Files
llama.cpp/scripts/server-bench.py
Johannes Gäßler 4850b52aed server-bench: external OAI servers, sqlite (#15179)
* server-bench: external OAI servers, sqlite

* Update scripts/server-bench.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update scripts/server-bench.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update scripts/server-bench.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* raise_for_status

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-08-08 23:04:36 +02:00

304 lines
14 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import json
import os
import random
import sqlite3
import subprocess
from time import sleep, time
from typing import Optional, Union
import datasets
import logging
import matplotlib.pyplot as plt
import numpy as np
import requests
from tqdm.contrib.concurrent import thread_map
logging.basicConfig(level=logging.INFO, format='%(message)s')
logger = logging.getLogger("server-bench")
def get_prompts_text(dataset_name: str, n_prompts: int) -> Optional[list[str]]:
ret = []
if dataset_name.lower() == "mmlu":
logger.info("Loading MMLU dataset...")
ret = datasets.load_dataset("cais/mmlu", "all")["test"]["question"] # type: ignore
else:
return None
if n_prompts >= 0:
ret = ret[:n_prompts]
return ret
def get_prompt_lengths_rng(n_prompts: int, prompt_length_min: int, prompt_length_max: int, seed_offset: int) -> list[int]:
assert n_prompts >= 0
ret: list[int] = []
for i in range(n_prompts):
if seed_offset >= 0:
random.seed(3 * (seed_offset + 1000 * i) + 0)
ret.append(random.randint(prompt_length_min, prompt_length_max))
return ret
def get_prompts_rng(prompt_lengths: list[int]) -> list[list[int]]:
return [[random.randint(100, 10000) for _ in range(pl)] for pl in prompt_lengths]
def get_server(path_server: str, path_log: Optional[str]) -> dict:
if path_server.startswith("http://") or path_server.startswith("https://"):
return {"process": None, "address": path_server, "fout": None}
if os.environ.get("LLAMA_ARG_HOST") is None:
logger.info("LLAMA_ARG_HOST not explicitly set, using 127.0.0.1")
os.environ["LLAMA_ARG_HOST"] = "127.0.0.1"
if os.environ.get("LLAMA_ARG_PORT") is None:
logger.info("LLAMA_ARG_PORT not explicitly set, using 8080")
os.environ["LLAMA_ARG_PORT"] = "8080"
hostname: Optional[str] = os.environ.get("LLAMA_ARG_HOST")
port: Optional[str] = os.environ.get("LLAMA_ARG_PORT")
assert hostname is not None
assert port is not None
address: str = f"http://{hostname}:{port}"
logger.info(f"Starting the llama.cpp server under {address}...")
fout = open(path_log.format(port=port), "w") if path_log is not None else subprocess.DEVNULL
process = subprocess.Popen([path_server], stdout=fout, stderr=subprocess.STDOUT)
n_failures: int = 0
while True:
try:
sleep(1.0)
exit_code = process.poll()
if exit_code is not None:
raise RuntimeError(f"llama.cpp server exited unexpectedly with exit code {exit_code}{path_log and f', see {path_log.format(port=port)}' or ''}")
response = requests.get(f"{address}/health")
if response.status_code == 200:
break
except requests.ConnectionError:
n_failures += 1
if n_failures >= 10:
raise RuntimeError("llama.cpp server is not healthy after 10 seconds")
return {"process": process, "address": address, "fout": fout}
def get_prompt_length(data: dict) -> int:
session = data["session"]
server_address: str = data["server_address"]
response = session.post(
f"{server_address}/apply-template",
json={"messages": [{"role": "user", "content": data["prompt"], "stream": True}]}
)
response.raise_for_status()
prompt: str = json.loads(response.text)["prompt"]
response = session.post(
f"{server_address}/tokenize",
json={"content": prompt, "add_special": True}
)
response.raise_for_status()
tokens: list[str] = json.loads(response.text)["tokens"]
return len(tokens)
def send_prompt(data: dict) -> tuple[float, list[float]]:
session = data["session"]
server_address: str = data["server_address"]
t_submit = time()
if data["external_server"]:
json_data: dict = {
"prompt": data["prompt"], "ignore_eos": True,
"seed": data["seed"], "max_tokens": data["n_predict"], "stream": True}
response = session.post(f"{server_address}/v1/completions", json=json_data, stream=True)
elif data["synthetic_prompt"]:
json_data: dict = {
"prompt": data["prompt"], "ignore_eos": True, "cache_prompt": False,
"seed": data["seed"], "n_predict": data["n_predict"], "stream": True}
response = session.post(f"{server_address}/completion", json=json_data, stream=True)
else:
response = session.post(
f"{server_address}/apply-template",
json={"messages": [{"role": "user", "content": data["prompt"], "stream": True}]}
)
response.raise_for_status()
prompt: str = json.loads(response.text)["prompt"]
json_data: dict = {"prompt": prompt, "seed": data["seed"], "n_predict": data["n_predict"], "stream": True}
response = session.post(f"{server_address}/completion", json=json_data, stream=True)
response.raise_for_status()
lines = []
token_arrival_times: list[float] = []
for line in response.iter_lines(decode_unicode=False):
if not line.startswith(b"data: "):
continue
lines.append(line)
token_arrival_times.append(time())
token_arrival_times = token_arrival_times[:-1]
if len(lines) > 1 and "timings" in json.loads(lines[-2][6:]):
token_arrival_times = token_arrival_times[:-1]
return (t_submit, token_arrival_times)
def benchmark(
path_server: str, path_log: Optional[str], path_db: Optional[str], name: Optional[str], prompt_source: str, n_prompts: int,
n_predict: int, n_predict_min: int, seed_offset: int):
external_server: bool = path_server.startswith("http://") or path_server.startswith("https://")
if os.environ.get("LLAMA_ARG_N_PARALLEL") is None:
logger.info("LLAMA_ARG_N_PARALLEL not explicitly set, using 32")
os.environ["LLAMA_ARG_N_PARALLEL"] = "32"
if not external_server and os.environ.get("LLAMA_ARG_N_GPU_LAYERS") is None:
logger.info("LLAMA_ARG_N_GPU_LAYERS not explicitly set, using 999")
os.environ["LLAMA_ARG_N_GPU_LAYERS"] = "999"
if not external_server and os.environ.get("LLAMA_ARG_FLASH_ATTN") is None:
logger.info("LLAMA_ARG_FLASH_ATTN not explicitly set, using 'true'")
os.environ["LLAMA_ARG_FLASH_ATTN"] = "true"
parallel: int = int(os.environ.get("LLAMA_ARG_N_PARALLEL")) # type: ignore
prompts: Union[None, list[str], list[list[int]]] = get_prompts_text(prompt_source, n_prompts)
synthetic_prompts: bool = prompts is None
prompt_n = []
if synthetic_prompts:
prompt_source_split: list[str] = prompt_source.split("-")
assert len(prompt_source_split) == 3
assert prompt_source_split[0].lower() == "rng"
prompt_length_min: int = int(prompt_source_split[1])
prompt_length_max: int = int(prompt_source_split[2])
logger.info("Generating random prompts...")
prompt_n = get_prompt_lengths_rng(n_prompts, prompt_length_min, prompt_length_max, seed_offset)
prompts = get_prompts_rng(prompt_n)
else:
n_predict_min = n_predict
if not external_server and os.environ.get("LLAMA_ARG_CTX_SIZE") is None:
context_per_slot: int = int(1.05 * (n_predict + (np.max(prompt_n) if synthetic_prompts else 2048)))
context_total: int = context_per_slot * parallel
os.environ["LLAMA_ARG_CTX_SIZE"] = str(context_total)
logger.info(f"LLAMA_ARG_CTX_SIZE not explicitly set, using {context_total} ({context_per_slot} per slot).")
server: Optional[dict] = None
session = None
try:
server = get_server(path_server, path_log)
server_address: str = server["address"]
assert external_server == (server["process"] is None)
adapter = requests.adapters.HTTPAdapter(pool_connections=parallel, pool_maxsize=parallel) # type: ignore
session = requests.Session()
session.mount("http://", adapter)
session.mount("https://", adapter)
data: list[dict] = []
for i, p in enumerate(prompts):
if seed_offset >= 0:
random.seed(3 * (seed_offset + 1000 * i) + 1)
data.append({
"session": session, "server_address": server_address, "external_server": external_server, "prompt": p,
"synthetic_prompt": synthetic_prompts, "n_predict": random.randint(n_predict_min, n_predict),
"seed": (3 * (seed_offset + 1000 * i) + 2) if seed_offset >= 0 else -1})
if not synthetic_prompts:
logger.info("Getting the prompt lengths...")
prompt_n = [get_prompt_length(d) for d in data]
logger.info("Starting the benchmark...\n")
t0 = time()
results: list[tuple[float, list[float]]] = thread_map(send_prompt, data, max_workers=parallel, chunksize=1)
finally:
if server is not None and server["process"] is not None:
server["process"].terminate()
server["process"].wait()
if session is not None:
session.close()
prompt_t = []
token_t = []
depth_sum: int = 0
for pn, (t_submit, tat) in zip(prompt_n, results):
prompt_t.append(tat[0] - t_submit)
token_t += tat
n_tokens: int = len(tat)
depth_sum += n_tokens * pn
depth_sum += n_tokens * (n_tokens + 1) // 2
assert len(token_t) > 0
prompt_n = np.array(prompt_n, dtype=np.int64)
prompt_t = np.array(prompt_t, dtype=np.float64)
token_t = np.array(token_t, dtype=np.float64)
token_t -= t0
token_t_last = np.max(token_t)
logger.info("")
logger.info(f"Benchmark duration: {token_t_last:.2f} s")
logger.info(f"Request throughput: {n_prompts / token_t_last:.2f} requests/s = {n_prompts / (token_t_last/60):.2f} requests/min")
logger.info(f"Total prompt length: {np.sum(prompt_n)} tokens")
logger.info(f"Average prompt length: {np.mean(prompt_n):.2f} tokens")
logger.info(f"Average prompt latency: {1e3 * np.mean(prompt_t):.2f} ms")
logger.info(f"Average prompt speed: {np.sum(prompt_n) / np.sum(prompt_t):.2f} tokens/s")
logger.info(f"Total generated tokens: {token_t.shape[0]}")
logger.info(f"Average generation depth: {depth_sum / token_t.shape[0]:.2f} tokens")
logger.info(f"Average total generation speed: {token_t.shape[0] / token_t_last:.2f} tokens/s")
logger.info(f"Average generation speed per slot: {token_t.shape[0] / (parallel * token_t_last):.2f} tokens/s / slot")
if path_db is not None:
con = sqlite3.connect(path_db)
cursor = con.cursor()
cursor.execute(
"CREATE TABLE IF NOT EXISTS server_bench"
"(name TEXT, n_parallel INTEGER, prompt_source TEXT, n_prompts INTEGER, "
"n_predict INTEGER, n_predict_min INTEGER, seed_offset INTEGER, runtime REAL);")
cursor.execute(
"INSERT INTO server_bench VALUES (?, ?, ?, ?, ?, ?, ?, ?);",
[name, parallel, prompt_source, n_prompts, n_predict, n_predict_min, seed_offset, token_t_last])
con.commit()
plt.figure()
plt.scatter(prompt_n, 1e3 * prompt_t, s=10.0, marker=".", alpha=0.25)
plt.xlim(0, 1.05e0 * np.max(prompt_n))
plt.ylim(0, 1.05e3 * np.max(prompt_t))
plt.title(name or "")
plt.xlabel("Prompt length [tokens]")
plt.ylabel("Time to first token [ms]")
plt.savefig("prompt_time.png", dpi=240)
bin_max = np.ceil(token_t_last) + 1
plt.figure()
plt.hist(token_t, np.arange(0, bin_max))
plt.xlim(0, bin_max + 1)
plt.title(name or "")
plt.xlabel("Time [s]")
plt.ylabel("Num. tokens generated per second")
plt.savefig("gen_rate.png", dpi=240)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Tool for benchmarking the throughput of the llama.cpp HTTP server. "
"Results are printed to console and visualized as plots (saved to current working directory). "
"To pass arguments such as the model path to the server, set the corresponding environment variables (see llama-server --help). "
"The reported numbers are the speeds as observed by the Python script and may differ from the performance reported by the server, "
"particularly when the server is fast vs. the network or Python script (e.g. when serving a very small model).")
parser.add_argument("--path_server", type=str, default="llama-server", help="Path to the llama.cpp server binary")
parser.add_argument("--path_log", type=str, default="server-bench-{port}.log", help="Path to the model to use for the benchmark")
parser.add_argument("--path_db", type=str, default=None, help="Path to an sqlite database to store the benchmark results in")
parser.add_argument("--name", type=str, default=None, help="Name to label plots and database entries with")
parser.add_argument(
"--prompt_source", type=str, default="rng-1024-2048",
help="How to get the prompts for the benchmark, either 'mmlu' for MMLU questions or "
"rng-MIN-MAX for synthetic prompts with random lengths in the interval [MIN, MAX]")
parser.add_argument("--n_prompts", type=int, default=100, help="Number of prompts to evaluate")
parser.add_argument("--n_predict", type=int, default=2048, help="Max. number of tokens to predict per prompt")
parser.add_argument(
"--n_predict_min", type=int, default=1024,
help="Min. number of tokens to predict per prompt (supported for synthetic prompts only)")
parser.add_argument("--seed_offset", type=int, default=0, help="Offset for determining the seeds for pseudorandom prompt/generation lengths. "
"Corelations between seeds can occur when set >= 1000. Negative values mean no seed.")
args = parser.parse_args()
benchmark(**vars(args))