Files
llama.cpp/ggml/include/ggml-opt.h
Jonathan Graehl 5cdb27e091 finetune: SGD optimizer, more CLI args (#13873)
* examples/finetune -opt SGD (stochastic gradient descent) memory opt

add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.

support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)

llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)

(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val:   [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00

SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val:   [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)

note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')

-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.

note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence

new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)

cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)

since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)

test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values);  tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)

* Vulkan: Implement GGML_OP_OPT_STEP_SGD

* tests: Fix OPT_STEP_SGD test-backend-ops

* SGD op param store weight-decay and not 1-alpha*wd

* minor + cosmetic changes

* fix vulkan sgd

* try CI fix

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-14 12:03:57 +02:00

257 lines
14 KiB
C

// This file contains functionality for training models using GGML.
// It is not strictly needed vs. just vanilla GGML but it provides a more high-level interface for common needs such as datasets.
// At the bottom of this file especially there are relatively high-level functions that are suitable use or adaptation in user code.
//
// Module maintainer: Johannes Gäßler (@JohannesGaessler, johannesg@5d6.de)
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
struct ggml_opt_dataset;
struct ggml_opt_context;
struct ggml_opt_result;
typedef struct ggml_opt_dataset * ggml_opt_dataset_t;
typedef struct ggml_opt_context * ggml_opt_context_t;
typedef struct ggml_opt_result * ggml_opt_result_t;
// ====== Loss ======
// built-in loss types, i.e. the built-in quantities minimized by the optimizer
// custom loss types can be defined via mean or sum which simply reduce the outputs for all datapoints to a single value
enum ggml_opt_loss_type {
GGML_OPT_LOSS_TYPE_MEAN,
GGML_OPT_LOSS_TYPE_SUM,
GGML_OPT_LOSS_TYPE_CROSS_ENTROPY,
GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR,
};
// ====== Dataset ======
GGML_API ggml_opt_dataset_t ggml_opt_dataset_init(
enum ggml_type type_data, // the type for the internal data tensor
enum ggml_type type_label, // the type for the internal labels tensor
int64_t ne_datapoint, // number of elements per datapoint
int64_t ne_label, // number of elements per label
int64_t ndata, // total number of datapoints/labels
int64_t ndata_shard); // number of datapoints/labels per shard (unit at which the dataset is shuffled/copied)
GGML_API void ggml_opt_dataset_free(ggml_opt_dataset_t dataset);
// get underlying tensors that store the data
GGML_API int64_t ggml_opt_dataset_ndata (ggml_opt_dataset_t dataset);
GGML_API struct ggml_tensor * ggml_opt_dataset_data (ggml_opt_dataset_t dataset); // shape = [ne_datapoint, ndata]
GGML_API struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset); // shape = [nd_label, ndata]
// shuffle idata first datapoints from dataset with RNG from opt_ctx, shuffle all datapoints if idata is negative
GGML_API void ggml_opt_dataset_shuffle(ggml_opt_context_t opt_ctx, ggml_opt_dataset_t dataset, int64_t idata);
// get batch at position ibatch from dataset and copy the data to data_batch and labels_batch
GGML_API void ggml_opt_dataset_get_batch(
ggml_opt_dataset_t dataset,
struct ggml_tensor * data_batch, // shape = [ne_datapoint, ndata_batch]
struct ggml_tensor * labels_batch, // shape = [ne_label, ndata_batch]
int64_t ibatch);
GGML_API void ggml_opt_dataset_get_batch_host(
ggml_opt_dataset_t dataset,
void * data_batch,
size_t nb_data_batch,
void * labels_batch,
int64_t ibatch);
// ====== Model / Context ======
enum ggml_opt_build_type {
GGML_OPT_BUILD_TYPE_FORWARD = 10,
GGML_OPT_BUILD_TYPE_GRAD = 20,
GGML_OPT_BUILD_TYPE_OPT = 30,
};
enum ggml_opt_optimizer_type {
GGML_OPT_OPTIMIZER_TYPE_ADAMW,
GGML_OPT_OPTIMIZER_TYPE_SGD,
GGML_OPT_OPTIMIZER_TYPE_COUNT
};
// parameters that control which optimizer is used and how said optimizer tries to find the minimal loss
struct ggml_opt_optimizer_params {
struct {
float alpha; // learning rate
float beta1; // first AdamW momentum
float beta2; // second AdamW momentum
float eps; // epsilon for numerical stability
float wd; // weight decay - 0.0f to disable
} adamw;
struct {
float alpha; // learning rate
float wd; // weight decay
} sgd;
};
// callback to calculate optimizer parameters prior to a backward pass
// userdata can be used to pass arbitrary data
typedef struct ggml_opt_optimizer_params (*ggml_opt_get_optimizer_params)(void * userdata);
// returns the default optimizer params (constant, hard-coded values)
// userdata is not used
GGML_API struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata);
// casts userdata to ggml_opt_optimizer_params and returns it
GGML_API struct ggml_opt_optimizer_params ggml_opt_get_constant_optimizer_params(void * userdata);
// parameters for initializing a new optimization context
struct ggml_opt_params {
ggml_backend_sched_t backend_sched; // defines which backends are used to construct the compute graphs
// by default the forward graph needs to be reconstructed for each eval
// if ctx_compute, inputs, and outputs are set the graphs are instead allocated statically
struct ggml_context * ctx_compute;
struct ggml_tensor * inputs;
struct ggml_tensor * outputs;
enum ggml_opt_loss_type loss_type;
enum ggml_opt_build_type build_type;
int32_t opt_period; // after how many gradient accumulation steps an optimizer step should be done
ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
void * get_opt_pars_ud; // userdata for calculating optimizer parameters
// only GGML_OPT_OPTIMIZER_TYPE_ADAMW needs m, v momenta per parameter tensor
enum ggml_opt_optimizer_type optimizer;
};
// get parameters for an optimization context with defaults set where possible
// parameters for which no sensible defaults exist are supplied as arguments to this function
GGML_API struct ggml_opt_params ggml_opt_default_params(
ggml_backend_sched_t backend_sched,
enum ggml_opt_loss_type loss_type);
GGML_API ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params);
GGML_API void ggml_opt_free(ggml_opt_context_t opt_ctx);
// set gradients to zero, initilize loss, and optionally reset the optimizer
GGML_API void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer);
GGML_API bool ggml_opt_static_graphs(ggml_opt_context_t opt_ctx); // whether the graphs are allocated_statically
// get underlying tensors that store data
// if not using static graphs these pointers become invalid with the next call to ggml_opt_alloc
GGML_API struct ggml_tensor * ggml_opt_inputs( ggml_opt_context_t opt_ctx); // forward graph input tensor
GGML_API struct ggml_tensor * ggml_opt_outputs( ggml_opt_context_t opt_ctx); // forward graph output tensor
GGML_API struct ggml_tensor * ggml_opt_labels( ggml_opt_context_t opt_ctx); // labels to compare outputs against
GGML_API struct ggml_tensor * ggml_opt_loss( ggml_opt_context_t opt_ctx); // scalar tensor that contains the loss
GGML_API struct ggml_tensor * ggml_opt_pred( ggml_opt_context_t opt_ctx); // predictions made by outputs
GGML_API struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx); // number of matching predictions between outputs and labels
// get the gradient accumulator for a node from the forward graph
GGML_API struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node);
GGML_API enum ggml_opt_optimizer_type ggml_opt_context_optimizer_type(ggml_opt_context_t); //TODO consistent naming scheme
GGML_API const char * ggml_opt_optimizer_name(enum ggml_opt_optimizer_type);
// ====== Optimization Result ======
GGML_API ggml_opt_result_t ggml_opt_result_init(void);
GGML_API void ggml_opt_result_free(ggml_opt_result_t result);
GGML_API void ggml_opt_result_reset(ggml_opt_result_t result);
// get data from result, uncertainties are optional and can be ignored by passing NULL
GGML_API void ggml_opt_result_ndata( ggml_opt_result_t result, int64_t * ndata); // writes 1 value, number of datapoints
GGML_API void ggml_opt_result_loss( ggml_opt_result_t result, double * loss, double * unc); // writes 1 value
GGML_API void ggml_opt_result_pred( ggml_opt_result_t result, int32_t * pred); // writes ndata values
GGML_API void ggml_opt_result_accuracy(ggml_opt_result_t result, double * accuracy, double * unc); // writes 1 value
// ====== Computation ======
// if not using static graphs, this function must be called prior to ggml_opt_alloc
GGML_API void ggml_opt_prepare_alloc(
ggml_opt_context_t opt_ctx,
struct ggml_context * ctx_compute,
struct ggml_cgraph * gf,
struct ggml_tensor * inputs,
struct ggml_tensor * outputs);
// allocate the next graph for evaluation, either forward or forward + backward
// must be called exactly once prior to calling ggml_opt_eval
GGML_API void ggml_opt_alloc(ggml_opt_context_t opt_ctx, bool backward);
// do forward pass, increment result if not NULL, do backward pass if allocated
GGML_API void ggml_opt_eval(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
// ############################################################################
// ## The high-level functions start here. They do not depend on any private ##
// ## functions or structs and can be copied to and adapted for user code. ##
// ############################################################################
// ====== Intended Usage ======
//
// 1. Select the appropriate loss for your problem.
// 2. Create a dataset and set the data for the "data" tensor. Also set the "labels" tensor if your loss needs them.
// Setting the shard size to 1 will be fine, it's the granularity with which data is shuffled/loaded (bigger values are faster).
// 3. Create a GGML graph for your model with no_alloc == true. Use two separate contexts for the tensors.
// The first context should contain the model parameters and inputs and be allocated statically in user code.
// The second context should contain all other tensors and will be (re)allocated automatically.
// Due to this automated allocation the data of the second context is not defined when accessed in user code.
// Note that the second dimension of the inputs/outputs are interpreted as the number of datapoints in those tensors.
// 4. Call ggml_opt_fit. If you need more control you can use ggml_opt_epoch instead.
// signature for a callback while evaluating opt_ctx on dataset, called after an evaluation
typedef void (*ggml_opt_epoch_callback)(
bool train, // true after training evaluation, false after validation evaluation
ggml_opt_context_t opt_ctx,
ggml_opt_dataset_t dataset,
ggml_opt_result_t result, // result associated with the dataset subsection
int64_t ibatch, // number of batches that have been evaluated so far
int64_t ibatch_max, // total number of batches in this dataset subsection
int64_t t_start_us); // time at which the evaluation on the dataset subsection was started
// do training on front of dataset, do evaluation only on back of dataset
GGML_API void ggml_opt_epoch(
ggml_opt_context_t opt_ctx,
ggml_opt_dataset_t dataset,
ggml_opt_result_t result_train, // result to increment during training, ignored if NULL
ggml_opt_result_t result_eval, // result to increment during evaluation, ignored if NULL
int64_t idata_split, // data index at which to split training and evaluation
ggml_opt_epoch_callback callback_train,
ggml_opt_epoch_callback callback_eval);
// callback that prints a progress bar on stderr
GGML_API void ggml_opt_epoch_callback_progress_bar(
bool train,
ggml_opt_context_t opt_ctx,
ggml_opt_dataset_t dataset,
ggml_opt_result_t result,
int64_t ibatch,
int64_t ibatch_max,
int64_t t_start_us);
// fit model defined by inputs and outputs to dataset
GGML_API void ggml_opt_fit(
ggml_backend_sched_t backend_sched, // backend scheduler for constructing the compute graphs
struct ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs
struct ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch]
struct ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
ggml_opt_dataset_t dataset, // dataset with data and optionally also labels
enum ggml_opt_loss_type loss_type, // loss to minimize
enum ggml_opt_optimizer_type optimizer, // sgd or adamw
ggml_opt_get_optimizer_params get_opt_pars, // callback to get optimizer params, userdata is pointer to epoch (of type int64_t)
int64_t nepoch, // how many times the dataset should be iterated over
int64_t nbatch_logical, // datapoints optimizer step, must be a multiple of ndata_batch in inputs/outputs
float val_split, // fraction of the dataset to use for validation, must be in [0.0f, 1.0f)
bool silent); // whether or not info prints to stderr should be suppressed
#ifdef __cplusplus
}
#endif