j < N; j++) {
float state = (smem_s0[tid * stride_ss0 + j] * expf(dt_soft_plus * smem_A[tid * stride_sA + j])) +
(B_block[i * stride_B + j] * x_dt);
sumf += state * C_block[i * stride_C + j];
if (i == L - 1) {
s_block[tid * stride_s + j] = state;
} else {
smem_s0[tid * stride_ss0 + j] = state;
}
}
__syncthreads();
y_block[i * stride_y + tid] = sumf;
}
}
// assumes as many threads as d_state
template <int splitH, int d_state>
__global__ void __launch_bounds__(d_state, 1)
ssm_scan_f32_group(
const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2,
const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5,
const int32_t * __restrict__ src6, float * __restrict__ dst,
const int src0_nb2, const int src0_nb3, const int src1_nb2, const int src1_nb3,
const int src2_nb1, const int src2_nb2, const int src3_nb1,
const int src4_nb2, const int src4_nb3, const int src5_nb2, const int src5_nb3,
const int64_t s_off, const int64_t n_head, const int64_t d_head, const int64_t n_group, const int64_t n_tok) {
const int head_idx = (blockIdx.x * splitH) / d_head;
const int head_off = ((blockIdx.x * splitH) % d_head) * sizeof(float);
const int seq_idx = blockIdx.y;
const int group_off = (head_idx & (n_group - 1)) * d_state * sizeof(float);
const float * s0_block = (const float *) ((const char *) src0 + src6[seq_idx] * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
const float * x_block = (const float *) ((const char *) src1 + (seq_idx * src1_nb3) + blockIdx.x * splitH * sizeof(float));
const float * dt_block = (const float *) ((const char *) src2 + (seq_idx * src2_nb2) + head_idx * sizeof(float));
const float * A_block = (const float *) ((const char *) src3 + head_idx * src3_nb1);
const float * B_block = (const float *) ((const char *) src4 + (seq_idx * src4_nb3) + (group_off));
const float * C_block = (const float *) ((const char *) src5 + (seq_idx * src5_nb3) + (group_off));
float * y_block = dst + (seq_idx * n_tok * n_head * d_head) + blockIdx.x * splitH;
float * s_block = (float *) ((char *) dst + s_off + seq_idx * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
// strides across n_seq_tokens
const int stride_x = src1_nb2 / sizeof(float);
const int stride_dt = src2_nb1 / sizeof(float);
const int stride_B = src4_nb2 / sizeof(float);
const int stride_C = src5_nb2 / sizeof(float);
const int stride_y = n_head * d_head;
float state[splitH];
// for the parallel accumulation
__shared__ float stateC[splitH * d_state];
#pragma unroll
for (int j = 0; j < splitH; j++) {
state[j] = s0_block[j * d_state + threadIdx.x];
}
for (int64_t i = 0; i < n_tok; i++) {
// TODO: only calculate dA and dt_soft_plus once per head instead of every splitH head elements
// TODO: only calculate B and C once per head group
// NOTE: dt_soft_plus, dA and x_dt have the same value across threads here.
float dt_soft_plus = dt_block[i * stride_dt];
if (dt_soft_plus <= 20.0f) {
dt_soft_plus = log1pf(expf(dt_soft_plus));
}
const float dA = expf(dt_soft_plus * A_block[0]);
const float B = B_block[i * stride_B + threadIdx.x];
const float C = C_block[i * stride_C + threadIdx.x];
// across d_head
#pragma unroll
for (int j = 0; j < splitH; j++) {
const float x_dt = x_block[i * stride_x + j] * dt_soft_plus;
state[j] = (state[j] * dA) + (B * x_dt);
stateC[j * d_state + threadIdx.x] = state[j] * C;
}
__syncthreads();
// parallel accumulation for stateC
// TODO: simplify
{
static_assert((d_state & -d_state) == d_state, "the state size has to be a power of 2");
static_assert((splitH & -splitH) == splitH, "splitH has to be a power of 2");
// reduce until w matches the warp size
// TODO: does this work even when the physical warp size is 64?
#pragma unroll
for (int w = d_state; w > WARP_SIZE; w >>= 1) {
// (assuming there are d_state threads)
#pragma unroll
for (int j = 0; j < ((w >> 1) * splitH + d_state - 1) / d_state; j++) {
// TODO: check for bank conflicts
const int k = (threadIdx.x % (w >> 1)) + (d_state * (threadIdx.x / (w >> 1))) + j * d_state * (d_state / (w >> 1));
stateC[k] += stateC[k + (w >> 1)];
}
__syncthreads();
}
static_assert(splitH >= d_state / WARP_SIZE);
#pragma unroll
for (int j = 0; j < splitH / (d_state / WARP_SIZE); j++) {
float y = stateC[(threadIdx.x % WARP_SIZE) + d_state * (threadIdx.x / WARP_SIZE) + j * d_state * (d_state / WARP_SIZE)];
y = warp_reduce_sum(y);
// store the above accumulations
if (threadIdx.x % WARP_SIZE == 0) {
const int k = threadIdx.x / WARP_SIZE + j * (d_state / WARP_SIZE);
y_block[i * stride_y + k] = y;
}
}
}
}
// write back the state
#pragma unroll
for (int j = 0; j < splitH; j++) {
s_block[j * d_state + threadIdx.x] = state[j];
}
}
static void ssm_scan_f32_cuda(const float * src0, const float * src1, const float * src2, const float * src3,
const float * src4, const float * src5, const int32_t * src6, float * dst,
const int src0_nb2, const int src0_nb3, const int src1_nb2, const int src1_nb3, const int src2_nb1,
const int src2_nb2, const int src3_nb1, const int src4_nb2, const int src4_nb3, const int src5_nb2,
const int src5_nb3, const int64_t s_off, const int64_t d_state, const int64_t head_dim,
const int64_t n_head, const int64_t n_group, const int64_t n_tok, const int64_t n_seq,
cudaStream_t stream) {
const int threads = 128;
// NOTE: if you change conditions here, be sure to update the corresponding supports_op condition!
if (src3_nb1 == sizeof(float)) {
// Mamba-2
if (d_state == 128) {
GGML_ASSERT(d_state % threads == 0);
// NOTE: can be any power of two between 4 and 64
const int splitH = 16;
GGML_ASSERT(head_dim % splitH == 0);
const dim3 blocks((n_head * head_dim + (splitH - 1)) / splitH, n_seq, 1);
ssm_scan_f32_group<16, 128><<<blocks, threads, 0, stream>>>(
src0, src1, src2, src3, src4, src5, src6, dst,
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2, src3_nb1,
src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, head_dim, n_group, n_tok);
} else {
GGML_ABORT("doesn't support d_state!=128.");
}
} else {
// Mamba-1
GGML_ASSERT(n_head % threads == 0);
GGML_ASSERT(head_dim == 1);
GGML_ASSERT(n_group == 1);
const dim3 blocks(n_seq, (n_head + threads - 1) / threads, 1);
const int smem_size = (threads * (d_state + 1) * 2) * sizeof(float);
if (d_state == 16) {
ssm_scan_f32<128, 16><<<blocks, threads, smem_size, stream>>>(
src0, src1, src2, src3, src4, src5, src6, dst,
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2,
src3_nb1, src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, n_tok);
} else {
GGML_ABORT("doesn't support d_state!=16.");
}
}
}
void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0]; // s
const struct ggml_tensor * src1 = dst->src[1]; // x
const struct ggml_tensor * src2 = dst->src[2]; // dt
const struct ggml_tensor * src3 = dst->src[3]; // A
const struct ggml_tensor * src4 = dst->src[4]; // B
const struct ggml_tensor * src5 = dst->src[5]; // C
const struct ggml_tensor * src6 = dst->src[6]; // ids
const int64_t nc = src0->ne[0]; // d_state
const int64_t nr = src0->ne[1]; // head_dim or 1
const int64_t nh = src1->ne[1]; // n_head
const int64_t ng = src4->ne[1]; // n_group
const int64_t n_t = src1->ne[2]; // number of tokens per sequence
const int64_t n_s = src1->ne[3]; // number of sequences in the batch
const int64_t s_off = ggml_nelements(src1) * sizeof(float);
GGML_ASSERT(ggml_nelements(src1) + nc*nr*nh*n_s == ggml_nelements(dst));
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float));
GGML_ASSERT(src2->nb[0] == sizeof(float));
GGML_ASSERT(src3->nb[0] == sizeof(float));
GGML_ASSERT(src4->nb[0] == sizeof(float));
GGML_ASSERT(src5->nb[0] == sizeof(float));
GGML_ASSERT(src6->nb[0] == sizeof(int32_t));
const float * src0_d = (const float *) src0->data;
const float * src1_d = (const float *) src1->data;
const float * src2_d = (const float *) src2->data;
const float * src3_d = (const float *) src3->data;
const float * src4_d = (const float *) src4->data;
const float * src5_d = (const float *) src5->data;
const int32_t * src6_d = (const int32_t *) src6->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src6->type == GGML_TYPE_I32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
ssm_scan_f32_cuda(src0_d, src1_d, src2_d, src3_d, src4_d, src5_d, src6_d, dst_d,
src0->nb[2], src0->nb[3], src1->nb[2], src1->nb[3], src2->nb[1], src2->nb[2],
src3->nb[1], src4->nb[2], src4->nb[3], src5->nb[2], src5->nb[3],
s_off, nc, nr, nh, ng, n_t, n_s, stream);
}