Files
llama.cpp/ggml/src/ggml-vulkan/ggml-vulkan.cpp
Jeff Bolz 0090950f67 vulkan: In coopmat2 mmq, load q4_k/q5_k scales through shared memory (#12833)
q4_k and q5_k had a lot of redundant global loads where the same 16B of
scale information is repeatedly loaded and decoded during each loop iteration.
This change restructures the loops to more explicitly iterate over whole
blocks in the outer loop (with unrolled inner loop) and to copy/decode the
scale data into shared memory once at the start of each outer loop. The copy
is pipelined so the scale load from global memory is relatively cheap.

This improves q4_k/q5_k model prompt processing performance by around 5-7%.
I briefly tried applying this to q6_k and q4_0, and it didn't help for q6_k
and hurt for q4_0.

The big "else" path in mul_mm_cm2.comp that had all the clamped/unclamped
variants isn't used as often as it originally was (e.g. due to the padded_N
change), so I trimmed it down to offset some of the new complexity of the
semi-manual loop unrolling.
2025-04-09 07:25:08 +02:00

10154 lines
516 KiB
C++

#include "ggml-vulkan.h"
#include <vulkan/vulkan_core.h>
#if defined(GGML_VULKAN_RUN_TESTS) || defined(GGML_VULKAN_PERF) || defined(GGML_VULKAN_CHECK_RESULTS)
#include <chrono>
#include "ggml-cpu.h"
#endif
#include <vulkan/vulkan.hpp>
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <tuple>
#include <vector>
#include <sstream>
#include <utility>
#include <memory>
#include <limits>
#include <map>
#include <unordered_map>
#include <memory>
#include <mutex>
#include <future>
#include <thread>
#if defined(_MSC_VER)
# define NOMINMAX 1
# include <windows.h>
# define YIELD() YieldProcessor()
#elif defined(__clang__) || defined(__GNUC__)
# if defined(__x86_64__) ||defined(__i386__)
# include <immintrin.h>
# define YIELD() _mm_pause()
# elif defined(__arm__) || defined(__aarch64__)
# if defined(__clang__)
# include <arm_acle.h>
# define YIELD() __yield()
# else
# define YIELD() asm volatile("yield")
# endif
# endif
#endif
#if !defined(YIELD)
#define YIELD()
#endif
#include "ggml-impl.h"
#include "ggml-backend-impl.h"
#include "ggml-vulkan-shaders.hpp"
#define ROUNDUP_POW2(M, N) (((M) + (N) - 1) & ~((N) - 1))
#define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
static bool is_pow2(uint32_t x) { return x > 1 && (x & (x-1)) == 0; }
#define VK_VENDOR_ID_AMD 0x1002
#define VK_VENDOR_ID_APPLE 0x106b
#define VK_VENDOR_ID_INTEL 0x8086
#define VK_VENDOR_ID_NVIDIA 0x10de
#define VK_DEVICE_DESCRIPTOR_POOL_SIZE 32
#define GGML_VK_MAX_NODES 8192
#define MAX_VK_BUFFERS 256
#define VK_CHECK(err, msg) \
do { \
vk::Result err_ = (err); \
if (err_ != vk::Result::eSuccess) { \
fprintf(stderr, "ggml_vulkan: %s error %s at %s:%d\n", \
#err, to_string(err_).c_str(), __FILE__, __LINE__); \
exit(1); \
} \
} while (0)
#ifdef GGML_VULKAN_DEBUG
#define VK_LOG_DEBUG(msg) std::cerr << msg << std::endl
#else
#define VK_LOG_DEBUG(msg) ((void) 0)
#endif // GGML_VULKAN_DEBUG
struct ggml_backend_vk_context;
struct vk_queue {
uint32_t queue_family_index;
vk::Queue queue;
vk::CommandPool pool;
uint32_t cmd_buffer_idx;
std::vector<vk::CommandBuffer> cmd_buffers;
vk::PipelineStageFlags stage_flags;
bool transfer_only;
};
struct vk_pipeline_struct {
std::string name;
vk::ShaderModule shader_module;
vk::DescriptorSetLayout dsl;
std::vector<vk::DescriptorPool> descriptor_pools;
std::vector<vk::DescriptorSet> descriptor_sets;
uint32_t descriptor_set_idx;
vk::PipelineLayout layout;
vk::Pipeline pipeline;
uint32_t push_constant_size;
uint32_t parameter_count;
std::array<uint32_t, 3> wg_denoms;
uint32_t align;
// set to true to request the pipeline is compiled after the dryrun
bool needed {};
// set to true when the shader has been compiled
bool compiled {};
};
typedef std::shared_ptr<vk_pipeline_struct> vk_pipeline;
typedef std::weak_ptr<vk_pipeline_struct> vk_pipeline_ref;
static void ggml_vk_destroy_pipeline(vk::Device& device, vk_pipeline& pipeline);
struct vk_matmul_pipeline_struct {
vk_pipeline l, m, s;
vk_pipeline a_l, a_m, a_s;
};
typedef std::shared_ptr<vk_matmul_pipeline_struct> vk_matmul_pipeline;
struct vk_matmul_pipeline2 {
vk_matmul_pipeline2() {
f16acc = std::make_shared<vk_matmul_pipeline_struct>();
f32acc = std::make_shared<vk_matmul_pipeline_struct>();
}
vk_matmul_pipeline f32acc;
vk_matmul_pipeline f16acc;
};
struct vk_device_struct;
typedef std::shared_ptr<vk_device_struct> vk_device;
typedef std::weak_ptr<vk_device_struct> vk_device_ref;
struct vk_buffer_struct;
typedef std::shared_ptr<vk_buffer_struct> vk_buffer;
typedef std::weak_ptr<vk_buffer_struct> vk_buffer_ref;
struct ggml_backend_vk_buffer_type_context {
std::string name;
vk_device device;
};
static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft);
static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size);
static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft);
static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft);
static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor);
static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = {
/* .get_name = */ ggml_backend_vk_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_vk_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_vk_buffer_type_get_alignment,
/* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size,
/* .get_alloc_size = */ ggml_backend_vk_buffer_type_get_alloc_size,
/* .is_host = */ NULL,
};
#ifdef GGML_VULKAN_MEMORY_DEBUG
class vk_memory_logger;
#endif
#ifdef GGML_VULKAN_PERF
class vk_perf_logger;
#endif
static void ggml_vk_destroy_buffer(vk_buffer& buf);
static constexpr uint32_t mul_mat_vec_max_cols = 8;
static constexpr uint32_t p021_max_gqa_ratio = 8;
enum vk_device_architecture {
OTHER,
AMD_GCN,
AMD_RDNA1,
AMD_RDNA2,
AMD_RDNA3,
};
static vk_device_architecture get_device_architecture(const vk::PhysicalDevice& device) {
vk::PhysicalDeviceProperties props = device.getProperties();
if (props.vendorID == VK_VENDOR_ID_AMD) {
const std::vector<vk::ExtensionProperties> ext_props = device.enumerateDeviceExtensionProperties();
bool amd_shader_core_properties = false;
bool integer_dot_product = false;
bool subgroup_size_control = false;
for (const auto& properties : ext_props) {
if (strcmp("VK_AMD_shader_core_properties", properties.extensionName) == 0) {
amd_shader_core_properties = true;
} else if (strcmp("VK_KHR_shader_integer_dot_product", properties.extensionName) == 0) {
integer_dot_product = true;
} else if (strcmp("VK_EXT_subgroup_size_control", properties.extensionName) == 0) {
subgroup_size_control = true;
}
}
if (!amd_shader_core_properties || !integer_dot_product || !subgroup_size_control) {
return vk_device_architecture::OTHER;
}
vk::PhysicalDeviceProperties2 props2;
vk::PhysicalDeviceShaderCorePropertiesAMD shader_core_props_amd;
vk::PhysicalDeviceShaderIntegerDotProductPropertiesKHR integer_dot_props;
vk::PhysicalDeviceSubgroupSizeControlPropertiesEXT subgroup_size_control_props;
props2.pNext = &shader_core_props_amd;
shader_core_props_amd.pNext = &integer_dot_props;
integer_dot_props.pNext = &subgroup_size_control_props;
device.getProperties2(&props2);
if (subgroup_size_control_props.maxSubgroupSize == 64 && subgroup_size_control_props.minSubgroupSize == 64) {
return vk_device_architecture::AMD_GCN;
}
if (subgroup_size_control_props.maxSubgroupSize == 64 && subgroup_size_control_props.minSubgroupSize == 32) {
// RDNA
if (shader_core_props_amd.wavefrontsPerSimd == 20) {
return vk_device_architecture::AMD_RDNA1;
}
if (integer_dot_props.integerDotProduct4x8BitPackedMixedSignednessAccelerated) {
return vk_device_architecture::AMD_RDNA3;
}
return vk_device_architecture::AMD_RDNA2;
}
}
return vk_device_architecture::OTHER;
}
struct vk_device_struct {
std::mutex mutex;
vk::PhysicalDevice physical_device;
vk::PhysicalDeviceProperties properties;
std::string name;
uint64_t max_memory_allocation_size;
uint64_t suballocation_block_size;
bool fp16;
bool pipeline_robustness;
vk::Device device;
uint32_t vendor_id;
vk_device_architecture architecture;
vk_queue compute_queue;
vk_queue transfer_queue;
bool single_queue;
uint32_t subgroup_size;
uint32_t shader_core_count;
bool uma;
bool prefer_host_memory;
bool float_controls_rte_fp16;
bool subgroup_add;
bool integer_dot_product;
bool subgroup_size_control;
uint32_t subgroup_min_size;
uint32_t subgroup_max_size;
bool subgroup_require_full_support;
bool coopmat_support;
bool coopmat_acc_f32_support;
bool coopmat_acc_f16_support;
uint32_t coopmat_m;
uint32_t coopmat_n;
uint32_t coopmat_k;
bool coopmat_int_support;
uint32_t coopmat_int_m;
uint32_t coopmat_int_n;
uint32_t coopmat_int_k;
bool coopmat2;
size_t idx;
bool mul_mat_l[GGML_TYPE_COUNT];
bool mul_mat_m[GGML_TYPE_COUNT];
bool mul_mat_s[GGML_TYPE_COUNT];
bool mul_mat_id_l[GGML_TYPE_COUNT];
bool mul_mat_id_m[GGML_TYPE_COUNT];
bool mul_mat_id_s[GGML_TYPE_COUNT];
// set to true to indicate that some shaders need to be compiled after the dryrun
bool need_compiles {};
vk_matmul_pipeline pipeline_matmul_f32 {};
vk_matmul_pipeline pipeline_matmul_f32_f16 {};
vk_matmul_pipeline2 pipeline_matmul_f16;
vk_matmul_pipeline2 pipeline_matmul_f16_f32;
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat[GGML_TYPE_COUNT];
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_COUNT];
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_COUNT];
vk_matmul_pipeline pipeline_matmul_id_f32 {};
vk_matmul_pipeline2 pipeline_matmul_id_f16;
vk_matmul_pipeline2 pipeline_matmul_id_f16_f32;
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_id[GGML_TYPE_COUNT];
vk_pipeline pipeline_matmul_split_k_reduce;
vk_pipeline pipeline_quantize_q8_1;
vk_pipeline pipeline_dequant[GGML_TYPE_COUNT];
vk_pipeline pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_COUNT][mul_mat_vec_max_cols];
vk_pipeline pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_COUNT][mul_mat_vec_max_cols];
vk_pipeline pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_COUNT];
vk_pipeline pipeline_mul_mat_vec_p021_f16_f32[p021_max_gqa_ratio];
vk_pipeline pipeline_mul_mat_vec_nc_f16_f32;
vk_pipeline pipeline_get_rows[GGML_TYPE_COUNT];
vk_pipeline pipeline_get_rows_f32[GGML_TYPE_COUNT];
vk_pipeline pipeline_acc_f32;
vk_pipeline pipeline_add_f32, pipeline_add_f32_norepeat;
vk_pipeline pipeline_add_f16_f32_f16, pipeline_add_f16_f32_f16_norepeat;
vk_pipeline pipeline_sub_f32, pipeline_sub_f32_norepeat;
vk_pipeline pipeline_mul_f32, pipeline_mul_f32_norepeat;
vk_pipeline pipeline_div_f32, pipeline_div_f32_norepeat;
vk_pipeline pipeline_concat_f32, pipeline_concat_f16, pipeline_concat_i32;
vk_pipeline pipeline_upscale_f32;
vk_pipeline pipeline_scale_f32;
vk_pipeline pipeline_sqr_f32;
vk_pipeline pipeline_sin_f32;
vk_pipeline pipeline_cos_f32;
vk_pipeline pipeline_clamp_f32;
vk_pipeline pipeline_pad_f32;
vk_pipeline pipeline_repeat_f32, pipeline_repeat_back_f32;
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16;
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16;
vk_pipeline pipeline_cpy_f32_quant[GGML_TYPE_COUNT];
vk_pipeline pipeline_cpy_quant_f32[GGML_TYPE_COUNT];
vk_pipeline pipeline_norm_f32;
vk_pipeline pipeline_group_norm_f32;
vk_pipeline pipeline_rms_norm_f32;
vk_pipeline pipeline_rms_norm_back_f32;
vk_pipeline pipeline_l2_norm_f32;
vk_pipeline pipeline_gelu_f32;
vk_pipeline pipeline_gelu_quick_f32;
vk_pipeline pipeline_silu_f32;
vk_pipeline pipeline_silu_back_f32;
vk_pipeline pipeline_relu_f32;
vk_pipeline pipeline_leaky_relu_f32;
vk_pipeline pipeline_tanh_f32;
vk_pipeline pipeline_sigmoid_f32;
vk_pipeline pipeline_diag_mask_inf_f32;
vk_pipeline pipeline_soft_max_f32, pipeline_soft_max_f32_f16;
vk_pipeline pipeline_soft_max_f32_wg512, pipeline_soft_max_f32_f16_wg512;
vk_pipeline pipeline_soft_max_back_f32;
vk_pipeline pipeline_rope_norm_f32, pipeline_rope_norm_f16;
vk_pipeline pipeline_rope_neox_f32, pipeline_rope_neox_f16;
vk_pipeline pipeline_rope_multi_f32, pipeline_rope_multi_f16;
vk_pipeline pipeline_rope_vision_f32, pipeline_rope_vision_f16;
vk_pipeline pipeline_argsort_f32;
vk_pipeline pipeline_sum_rows_f32;
vk_pipeline pipeline_argmax_f32;
vk_pipeline pipeline_count_equal_i32;
vk_pipeline pipeline_im2col_f32, pipeline_im2col_f32_f16;
vk_pipeline pipeline_timestep_embedding_f32;
vk_pipeline pipeline_pool2d_f32;
vk_pipeline pipeline_rwkv_wkv6_f32;
vk_pipeline pipeline_rwkv_wkv7_f32;
vk_pipeline pipeline_opt_step_adamw_f32;
// [2][2][2] is for {f16acc,f32acc}x{large,small_rows}x{unaligned, aligned}
vk_pipeline pipeline_flash_attn_f32_f16_D64[GGML_TYPE_COUNT][2][2][2];
vk_pipeline pipeline_flash_attn_f32_f16_D80[GGML_TYPE_COUNT][2][2][2];
vk_pipeline pipeline_flash_attn_f32_f16_D96[GGML_TYPE_COUNT][2][2][2];
vk_pipeline pipeline_flash_attn_f32_f16_D112[GGML_TYPE_COUNT][2][2][2];
vk_pipeline pipeline_flash_attn_f32_f16_D128[GGML_TYPE_COUNT][2][2][2];
vk_pipeline pipeline_flash_attn_f32_f16_D256[GGML_TYPE_COUNT][2][2][2];
vk_pipeline pipeline_flash_attn_split_k_reduce;
std::unordered_map<std::string, vk_pipeline_ref> pipelines;
std::unordered_map<std::string, uint64_t> pipeline_descriptor_set_requirements;
std::vector<std::tuple<void*, size_t, vk_buffer>> pinned_memory;
vk::Fence fence;
vk_buffer sync_staging;
ggml_backend_buffer_type buffer_type;
#ifdef GGML_VULKAN_MEMORY_DEBUG
std::unique_ptr<vk_memory_logger> memory_logger;
#endif
#ifdef GGML_VULKAN_PERF
std::unique_ptr<vk_perf_logger> perf_logger;
#endif
~vk_device_struct() {
VK_LOG_DEBUG("destroy device " << name);
device.destroyFence(fence);
ggml_vk_destroy_buffer(sync_staging);
device.destroyCommandPool(compute_queue.pool);
if (!single_queue) {
device.destroyCommandPool(transfer_queue.pool);
}
for (auto& pipeline : pipelines) {
if (pipeline.second.expired()) {
continue;
}
vk_pipeline pl = pipeline.second.lock();
ggml_vk_destroy_pipeline(device, pl);
}
pipelines.clear();
device.destroy();
}
};
struct vk_buffer_struct {
vk::Buffer buffer = VK_NULL_HANDLE;
vk::DeviceMemory device_memory = VK_NULL_HANDLE;
vk::MemoryPropertyFlags memory_property_flags;
void * ptr;
size_t size = 0;
vk_device device;
~vk_buffer_struct() {
if (size == 0) {
return;
}
VK_LOG_DEBUG("~vk_buffer_struct(" << buffer << ", " << size << ")");
device->device.freeMemory(device_memory);
device->device.destroyBuffer(buffer);
}
};
struct vk_subbuffer {
vk_buffer buffer;
uint64_t offset;
uint64_t size;
operator vk::DescriptorBufferInfo() const {
return { buffer->buffer, offset, size };
}
};
struct vk_semaphore {
vk::Semaphore s;
uint64_t value;
};
struct vk_submission {
vk::CommandBuffer buffer;
std::vector<vk_semaphore> wait_semaphores;
std::vector<vk_semaphore> signal_semaphores;
};
typedef std::vector<vk_submission> vk_sequence;
struct vk_mat_mat_push_constants {
uint32_t M; uint32_t N; uint32_t K;
uint32_t stride_a; uint32_t stride_b; uint32_t stride_d;
uint32_t batch_stride_a; uint32_t batch_stride_b; uint32_t batch_stride_d;
uint32_t k_split;
uint32_t ne02; uint32_t ne12; uint32_t broadcast2; uint32_t broadcast3;
uint32_t padded_N;
};
struct vk_mat_vec_push_constants {
uint32_t ncols; uint32_t stride_a; uint32_t stride_b; uint32_t stride_d;
uint32_t batch_stride_a; uint32_t batch_stride_b; uint32_t batch_stride_d;
uint32_t ne02; uint32_t ne12; uint32_t broadcast2; uint32_t broadcast3;
};
struct vk_mat_mat_id_push_constants {
uint32_t M; uint32_t N; uint32_t K;
uint32_t stride_a; uint32_t stride_b; uint32_t stride_d;
uint32_t batch_stride_a; uint32_t batch_stride_b; uint32_t batch_stride_d;
uint32_t nei0; uint32_t nei1; uint32_t nbi1; uint32_t ne11;
uint32_t padded_N;
};
struct vk_mat_vec_id_push_constants {
uint32_t ncols; uint32_t stride_a; uint32_t stride_b; uint32_t stride_d;
uint32_t batch_stride_a; uint32_t batch_stride_b; uint32_t batch_stride_d;
uint32_t nei0; uint32_t ne11;
};
struct vk_flash_attn_push_constants {
uint32_t N;
uint32_t KV;
uint32_t ne1;
uint32_t ne2;
uint32_t ne3;
uint32_t neq2;
uint32_t neq3;
uint32_t nek2;
uint32_t nek3;
uint32_t nev2;
uint32_t nev3;
uint32_t nem1;
uint32_t nb01;
uint32_t nb02;
uint32_t nb03;
uint32_t nb11;
uint32_t nb12;
uint32_t nb13;
uint32_t nb21;
uint32_t nb22;
uint32_t nb23;
uint32_t nb31;
float scale;
float max_bias;
float logit_softcap;
uint32_t mask;
uint32_t n_head_log2;
float m0;
float m1;
uint32_t gqa_ratio;
uint32_t split_kv;
uint32_t k_num;
};
struct vk_op_push_constants {
uint32_t KX;
uint32_t KY;
float param1;
float param2;
};
struct vk_op_unary_push_constants {
uint32_t ne;
uint32_t ne00; uint32_t ne01; uint32_t ne02; uint32_t ne03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13;
uint32_t misalign_offsets;
float param1; float param2;
uint32_t ne0_012mp; uint32_t ne0_012L;
uint32_t ne0_01mp; uint32_t ne0_01L;
uint32_t ne0_0mp; uint32_t ne0_0L;
uint32_t ne1_012mp; uint32_t ne1_012L;
uint32_t ne1_01mp; uint32_t ne1_01L;
uint32_t ne1_0mp; uint32_t ne1_0L;
};
static_assert(sizeof(vk_op_unary_push_constants) <= 128, "sizeof(vk_op_unary_push_constants) must be <= 128");
// See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1.
// Precompute mp (m' in the paper) and L such that division
// can be computed using a multiply (high 32b of 64b result)
// and a shift:
//
// n/d = (mulhi(n, mp) + n) >> L;
static void init_fastdiv_values(uint32_t d, uint32_t &mp, uint32_t &L)
{
// compute L = ceil(log2(d));
L = 0;
while (L < 32 && (uint32_t{1} << L) < d) {
L++;
}
mp = (uint32_t)((uint64_t{1} << 32) * ((uint64_t{1} << L) - d) / d + 1);
}
template <typename T> void init_pushconst_fastdiv(T &p) {
GGML_UNUSED(p);
static_assert(!std::is_const<T>::value, "unexpected type");
}
template <> void init_pushconst_fastdiv(vk_op_unary_push_constants &p) {
// Compute magic values to divide by these six numbers.
init_fastdiv_values(p.ne02*p.ne01*p.ne00, p.ne0_012mp, p.ne0_012L);
init_fastdiv_values(p.ne01*p.ne00, p.ne0_01mp, p.ne0_01L);
init_fastdiv_values(p.ne00, p.ne0_0mp, p.ne0_0L);
init_fastdiv_values(p.ne12*p.ne11*p.ne10, p.ne1_012mp, p.ne1_012L);
init_fastdiv_values(p.ne11*p.ne10, p.ne1_01mp, p.ne1_01L);
init_fastdiv_values(p.ne10, p.ne1_0mp, p.ne1_0L);
}
struct vk_op_binary_push_constants {
uint32_t ne;
uint32_t ne00; uint32_t ne01; uint32_t ne02; uint32_t ne03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13;
uint32_t ne20; uint32_t ne21; uint32_t ne22; uint32_t ne23; uint32_t nb20; uint32_t nb21; uint32_t nb22; uint32_t nb23;
uint32_t misalign_offsets;
float param1; float param2; int32_t param3;
};
struct vk_op_diag_mask_push_constants {
uint32_t ncols;
uint32_t rows_per_channel;
int32_t n_past;
};
struct vk_op_rope_push_constants {
uint32_t ncols;
uint32_t n_dims;
float freq_scale;
uint32_t p_delta_rows;
float freq_base;
float ext_factor;
float attn_factor;
float corr_dims[2];
float theta_scale;
uint32_t has_ff;
uint32_t ne02;
uint32_t s1;
uint32_t s2;
int32_t sections[4];
uint32_t is_back;
};
struct vk_op_soft_max_push_constants {
uint32_t KX;
uint32_t KY;
float scale;
float max_bias;
float m0;
float m1;
uint32_t n_head_log2;
uint32_t nrows_x;
};
struct vk_op_argsort_push_constants {
uint32_t ncols;
uint32_t ncols_pad;
int32_t order;
};
struct vk_op_im2col_push_constants {
uint32_t batch_offset; uint32_t offset_delta;
uint32_t IC;
uint32_t IW; uint32_t IH;
uint32_t OW; uint32_t OH;
uint32_t KW; uint32_t KH;
uint32_t pelements;
uint32_t CHW;
int32_t s0; int32_t s1;
int32_t p0; int32_t p1;
int32_t d0; int32_t d1;
};
struct vk_op_timestep_embedding_push_constants {
uint32_t nb1;
uint32_t dim;
uint32_t max_period;
};
struct vk_op_pool2d_push_constants {
uint32_t IW; uint32_t IH;
uint32_t OW; uint32_t OH;
uint32_t OC;
uint32_t pelements;
uint32_t op;
int32_t k0; int32_t k1;
int32_t s0; int32_t s1;
int32_t p0; int32_t p1;
};
struct vk_op_rwkv_wkv6_push_constants {
uint32_t B;
uint32_t T;
uint32_t C;
uint32_t H;
};
struct vk_op_rwkv_wkv7_push_constants {
uint32_t B;
uint32_t T;
uint32_t C;
uint32_t H;
};
struct vk_op_upscale_push_constants {
uint32_t ne; uint32_t a_offset; uint32_t d_offset;
uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13;
float sf0; float sf1; float sf2; float sf3;
};
// Allow pre-recording command buffers
struct vk_staging_memcpy {
vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {}
void * dst;
const void * src;
size_t n;
};
struct vk_context_struct {
vk_submission * s;
std::vector<vk_sequence> seqs;
int exit_tensor_idx;
std::vector<vk_staging_memcpy> in_memcpys;
std::vector<vk_staging_memcpy> out_memcpys;
vk_queue * q;
};
typedef std::shared_ptr<vk_context_struct> vk_context;
typedef std::weak_ptr<vk_context_struct> vk_context_ref;
struct ggml_vk_garbage_collector {
std::vector<vk_semaphore> tl_semaphores;
std::vector<vk_semaphore> semaphores;
std::vector<vk::Event> events;
std::vector<vk_buffer> temp_buffers;
std::vector<vk_context> contexts;
};
#if defined(GGML_VULKAN_MEMORY_DEBUG) || defined(GGML_VULKAN_DEBUG)
#define VK_LOG_MEMORY(msg) std::cerr << "ggml_vulkan memory: " << msg << std::endl
static std::string format_size(size_t size) {
const size_t kib = 1024;
const size_t mib = kib * 1024;
const size_t gib = mib * 1024;
std::ostringstream oss;
oss << std::fixed << std::setprecision(2);
if (size >= gib) {
oss << static_cast<double>(size) / gib << " GiB";
} else if (size >= mib) {
oss << static_cast<double>(size) / mib << " MiB";
} else if (size >= kib) {
oss << static_cast<double>(size) / kib << " KiB";
} else {
oss << size << " B";
}
return oss.str();
}
static std::mutex log_mutex;
class vk_memory_logger {
public:
vk_memory_logger(): total_device(0), total_host(0) {}
void log_allocation(vk_buffer_ref buf_ref, size_t size);
void log_deallocation(vk_buffer_ref buf_ref);
private:
std::map<vk::Buffer, size_t> allocations; // Track allocations
size_t total_device;
size_t total_host;
};
#else
#define VK_LOG_MEMORY(msg) ((void) 0)
#endif // GGML_VULKAN_MEMORY_DEBUG
#if defined(GGML_VULKAN_PERF)
class vk_perf_logger {
public:
void print_timings() {
std::cerr << "----------------\nVulkan Timings:" << std::endl;
for (const auto& t : timings) {
uint64_t total = 0;
for (const auto& time : t.second) {
total += time;
}
std::cerr << t.first << ": " << t.second.size() << " x " << (total / t.second.size() / 1000.0) << " ms" << std::endl;
}
timings.clear();
}
void log_timing(const ggml_tensor * node, uint64_t time) {
if (node->op == GGML_OP_UNARY) {
timings[ggml_unary_op_name(ggml_get_unary_op(node))].push_back(time);
return;
}
if (node->op == GGML_OP_MUL_MAT || node->op == GGML_OP_MUL_MAT_ID) {
const uint64_t m = node->src[0]->ne[1];
const uint64_t n = node->src[1]->ne[1];
const uint64_t k = node->src[1]->ne[0];
std::string name = ggml_op_name(node->op);
if (n == 1) {
name += "_VEC m=" + std::to_string(m) + " k=" + std::to_string(k);
} else {
name += " m=" + std::to_string(m) + " n=" + std::to_string(n) + " k=" + std::to_string(k);
}
timings[name].push_back(time);
return;
}
timings[ggml_op_name(node->op)].push_back(time);
}
private:
std::map<std::string, std::vector<uint64_t>> timings;
};
#endif // GGML_VULKAN_PERF
struct ggml_backend_vk_context {
std::string name;
vk_device device;
size_t semaphore_idx, event_idx;
ggml_vk_garbage_collector gc;
size_t prealloc_size_x, prealloc_size_y, prealloc_size_split_k;
vk_buffer prealloc_x, prealloc_y, prealloc_split_k;
vk::Fence fence, almost_ready_fence;
bool almost_ready_fence_pending {};
vk_buffer buffer_pool[MAX_VK_BUFFERS];
vk_context_ref compute_ctx;
vk_context_ref transfer_ctx;
std::vector<vk_context_ref> tensor_ctxs;
};
static void * const vk_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
static uint64_t vk_tensor_offset(const ggml_tensor * tensor) {
if (tensor->view_src) {
return (uint8_t *) tensor->view_src->data - (uint8_t *) vk_ptr_base;
}
return (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
}
struct ggml_backend_vk_buffer_context {
vk_device_ref device;
vk_buffer dev_buffer;
std::string name;
ggml_backend_vk_buffer_context(vk_device_ref device, vk_buffer&& dev_buffer, std::string& name) :
device(device),
dev_buffer(dev_buffer),
name(name) {
}
~ggml_backend_vk_buffer_context() {
ggml_vk_destroy_buffer(dev_buffer);
}
};
#ifdef GGML_VULKAN_MEMORY_DEBUG
void vk_memory_logger::log_allocation(vk_buffer_ref buf_ref, size_t size) {
std::lock_guard<std::mutex> guard(log_mutex);
vk_buffer buf = buf_ref.lock();
const bool device = bool(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eDeviceLocal);
const std::string type = device ? "device" : "host";
allocations[buf->buffer] = size;
total_device += device ? size : 0;
total_host += device ? 0 : size;
VK_LOG_MEMORY(buf->device->name << ": +" << format_size(size) << " " << type << " at " << buf->buffer << ". Total device: " << format_size(total_device) << ", total host: " << format_size(total_host));
}
void vk_memory_logger::log_deallocation(vk_buffer_ref buf_ref) {
if (buf_ref.expired() || buf_ref.lock()->size == 0) {
return;
}
std::lock_guard<std::mutex> guard(log_mutex);
vk_buffer buf = buf_ref.lock();
const bool device = bool(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eDeviceLocal);
std::string type = device ? "device" : "host";
auto it = allocations.find(buf->buffer);
total_device -= device ? it->second : 0;
total_host -= device ? 0 : it->second;
if (it != allocations.end()) {
VK_LOG_MEMORY(buf->device->name << ": -" << format_size(it->second) << " " << type << " at " << buf->buffer << ". Total device: " << format_size(total_device) << ", total host: " << format_size(total_host));
allocations.erase(it);
} else {
VK_LOG_MEMORY("ERROR " << buf->device->name << ": Attempted to deallocate unknown " << type << " memory at " << buf->buffer);
}
}
#endif // GGML_VULKAN_MEMORY_DEBUG
struct vk_instance_t {
vk::Instance instance;
std::vector<size_t> device_indices;
vk_device devices[GGML_VK_MAX_DEVICES];
};
static bool vk_instance_initialized = false;
static vk_instance_t vk_instance;
#ifdef GGML_VULKAN_CHECK_RESULTS
static size_t vk_skip_checks;
static size_t vk_output_tensor;
static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name);
static void ggml_vk_check_results_0(ggml_tensor * tensor);
static void ggml_vk_check_results_1(ggml_tensor * tensor);
#endif
typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
static void ggml_backend_vk_free(ggml_backend_t backend);
// Wait for ctx->fence to be signaled.
static void ggml_vk_wait_for_fence(ggml_backend_vk_context * ctx) {
// Use waitForFences while most of the graph executes. Hopefully the CPU can sleep
// during this wait.
if (ctx->almost_ready_fence_pending) {
VK_CHECK(ctx->device->device.waitForFences({ ctx->almost_ready_fence }, true, UINT64_MAX), "almost_ready_fence");
ctx->device->device.resetFences({ ctx->almost_ready_fence });
ctx->almost_ready_fence_pending = false;
}
// Spin (w/pause) waiting for the graph to finish executing.
vk::Result result;
while ((result = ctx->device->device.getFenceStatus(ctx->fence)) != vk::Result::eSuccess) {
if (result != vk::Result::eNotReady) {
fprintf(stderr, "ggml_vulkan: error %s at %s:%d\n", to_string(result).c_str(), __FILE__, __LINE__);
exit(1);
}
for (uint32_t i = 0; i < 100; ++i) {
YIELD();
YIELD();
YIELD();
YIELD();
YIELD();
YIELD();
YIELD();
YIELD();
YIELD();
YIELD();
}
}
ctx->device->device.resetFences({ ctx->fence });
}
// variables to track number of compiles in progress
static uint32_t compile_count = 0;
static std::mutex compile_count_mutex;
static std::condition_variable compile_count_cond;
static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipeline, size_t spv_size, const void* spv_data, const std::string entrypoint,
uint32_t parameter_count, std::array<uint32_t, 3> wg_denoms, std::vector<uint32_t> specialization_constants,
bool disable_robustness, bool require_full_subgroups, uint32_t required_subgroup_size) {
VK_LOG_DEBUG("ggml_vk_create_pipeline(" << device->name << ", " << pipeline->name << ", " << entrypoint << ", " << parameter_count <<
", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " <<
disable_robustness << ", " << require_full_subgroups << ", " << required_subgroup_size << ")");
GGML_ASSERT(parameter_count > 0);
GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0); // NOLINT
vk::ShaderModuleCreateInfo shader_module_create_info({}, spv_size, reinterpret_cast<const uint32_t *>(spv_data));
pipeline->shader_module = device->device.createShaderModule(shader_module_create_info);
std::vector<vk::DescriptorSetLayoutBinding> dsl_binding;
std::vector<vk::DescriptorBindingFlags> dsl_binding_flags;
for (uint32_t i = 0; i < parameter_count; i++) {
dsl_binding.push_back({i, vk::DescriptorType::eStorageBuffer, 1, vk::ShaderStageFlagBits::eCompute});
dsl_binding_flags.push_back({});
}
vk::DescriptorSetLayoutBindingFlagsCreateInfo dslbfci = { dsl_binding_flags };
vk::PushConstantRange pcr(
vk::ShaderStageFlagBits::eCompute,
0,
pipeline->push_constant_size
);
vk::DescriptorSetLayoutCreateInfo descriptor_set_layout_create_info(
{},
dsl_binding);
descriptor_set_layout_create_info.setPNext(&dslbfci);
pipeline->dsl = device->device.createDescriptorSetLayout(descriptor_set_layout_create_info);
vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline->parameter_count * VK_DEVICE_DESCRIPTOR_POOL_SIZE);
vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, VK_DEVICE_DESCRIPTOR_POOL_SIZE, descriptor_pool_size);
pipeline->descriptor_pools.push_back(device->device.createDescriptorPool(descriptor_pool_create_info));
pipeline->descriptor_set_idx = 0;
vk::PipelineLayoutCreateInfo pipeline_layout_create_info(vk::PipelineLayoutCreateFlags(), pipeline->dsl, pcr);
pipeline->layout = device->device.createPipelineLayout(pipeline_layout_create_info);
std::vector<vk::SpecializationMapEntry> specialization_entries(specialization_constants.size());
for (size_t i = 0; i < specialization_constants.size(); i++) {
specialization_entries[i].constantID = i;
specialization_entries[i].offset = i * sizeof(uint32_t);
specialization_entries[i].size = sizeof(uint32_t);
}
vk::SpecializationInfo specialization_info(
specialization_entries.size(),
specialization_entries.data(),
specialization_constants.size() * sizeof(uint32_t),
specialization_constants.data()
);
vk::PipelineShaderStageCreateFlags pipeline_shader_stage_create_flags{};
if (device->subgroup_require_full_support && require_full_subgroups) {
pipeline_shader_stage_create_flags |= vk::PipelineShaderStageCreateFlagBits::eRequireFullSubgroupsEXT;
}
vk::PipelineShaderStageCreateInfo pipeline_shader_create_info(
pipeline_shader_stage_create_flags,
vk::ShaderStageFlagBits::eCompute,
pipeline->shader_module,
entrypoint.c_str(),
&specialization_info);
vk::PipelineShaderStageRequiredSubgroupSizeCreateInfoEXT pipeline_shader_stage_required_subgroup_size_create_info;
pipeline_shader_stage_required_subgroup_size_create_info.requiredSubgroupSize = required_subgroup_size;
if (device->subgroup_size_control && required_subgroup_size > 0) {
GGML_ASSERT(device->subgroup_min_size <= required_subgroup_size && required_subgroup_size <= device->subgroup_max_size);
pipeline_shader_create_info.setPNext(&pipeline_shader_stage_required_subgroup_size_create_info);
}
vk::ComputePipelineCreateInfo compute_pipeline_create_info(
vk::PipelineCreateFlags{},
pipeline_shader_create_info,
pipeline->layout);
vk::PipelineRobustnessCreateInfoEXT rci;
if (device->pipeline_robustness && disable_robustness) {
rci.storageBuffers = vk::PipelineRobustnessBufferBehaviorEXT::eDisabled;
rci.uniformBuffers = vk::PipelineRobustnessBufferBehaviorEXT::eDisabled;
compute_pipeline_create_info.setPNext(&rci);
}
try {
pipeline->pipeline = device->device.createComputePipeline(VK_NULL_HANDLE, compute_pipeline_create_info).value;
} catch (const vk::SystemError& e) {
std::cerr << "ggml_vulkan: Compute pipeline creation failed for " << pipeline->name << std::endl;
std::cerr << "ggml_vulkan: " << e.what() << std::endl;
throw e;
}
pipeline->compiled = true;
{
std::lock_guard<std::mutex> guard(device->mutex);
device->pipelines.insert({ pipeline->name, pipeline });
}
{
std::lock_guard<std::mutex> guard(compile_count_mutex);
assert(compile_count > 0);
compile_count--;
}
compile_count_cond.notify_all();
}
static void ggml_vk_destroy_pipeline(vk::Device& device, vk_pipeline& pipeline) {
VK_LOG_DEBUG("ggml_pipeline_destroy_pipeline(" << pipeline->name << ")");
for (auto& pool : pipeline->descriptor_pools) {
device.destroyDescriptorPool(pool);
}
pipeline->descriptor_pools.clear();
pipeline->descriptor_sets.clear();
pipeline->descriptor_set_idx = 0;
device.destroyDescriptorSetLayout(pipeline->dsl);
device.destroyPipelineLayout(pipeline->layout);
device.destroyShaderModule(pipeline->shader_module);
device.destroyPipeline(pipeline->pipeline);
}
static void ggml_pipeline_request_descriptor_sets(vk_device& device, vk_pipeline& pipeline, uint32_t n) {
VK_LOG_DEBUG("ggml_pipeline_request_descriptor_sets(" << pipeline->name << ", " << n << ")");
device->pipeline_descriptor_set_requirements[pipeline->name] += n;
if (!pipeline->compiled) {
pipeline->needed = true;
device->need_compiles = true;
}
}
static void ggml_pipeline_allocate_descriptor_sets(vk_device& device) {
std::lock_guard<std::mutex> guard(device->mutex);
for (auto& pair : device->pipeline_descriptor_set_requirements) {
vk_pipeline pipeline = device->pipelines.at(pair.first).lock();
const uint64_t n = pair.second;
VK_LOG_DEBUG("ggml_pipeline_allocate_descriptor_sets(" << pipeline->name << ", " << n << ")");
if (pipeline->descriptor_sets.size() >= pipeline->descriptor_set_idx + n) {
// Enough descriptors are available
continue;
}
uint32_t to_alloc = pipeline->descriptor_set_idx + n - pipeline->descriptor_sets.size();
uint32_t pool_remaining = VK_DEVICE_DESCRIPTOR_POOL_SIZE - pipeline->descriptor_sets.size() % VK_DEVICE_DESCRIPTOR_POOL_SIZE;
uint32_t pool_idx = pipeline->descriptor_sets.size() / VK_DEVICE_DESCRIPTOR_POOL_SIZE;
while (to_alloc > 0) {
const uint32_t alloc_count = std::min(pool_remaining, to_alloc);
to_alloc -= alloc_count;
pool_remaining = VK_DEVICE_DESCRIPTOR_POOL_SIZE;
if (pool_idx >= pipeline->descriptor_pools.size()) {
vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline->parameter_count * VK_DEVICE_DESCRIPTOR_POOL_SIZE);
vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, VK_DEVICE_DESCRIPTOR_POOL_SIZE, descriptor_pool_size);
pipeline->descriptor_pools.push_back(device->device.createDescriptorPool(descriptor_pool_create_info));
}
std::vector<vk::DescriptorSetLayout> layouts(alloc_count);
for (uint32_t i = 0; i < alloc_count; i++) {
layouts[i] = pipeline->dsl;
}
vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pipeline->descriptor_pools[pool_idx], alloc_count, layouts.data());
std::vector<vk::DescriptorSet> sets = device->device.allocateDescriptorSets(descriptor_set_alloc_info);
pipeline->descriptor_sets.insert(pipeline->descriptor_sets.end(), sets.begin(), sets.end());
pool_idx++;
}
}
}
static void ggml_pipeline_cleanup(vk_pipeline& pipeline) {
VK_LOG_DEBUG("ggml_pipeline_cleanup(" << pipeline->name << ")");
pipeline->descriptor_set_idx = 0;
}
static vk::CommandBuffer ggml_vk_create_cmd_buffer(vk_device& device, vk_queue& q) {
VK_LOG_DEBUG("ggml_vk_create_cmd_buffer()");
std::lock_guard<std::mutex> guard(device->mutex);
if (q.cmd_buffers.size() > q.cmd_buffer_idx) {
// Reuse command buffer
return q.cmd_buffers[q.cmd_buffer_idx++];
}
vk::CommandBufferAllocateInfo command_buffer_alloc_info(
q.pool,
vk::CommandBufferLevel::ePrimary,
1);
const std::vector<vk::CommandBuffer> cmd_buffers = device->device.allocateCommandBuffers(command_buffer_alloc_info);
auto buf = cmd_buffers.front();
q.cmd_buffers.push_back(buf);
q.cmd_buffer_idx++;
return buf;
}
static vk_submission ggml_vk_create_submission(vk_device& device, vk_queue& q, std::vector<vk_semaphore> wait_semaphores, std::vector<vk_semaphore> signal_semaphores) {
VK_LOG_DEBUG("ggml_vk_create_submission()");
vk_submission s;
s.buffer = ggml_vk_create_cmd_buffer(device, q);
s.wait_semaphores = std::move(wait_semaphores);
s.signal_semaphores = std::move(signal_semaphores);
return s;
}
static void ggml_vk_submit(vk_context& ctx, vk::Fence fence) {
if (ctx->seqs.empty()) {
if (fence) {
ctx->q->queue.submit({}, fence);
}
return;
}
VK_LOG_DEBUG("ggml_vk_submit(" << ctx << ", " << fence << ")");
std::vector<std::vector<uint64_t>> tl_wait_vals;
std::vector<std::vector<uint64_t>> tl_signal_vals;
std::vector<std::vector<vk::Semaphore>> tl_wait_semaphores;
std::vector<std::vector<vk::Semaphore>> tl_signal_semaphores;
std::vector<vk::TimelineSemaphoreSubmitInfo> tl_submit_infos;
std::vector<vk::SubmitInfo> submit_infos;
int idx = -1;
std::vector<std::vector<vk::PipelineStageFlags>> stage_flags;
size_t reserve = 0;
for (const auto& sequence : ctx->seqs) {
reserve += sequence.size();
}
// Pre-reserve vectors to prevent reallocation, which invalidates pointers
tl_wait_semaphores.reserve(reserve);
tl_wait_vals.reserve(reserve);
tl_signal_semaphores.reserve(reserve);
tl_signal_vals.reserve(reserve);
tl_submit_infos.reserve(reserve);
submit_infos.reserve(reserve);
stage_flags.reserve(reserve);
for (const auto& sequence : ctx->seqs) {
for (const auto& submission : sequence) {
stage_flags.push_back({});
idx++;
tl_wait_vals.push_back({});
tl_wait_semaphores.push_back({});
tl_signal_vals.push_back({});
tl_signal_semaphores.push_back({});
for (size_t i = 0; i < submission.wait_semaphores.size(); i++) {
stage_flags[idx].push_back(ctx->q->stage_flags);
tl_wait_vals[idx].push_back(submission.wait_semaphores[i].value);
tl_wait_semaphores[idx].push_back(submission.wait_semaphores[i].s);
}
for (size_t i = 0; i < submission.signal_semaphores.size(); i++) {
tl_signal_vals[idx].push_back(submission.signal_semaphores[i].value);
tl_signal_semaphores[idx].push_back(submission.signal_semaphores[i].s);
}
tl_submit_infos.push_back({
(uint32_t) submission.wait_semaphores.size(),
tl_wait_vals[idx].data(),
(uint32_t) submission.signal_semaphores.size(),
tl_signal_vals[idx].data(),
});
tl_submit_infos[idx].sType = vk::StructureType::eTimelineSemaphoreSubmitInfo;
tl_submit_infos[idx].pNext = nullptr;
vk::SubmitInfo si{
(uint32_t) submission.wait_semaphores.size(),
tl_wait_semaphores[idx].data(),
stage_flags[idx].data(),
1,
&submission.buffer,
(uint32_t) submission.signal_semaphores.size(),
tl_signal_semaphores[idx].data(),
};
si.setPNext(&tl_submit_infos[idx]);
submit_infos.push_back(si);
}
}
ctx->q->queue.submit(submit_infos, fence);
ctx->seqs.clear();
}
static uint32_t ggml_vk_find_queue_family_index(std::vector<vk::QueueFamilyProperties>& queue_family_props, const vk::QueueFlags& required, const vk::QueueFlags& avoid, int32_t compute_index, uint32_t min_num_queues) {
VK_LOG_DEBUG("ggml_vk_find_queue_family_index()");
const uint32_t qfsize = queue_family_props.size();
// Try with avoid preferences first
for (uint32_t i = 0; i < qfsize; i++) {
if (queue_family_props[i].queueCount >= min_num_queues && (compute_index < 0 || i != (uint32_t) compute_index) && queue_family_props[i].queueFlags & required && !(queue_family_props[i].queueFlags & avoid)) {
return i;
}
}
// Fall back to only required
for (size_t i = 0; i < qfsize; i++) {
if (queue_family_props[i].queueCount >= min_num_queues && (compute_index < 0 || i != (uint32_t) compute_index) && queue_family_props[i].queueFlags & required) {
return i;
}
}
// Fall back to reusing compute queue
for (size_t i = 0; i < qfsize; i++) {
if (queue_family_props[i].queueCount >= min_num_queues && queue_family_props[i].queueFlags & required) {
return i;
}
}
// Fall back to ignoring min_num_queries
for (size_t i = 0; i < qfsize; i++) {
if (queue_family_props[i].queueFlags & required) {
return i;
}
}
// All commands that are allowed on a queue that supports transfer operations are also allowed on a queue that supports either graphics or compute operations.
// Thus, if the capabilities of a queue family include VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT, then reporting the VK_QUEUE_TRANSFER_BIT capability separately for that queue family is optional.
if (compute_index >= 0) {
return compute_index;
}
std::cerr << "ggml_vulkan: No suitable queue family index found." << std::endl;
for(auto &q_family : queue_family_props) {
std::cerr << "Queue number: " + std::to_string(q_family.queueCount) << " flags: " + to_string(q_family.queueFlags) << std::endl;
}
abort();
}
static void ggml_vk_create_queue(vk_device& device, vk_queue& q, uint32_t queue_family_index, uint32_t queue_index, vk::PipelineStageFlags&& stage_flags, bool transfer_only) {
VK_LOG_DEBUG("ggml_vk_create_queue()");
std::lock_guard<std::mutex> guard(device->mutex);
q.queue_family_index = queue_family_index;
q.transfer_only = transfer_only;
vk::CommandPoolCreateInfo command_pool_create_info_compute(vk::CommandPoolCreateFlags(VK_COMMAND_POOL_CREATE_TRANSIENT_BIT), queue_family_index);
q.pool = device->device.createCommandPool(command_pool_create_info_compute);
q.cmd_buffer_idx = 0;
q.queue = device->device.getQueue(queue_family_index, queue_index);
q.stage_flags = stage_flags;
}
static vk_context ggml_vk_create_context(ggml_backend_vk_context * ctx, vk_queue& q) {
vk_context result = std::make_shared<vk_context_struct>();
VK_LOG_DEBUG("ggml_vk_create_context(" << result << ")");
ctx->gc.contexts.emplace_back(result);
result->q = &q;
return result;
}
static vk_context ggml_vk_create_temporary_context(vk_queue& q) {
vk_context result = std::make_shared<vk_context_struct>();
VK_LOG_DEBUG("ggml_vk_create_temporary_context(" << result << ")");
result->q = &q;
return result;
}
static vk_semaphore * ggml_vk_create_binary_semaphore(ggml_backend_vk_context * ctx) {
VK_LOG_DEBUG("ggml_vk_create_timeline_semaphore()");
vk::SemaphoreTypeCreateInfo tci{ vk::SemaphoreType::eBinary, 0 };
vk::SemaphoreCreateInfo ci{};
ci.setPNext(&tci);
vk::Semaphore semaphore = ctx->device->device.createSemaphore(ci);
ctx->gc.semaphores.push_back({ semaphore, 0 });
return &ctx->gc.semaphores[ctx->gc.semaphores.size() - 1];
}
static vk_semaphore * ggml_vk_create_timeline_semaphore(ggml_backend_vk_context * ctx) {
VK_LOG_DEBUG("ggml_vk_create_timeline_semaphore()");
if (ctx->semaphore_idx >= ctx->gc.tl_semaphores.size()) {
vk::SemaphoreTypeCreateInfo tci{ vk::SemaphoreType::eTimeline, 0 };
vk::SemaphoreCreateInfo ci{};
ci.setPNext(&tci);
vk::Semaphore semaphore = ctx->device->device.createSemaphore(ci);
ctx->gc.tl_semaphores.push_back({ semaphore, 0 });
}
return &ctx->gc.tl_semaphores[ctx->semaphore_idx++];
}
static vk::Event ggml_vk_create_event(ggml_backend_vk_context * ctx) {
if (ctx->event_idx >= ctx->gc.events.size()) {
ctx->gc.events.push_back(ctx->device->device.createEvent({}));
}
return ctx->gc.events[ctx->event_idx++];
}
static void ggml_vk_queue_cleanup(vk_device& device, vk_queue& q) {
VK_LOG_DEBUG("ggml_vk_queue_cleanup()");
std::lock_guard<std::mutex> guard(device->mutex);
// Requires command buffers to be done
device->device.resetCommandPool(q.pool);
q.cmd_buffer_idx = 0;
}
static uint32_t find_properties(const vk::PhysicalDeviceMemoryProperties* mem_props, vk::MemoryRequirements* mem_req, vk::MemoryPropertyFlags flags) {
for (uint32_t i = 0; i < mem_props->memoryTypeCount; ++i) {
vk::MemoryType memory_type = mem_props->memoryTypes[i];
if ((mem_req->memoryTypeBits & ((uint64_t)1 << i)) &&
(flags & memory_type.propertyFlags) == flags &&
mem_props->memoryHeaps[memory_type.heapIndex].size >= mem_req->size) {
return static_cast<int32_t>(i);
}
}
return UINT32_MAX;
}
static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) {
VK_LOG_DEBUG("ggml_vk_create_buffer(" << device->name << ", " << size << ", " << to_string(req_flags) << ", " << to_string(fallback_flags) << ")");
if (size > device->max_memory_allocation_size) {
throw vk::OutOfDeviceMemoryError("Requested buffer size exceeds device memory allocation limit");
}
std::lock_guard<std::mutex> guard(device->mutex);
vk_buffer buf = std::make_shared<vk_buffer_struct>();
if (size == 0) {
buf->size = 0;
return buf;
}
vk::BufferCreateInfo buffer_create_info{
vk::BufferCreateFlags(),
size,
vk::BufferUsageFlagBits::eStorageBuffer | vk::BufferUsageFlagBits::eTransferSrc | vk::BufferUsageFlagBits::eTransferDst,
vk::SharingMode::eExclusive,
0,
nullptr,
};
buf->buffer = device->device.createBuffer(buffer_create_info);
vk::MemoryRequirements mem_req = device->device.getBufferMemoryRequirements(buf->buffer);
vk::PhysicalDeviceMemoryProperties mem_props = device->physical_device.getMemoryProperties();
uint32_t memory_type_index = UINT32_MAX;
memory_type_index = find_properties(&mem_props, &mem_req, req_flags);
buf->memory_property_flags = req_flags;
if (memory_type_index == UINT32_MAX && fallback_flags) {
memory_type_index = find_properties(&mem_props, &mem_req, fallback_flags);
buf->memory_property_flags = fallback_flags;
}
if (memory_type_index == UINT32_MAX) {
device->device.destroyBuffer(buf->buffer);
throw vk::OutOfDeviceMemoryError("No suitable memory type found");
}
try {
buf->device_memory = device->device.allocateMemory({ mem_req.size, memory_type_index });
} catch (const vk::SystemError& e) {
if (buf->memory_property_flags != fallback_flags) {
// Try again with fallback flags
memory_type_index = find_properties(&mem_props, &mem_req, fallback_flags);
buf->memory_property_flags = fallback_flags;
try {
buf->device_memory = device->device.allocateMemory({ mem_req.size, memory_type_index });
}
catch (const vk::SystemError& e) {
device->device.destroyBuffer(buf->buffer);
throw e;
}
} else {
// Out of Host/Device memory, clean up buffer
device->device.destroyBuffer(buf->buffer);
throw e;
}
}
buf->ptr = nullptr;
if (buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
buf->ptr = device->device.mapMemory(buf->device_memory, 0, VK_WHOLE_SIZE);
}
device->device.bindBufferMemory(buf->buffer, buf->device_memory, 0);
buf->device = device;
buf->size = size;
#ifdef GGML_VULKAN_MEMORY_DEBUG
device->memory_logger->log_allocation(buf, size);
#endif
return buf;
}
static vk_buffer ggml_vk_create_buffer_check(vk_device& device, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) {
try {
return ggml_vk_create_buffer(device, size, req_flags, fallback_flags);
} catch (const vk::SystemError& e) {
std::cerr << "ggml_vulkan: Memory allocation of size " << size << " failed." << std::endl;
std::cerr << "ggml_vulkan: " << e.what() << std::endl;
throw e;
}
}
static vk_buffer ggml_vk_create_buffer_device(vk_device& device, size_t size) {
vk_buffer buf;
try {
if (device->prefer_host_memory) {
buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, vk::MemoryPropertyFlagBits::eDeviceLocal);
} else if (device->uma) {
// Fall back to host memory type
buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eDeviceLocal, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
} else {
// use rebar if available, otherwise fallback to device only visible memory
buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eDeviceLocal | vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, vk::MemoryPropertyFlagBits::eDeviceLocal);
}
} catch (const vk::SystemError& e) {
std::cerr << "ggml_vulkan: Device memory allocation of size " << size << " failed." << std::endl;
std::cerr << "ggml_vulkan: " << e.what() << std::endl;
throw e;
}
return buf;
}
static void ggml_vk_destroy_buffer(vk_buffer& buf) {
if (buf == nullptr) {
return;
}
#ifdef GGML_VULKAN_MEMORY_DEBUG
if (buf->device != nullptr) {
buf->device->memory_logger->log_deallocation(buf);
}
#endif
buf.reset();
}
static vk_subbuffer ggml_vk_subbuffer(vk_buffer& buf) {
return { buf, 0, VK_WHOLE_SIZE };
}
static void ggml_vk_sync_buffers(vk_context& ctx) {
VK_LOG_DEBUG("ggml_vk_sync_buffers()");
const bool transfer_queue = ctx->q->transfer_only;
ctx->s->buffer.pipelineBarrier(
ctx->q->stage_flags,
ctx->q->stage_flags,
{},
{ {
{ !transfer_queue ? (vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eShaderWrite | vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) : (vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) },
{ !transfer_queue ? (vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eShaderWrite | vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) : (vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) }
} },
{},
{}
);
}
static void ggml_vk_wait_events(vk_context& ctx, std::vector<vk::Event>&& events) {
VK_LOG_DEBUG("ggml_vk_wait_events()");
if (events.empty()) {
return;
}
ctx->s->buffer.waitEvents(
events,
ctx->q->stage_flags,
ctx->q->stage_flags,
{},
{},
{}
);
}
// number of rows/cols for flash attention shader
static constexpr uint32_t flash_attention_num_small_rows = 32;
static std::array<uint32_t, 2> fa_rows_cols(uint32_t D, uint32_t clamp, ggml_type type, bool small_rows) {
GGML_UNUSED(clamp);
// small rows, large cols
if (small_rows) {
return {flash_attention_num_small_rows, 64};
}
// small cols to reduce register count
if (ggml_is_quantized(type) || D == 256) {
return {64, 32};
}
return {64, 64};
};
static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vector<uint32_t>& warptile, bool mul_mat_id, ggml_type src0_type) {
uint32_t lut_size = 0;
switch (src0_type) {
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
lut_size = 2*2048;
break;
case GGML_TYPE_IQ2_XXS:
lut_size = 8*256;
break;
case GGML_TYPE_IQ2_XS:
lut_size = 8*512;
break;
case GGML_TYPE_IQ2_S:
lut_size = 8*1024;
break;
case GGML_TYPE_IQ3_XXS:
lut_size = 4*256;
break;
case GGML_TYPE_IQ3_S:
lut_size = 4*512;
break;
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
lut_size = 4*16;
break;
default:
break;
}
// Needs to be kept up to date on shader changes
const uint32_t bank_conflict_offset = device->coopmat_support ? 8 : 1;
const uint32_t type_size = device->fp16 ? sizeof(ggml_fp16_t) : sizeof(float);
const uint32_t warps = warptile[0] / warptile[10];
const uint32_t load_bufs = (warptile[1] + warptile[2]) * (warptile[3] + bank_conflict_offset) * type_size;
const uint32_t mmid_row_ids = mul_mat_id ? 3072 * sizeof(uint32_t) : 0;
const uint32_t coopmat_stage = device->coopmat_support ? warptile[7] * warptile[8] / warps * sizeof(float) : 0;
const uint32_t total_size = load_bufs + mmid_row_ids + coopmat_stage + lut_size;
const bool supported = total_size <= device->properties.limits.maxComputeSharedMemorySize;
VK_LOG_DEBUG("ggml_vk_matmul_shmem_support(warptile=(" << warptile[0] << "," << warptile[1] << "," << warptile[2] << "), "
"mul_mat_id=" << mul_mat_id << ", src0_type=" << ggml_type_name(src0_type) << ", supported=" << supported);
return supported;
}
struct GpuPipelineConfig {
// GPU architecture identifier.
// Example: vk_device_architecture::AMD_GCN
vk_device_architecture arch;
// Mapping of pipeline names to their specific subgroup sizes.
// Example: {"soft_max_f32", 64}
std::unordered_map<std::string, uint32_t> pipelines;
// Default subgroup size for this GPU.
// Defaults to 0 if not explicitly provided.
uint32_t default_subgroup_size = 0;
};
// Pipeline configuration for RDNA1 GPUs.
static const std::unordered_map<std::string, uint32_t> rdna1_pipelines = {
{"soft_max", 64}, {"im2col", 64},
{"argmax", 64}, {"mul_mat_vec", 64},
{"mul_mat_vec_f16", 32}, {"mul_mat_vec_f32_f16", 32}
};
// Pipeline configuration for RDNA2 GPUs.
static const std::unordered_map<std::string, uint32_t> rdna2_pipelines = {
{"soft_max", 64}, {"im2col", 64},
};
static constexpr uint32_t RDNA_DEFAULT_SUBGROUP_SIZE = 32;
// Define configurations for different GPUs.
static std::vector<GpuPipelineConfig> gpu_pipeline_configs = {
{
vk_device_architecture::AMD_RDNA1,
{
rdna1_pipelines,
},
RDNA_DEFAULT_SUBGROUP_SIZE
},
{
vk_device_architecture::AMD_RDNA2,
{
rdna2_pipelines,
},
RDNA_DEFAULT_SUBGROUP_SIZE
},
};
static uint32_t get_subgroup_size(const std::string &pipeline_name, const vk_device_architecture &arch) {
for (const auto &config : gpu_pipeline_configs) {
if (config.arch == arch) {
auto pipIt = config.pipelines.find(pipeline_name);
if (pipIt != config.pipelines.end()) {
return pipIt->second;
}
std::vector<std::pair<std::string, uint32_t>> sorted_pipelines(config.pipelines.begin(), config.pipelines.end());
std::sort(sorted_pipelines.begin(), sorted_pipelines.end(),
[](const auto &a, const auto &b) { return a.first.size() > b.first.size(); });
for (const auto &entry : sorted_pipelines) {
if (pipeline_name.find(entry.first) != std::string::npos) {
return entry.second;
}
}
return config.default_subgroup_size;
}
}
return 0; // If no matching configuration is found
}
static void ggml_vk_load_shaders(vk_device& device) {
VK_LOG_DEBUG("ggml_vk_load_shaders(" << device->name << ")");
// some shaders have a minimum subgroup size
const uint32_t subgroup_size_8 = std::max(device->subgroup_size, 8u);
const uint32_t subgroup_size_16 = std::max(device->subgroup_size, 16u);
const uint32_t subgroup_size_32 = std::max(device->subgroup_size, 32u);
// mulmat
std::vector<uint32_t> l_warptile, m_warptile, s_warptile,
l_warptile_mmq, m_warptile_mmq, s_warptile_mmq,
l_warptile_mmq_int, m_warptile_mmq_int, s_warptile_mmq_int,
l_warptile_mmq_k, m_warptile_mmq_k, s_warptile_mmq_k,
l_warptile_mmqid, m_warptile_mmqid, s_warptile_mmqid;
std::array<uint32_t, 3> l_wg_denoms, m_wg_denoms, s_wg_denoms,
l_mmq_wg_denoms, m_mmq_wg_denoms, s_mmq_wg_denoms,
l_mmq_wg_denoms_k, m_mmq_wg_denoms_k, s_mmq_wg_denoms_k,
l_mmqid_wg_denoms, m_mmqid_wg_denoms, s_mmqid_wg_denoms;
uint32_t l_align, m_align, s_align;
if (device->coopmat2) {
// spec constants and tile sizes for non-quant matmul/matmul_id
l_warptile = { 256, 128, 256, 64, 1 };
m_warptile = { 256, 128, 128, 64, 0 };
s_warptile = { 128, 64, 64, 64, 0 };
l_wg_denoms = {128, 256, 1 };
m_wg_denoms = {128, 128, 1 };
s_wg_denoms = { 64, 64, 1 };
// spec constants and tile sizes for quant matmul (non-Qi_K)
l_warptile_mmq = { 256, 128, 256, 64, 1 };
m_warptile_mmq = { 256, 128, 128, 64, 1 };
s_warptile_mmq = { 256, 32, 64, 128, 0 };
l_mmq_wg_denoms = { 128, 256, 1 };
m_mmq_wg_denoms = { 128, 128, 1 };
s_mmq_wg_denoms = { 32, 64, 1 };
// spec constants and tile sizes for quant matmul (Qi_K)
l_warptile_mmq_k = { 256, 64, 128, 64, 1 };
m_warptile_mmq_k = { 256, 32, 64, 64, 0 };
s_warptile_mmq_k = { 256, 32, 32, 128, 0 };
l_mmq_wg_denoms_k = { 64, 128, 1 };
m_mmq_wg_denoms_k = { 32, 64, 1 };
s_mmq_wg_denoms_k = { 32, 32, 1 };
// spec constants and tile sizes for quant matmul_id
l_warptile_mmqid = { 256, 128, 64, 16, 0 };
m_warptile_mmqid = { 256, 128, 64, 16, 0 };
s_warptile_mmqid = { 256, 128, 64, 16, 0 };
l_mmqid_wg_denoms = { 128, 64, 1 };
m_mmqid_wg_denoms = { 128, 64, 1 };
s_mmqid_wg_denoms = { 128, 64, 1 };
l_align = 128;
m_align = 64;
s_align = 32;
} else {
// Matrix cores require different warp group sizes
const uint32_t tm_l = device->coopmat_support ? device->coopmat_m : 4;
const uint32_t tm_m = device->coopmat_support ? device->coopmat_m : 4;
const uint32_t tm_s = device->coopmat_support ? device->coopmat_m : 2;
const uint32_t tn_l = device->coopmat_support ? device->coopmat_n : 4;
const uint32_t tn_m = device->coopmat_support ? device->coopmat_n : 2;
const uint32_t tn_s = device->coopmat_support ? device->coopmat_n : 2;
const uint32_t tk_l = device->coopmat_support ? device->coopmat_k : 1;
const uint32_t tk_m = device->coopmat_support ? device->coopmat_k : 1;
const uint32_t tk_s = device->coopmat_support ? device->coopmat_k : 1;
l_warptile = { 128, 128, 128, 16, subgroup_size_8 * 2, 64, 2, tm_l, tn_l, tk_l, subgroup_size_8 };
m_warptile = { 128, 64, 64, 16, subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, subgroup_size_8 };
s_warptile = { subgroup_size_16, 32, 32, 16, 32, 32, 2, tm_s, tn_s, tk_s, subgroup_size_8 };
l_warptile_mmq = { 128, 128, 128, 32, subgroup_size_8 * 2, 64, 2, tm_l, tn_l, tk_l, subgroup_size_8 };
m_warptile_mmq = { 128, 64, 64, 32, subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, subgroup_size_8 };
s_warptile_mmq = { subgroup_size_32, 32, 32, 32, 32, 32, 2, tm_s, tn_s, tk_s, subgroup_size_8 };
l_warptile_mmq_int = { 128, 128, 128, 32, subgroup_size_8 * 2, 64, 2, 4, 4, 1, subgroup_size_8 };
m_warptile_mmq_int = { 128, 64, 64, 32, subgroup_size_8, 32, 2, 2, 2, 1, subgroup_size_8 };
s_warptile_mmq_int = { subgroup_size_32, 32, 32, 32, 32, 32, 2, 2, 1, 1, subgroup_size_8 };
l_mmq_wg_denoms = l_wg_denoms = {128, 128, 1 };
m_mmq_wg_denoms = m_wg_denoms = { 64, 64, 1 };
s_mmq_wg_denoms = s_wg_denoms = { 32, 32, 1 };
l_align = 128;
m_align = 64;
s_align = 32;
for (uint32_t i = 0; i < GGML_TYPE_COUNT; ++i) {
ggml_type t = (ggml_type)i;
// Disable medium and large matrix multiplication if not enough shared memory is available
// Check mmq warptiles as the largest configuration
// Throw an error if not enough for any matrix multiplication is available
if (!ggml_vk_matmul_shmem_support(device, s_warptile_mmq, false, t)) {
std::cerr << "ggml_vulkan: Error: Shared memory size too small for matrix multiplication." << std::endl;
throw std::runtime_error("Shared memory size too small for matrix multiplication.");
} else if (!ggml_vk_matmul_shmem_support(device, m_warptile_mmq, false, t)) {
device->mul_mat_m[i] = false;
device->mul_mat_l[i] = false;
} else if (!ggml_vk_matmul_shmem_support(device, l_warptile_mmq, false, t)) {
device->mul_mat_l[i] = false;
}
// Disable mul_mat_id if not enough shared memory is available
if (!ggml_vk_matmul_shmem_support(device, s_warptile_mmq, true, t)) {
device->mul_mat_id_s[i] = false;
device->mul_mat_id_m[i] = false;
device->mul_mat_id_l[i] = false;
} else if (!ggml_vk_matmul_shmem_support(device, m_warptile_mmq, true, t)) {
device->mul_mat_id_m[i] = false;
device->mul_mat_id_l[i] = false;
} else if (!ggml_vk_matmul_shmem_support(device, l_warptile_mmq, true, t)) {
device->mul_mat_id_l[i] = false;
}
}
}
if (!device->pipeline_matmul_f32) {
device->pipeline_matmul_f32 = std::make_shared<vk_matmul_pipeline_struct>();
}
if (!device->pipeline_matmul_f32_f16) {
device->pipeline_matmul_f32_f16 = std::make_shared<vk_matmul_pipeline_struct>();
}
if (!device->pipeline_matmul_id_f32) {
device->pipeline_matmul_id_f32 = std::make_shared<vk_matmul_pipeline_struct>();
}
std::vector<std::future<void>> compiles;
auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint,
uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, const std::vector<uint32_t>& specialization_constants,
uint32_t align, bool disable_robustness = false, bool require_full_subgroups = false, uint32_t required_subgroup_size = 0) {
if (!require_full_subgroups && required_subgroup_size == 0) {
required_subgroup_size = get_subgroup_size(name, device->architecture);
}
if (!pipeline) {
pipeline = std::make_shared<vk_pipeline_struct>();
pipeline->name = name;
pipeline->parameter_count = parameter_count;
pipeline->push_constant_size = push_constant_size;
pipeline->wg_denoms = wg_denoms;
pipeline->align = align;
}
if (!pipeline->needed || pipeline->compiled) {
return;
}
{
// wait until fewer than N compiles are in progress
uint32_t N = std::max(1u, std::thread::hardware_concurrency());
std::unique_lock<std::mutex> guard(compile_count_mutex);
while (compile_count >= N) {
compile_count_cond.wait(guard);
}
compile_count++;
}
compiles.push_back(std::async(ggml_vk_create_pipeline_func, std::ref(device), std::ref(pipeline), spv_size, spv_data, entrypoint,
parameter_count, wg_denoms, specialization_constants, disable_robustness, require_full_subgroups, required_subgroup_size));
};
#if defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
if (device->coopmat2) {
auto const &fa_wg_denoms = [&](uint32_t D, uint32_t clamp, ggml_type type, bool small_rows) -> std::array<uint32_t, 3> {
return {fa_rows_cols(D, clamp, type, small_rows)[0], 1, 1};
};
auto const &fa_spec_constants = [&](uint32_t D, uint32_t clamp, ggml_type type, bool small_rows) -> std::vector<uint32_t> {
// For large number of rows, 128 invocations seems to work best.
// For small number of rows (e.g. N==1), 256 works better. But matrix granularity for 256 is 32, so we
// can't use 256 for D==80.
uint32_t wg_size = (small_rows && (D % 32) == 0) ? 256 : 128;
auto rows_cols = fa_rows_cols(D, clamp, type, small_rows);
// mask dim1 is padded to 64, we rely on this to avoid clamping mask loads
GGML_ASSERT((GGML_KQ_MASK_PAD % rows_cols[0]) == 0);
return {wg_size, rows_cols[0], rows_cols[1], (D), clamp};
};
#define CREATE_FA2(TYPE, NAMELC, D) \
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][0][0][0], "flash_attn_f32_f16_D" #D "_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_len, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,1,TYPE,false), fa_spec_constants(D,1,TYPE,false), 1); \
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][0][0][1], "flash_attn_f32_f16_D" #D "_aligned_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_len, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,0,TYPE,false), fa_spec_constants(D,0,TYPE,false), fa_rows_cols(D,0,TYPE,false)[1]); \
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][1][0][0], "flash_attn_f32_f16_D" #D "_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _cm2_len, flash_attn_f32_f16_ ## NAMELC ## _cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,1,TYPE,false), fa_spec_constants(D,1,TYPE,false), 1); \
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][1][0][1], "flash_attn_f32_f16_D" #D "_aligned_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _cm2_len, flash_attn_f32_f16_ ## NAMELC ## _cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,0,TYPE,false), fa_spec_constants(D,0,TYPE,false), fa_rows_cols(D,0,TYPE,false)[1]); \
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][0][1][0], "flash_attn_f32_f16_D" #D "_f16acc_smallrows" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_len, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,1,TYPE,true), fa_spec_constants(D,1,TYPE,true), 1); \
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][0][1][1], "flash_attn_f32_f16_D" #D "_aligned_f16acc_smallrows" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_len, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,0,TYPE,true), fa_spec_constants(D,0,TYPE,true), fa_rows_cols(D,0,TYPE,true)[1]); \
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][1][1][0], "flash_attn_f32_f16_D" #D "_f32acc_smallrows" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _cm2_len, flash_attn_f32_f16_ ## NAMELC ## _cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,1,TYPE,true), fa_spec_constants(D,1,TYPE,true), 1); \
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][1][1][1], "flash_attn_f32_f16_D" #D "_aligned_f32acc_smallrows" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _cm2_len, flash_attn_f32_f16_ ## NAMELC ## _cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,0,TYPE,true), fa_spec_constants(D,0,TYPE,true), fa_rows_cols(D,0,TYPE,true)[1]); \
#define CREATE_FA(TYPE, NAMELC) \
CREATE_FA2(TYPE, NAMELC, 64) \
CREATE_FA2(TYPE, NAMELC, 80) \
CREATE_FA2(TYPE, NAMELC, 96) \
CREATE_FA2(TYPE, NAMELC, 112) \
CREATE_FA2(TYPE, NAMELC, 128) \
CREATE_FA2(TYPE, NAMELC, 256)
CREATE_FA(GGML_TYPE_F16, f16)
CREATE_FA(GGML_TYPE_Q4_0, q4_0)
CREATE_FA(GGML_TYPE_Q4_1, q4_1)
CREATE_FA(GGML_TYPE_Q5_0, q5_0)
CREATE_FA(GGML_TYPE_Q5_1, q5_1)
CREATE_FA(GGML_TYPE_Q8_0, q8_0)
// K dequants currently disabled because D dimension is rounded up to 256 and runs inefficiently
//CREATE_FA(GGML_TYPE_Q2_K, q2_k)
//CREATE_FA(GGML_TYPE_Q3_K, q3_k)
//CREATE_FA(GGML_TYPE_Q4_K, q4_k)
//CREATE_FA(GGML_TYPE_Q5_K, q5_k)
//CREATE_FA(GGML_TYPE_Q6_K, q6_k)
//CREATE_FA(GGML_TYPE_IQ1_S, iq1_s)
//CREATE_FA(GGML_TYPE_IQ1_M, iq1_m)
//CREATE_FA(GGML_TYPE_IQ2_XXS, iq2_xxs)
//CREATE_FA(GGML_TYPE_IQ2_XS, iq2_xs)
//CREATE_FA(GGML_TYPE_IQ2_S, iq2_s)
//CREATE_FA(GGML_TYPE_IQ3_XXS, iq3_xxs)
//CREATE_FA(GGML_TYPE_IQ3_S, iq3_s)
//CREATE_FA(GGML_TYPE_IQ4_XS, iq4_xs)
CREATE_FA(GGML_TYPE_IQ4_NL, iq4_nl)
#undef CREATE_FA
// Create 6 variants, {s,m,l}x{unaligned,aligned}
#define CREATE_MM(PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _cm2_len, NAMELC ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _cm2_len, NAMELC ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _cm2_len, NAMELC ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _cm2_len, NAMELC ## _aligned ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align); \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _cm2_len, NAMELC ## _aligned ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align); \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _cm2_len, NAMELC ## _aligned ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \
// Create 2 variants, {f16,f32} accumulator
#define CREATE_MM2(PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
CREATE_MM(PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ1_S].f16acc, matmul_iq1_s_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ1_M].f16acc, matmul_iq1_m_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ2_XXS].f16acc, matmul_iq2_xxs_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ2_XS].f16acc, matmul_iq2_xs_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ2_S].f16acc, matmul_iq2_s_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ3_XXS].f16acc, matmul_iq3_xxs_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ3_S].f16acc, matmul_iq3_s_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ4_XS].f16acc, matmul_iq4_xs_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S].f16acc, matmul_id_iq1_s_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M].f16acc, matmul_id_iq1_m_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS].f16acc, matmul_id_iq2_xxs_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS].f16acc, matmul_id_iq2_xs_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S].f16acc, matmul_id_iq2_s_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS].f16acc, matmul_id_iq3_xxs_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f16acc, matmul_id_iq3_s_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f16acc, matmul_id_iq4_xs_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
#undef CREATE_MM
#undef CREATE_MM2
} else
#endif // defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
#if defined(VK_KHR_cooperative_matrix) && defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT)
if (device->coopmat_support) {
// Create 6 variants, {s,m,l}x{unaligned,aligned}
#define CREATE_MM(TYPE, PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
if (device->mul_mat ## ID ## _l[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _coopmat_len, NAMELC ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1, false, true); \
if (device->mul_mat ## ID ## _m[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _coopmat_len, NAMELC ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1, false, true); \
if (device->mul_mat ## ID ## _s[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _coopmat_len, NAMELC ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1, false, true); \
if (device->mul_mat ## ID ## _l[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _coopmat_len, NAMELC ## _aligned ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align, false, true); \
if (device->mul_mat ## ID ## _m[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _coopmat_len, NAMELC ## _aligned ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align, false, true); \
if (device->mul_mat ## ID ## _s[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _coopmat_len, NAMELC ## _aligned ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align, false, true); \
// Create 2 variants, {f16,f32} accumulator
#define CREATE_MM2(TYPE, PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
if (device->coopmat_acc_f16_support) { \
CREATE_MM(TYPE, PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
} \
if (device->coopmat_acc_f32_support) { \
CREATE_MM(TYPE, PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
} \
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
if (device->coopmat_acc_f16_support) {
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_S].f16acc, matmul_iq1_s_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_M].f16acc, matmul_iq1_m_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XXS].f16acc, matmul_iq2_xxs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XS].f16acc, matmul_iq2_xs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_S].f16acc, matmul_iq2_s_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_XXS].f16acc, matmul_iq3_xxs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_S].f16acc, matmul_iq3_s_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS].f16acc, matmul_iq4_xs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
} else {
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_S].f16acc, matmul_iq1_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_M].f16acc, matmul_iq1_m_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XXS].f16acc, matmul_iq2_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XS].f16acc, matmul_iq2_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_S].f16acc, matmul_iq2_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_XXS].f16acc, matmul_iq3_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_S].f16acc, matmul_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS].f16acc, matmul_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
}
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
if (device->coopmat_acc_f16_support) {
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S].f16acc, matmul_id_iq1_s_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M].f16acc, matmul_id_iq1_m_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS].f16acc, matmul_id_iq2_xxs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS].f16acc, matmul_id_iq2_xs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S].f16acc, matmul_id_iq2_s_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS].f16acc, matmul_id_iq3_xxs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f16acc, matmul_id_iq3_s_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f16acc, matmul_id_iq4_xs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
} else {
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S].f16acc, matmul_id_iq1_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M].f16acc, matmul_id_iq1_m_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS].f16acc, matmul_id_iq2_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS].f16acc, matmul_id_iq2_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S].f16acc, matmul_id_iq2_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS].f16acc, matmul_id_iq3_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f16acc, matmul_id_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f16acc, matmul_id_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
}
#undef CREATE_MM2
#undef CREATE_MM
} else
#endif // defined(VK_KHR_cooperative_matrix) && defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT)
if (device->fp16) {
// Create 6 variants, {s,m,l}x{unaligned,aligned}
#define CREATE_MM(TYPE, PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
if (device->mul_mat ## ID ## _l[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \
if (device->mul_mat ## ID ## _m[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \
if (device->mul_mat ## ID ## _s[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \
if (device->mul_mat ## ID ## _l[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align); \
if (device->mul_mat ## ID ## _m[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align); \
if (device->mul_mat ## ID ## _s[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \
#define CREATE_MMQ(TYPE, PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
if (device->mul_mat ## ID ## _l[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \
if (device->mul_mat ## ID ## _m[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \
if (device->mul_mat ## ID ## _s[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \
// Create 2 variants, {f16,f32} accumulator
#define CREATE_MM2(TYPE, PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
CREATE_MM(TYPE, PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
CREATE_MM(TYPE, PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_S].f16acc, matmul_iq1_s_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_M].f16acc, matmul_iq1_m_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XXS].f16acc, matmul_iq2_xxs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XS].f16acc, matmul_iq2_xs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_S].f16acc, matmul_iq2_s_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_XXS].f16acc, matmul_iq3_xxs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_S].f16acc, matmul_iq3_s_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS].f16acc, matmul_iq4_xs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
if (device->integer_dot_product) {
CREATE_MMQ(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_q8_1, _f16acc, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
CREATE_MMQ(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_q8_1, _f16acc, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
CREATE_MMQ(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_q8_1, _f16acc, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
CREATE_MMQ(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_q8_1, _f16acc, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
CREATE_MMQ(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_q8_1, _f16acc, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
}
#endif
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S].f16acc, matmul_id_iq1_s_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M].f16acc, matmul_id_iq1_m_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS].f16acc, matmul_id_iq2_xxs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS].f16acc, matmul_id_iq2_xs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S].f16acc, matmul_id_iq2_s_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS].f16acc, matmul_id_iq3_xxs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f16acc, matmul_id_iq3_s_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f16acc, matmul_id_iq4_xs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
#undef CREATE_MM2
#undef CREATE_MMQ
#undef CREATE_MM
} else {
// Create 6 variants, {s,m,l}x{unaligned,aligned}
#define CREATE_MM(TYPE, PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
if (device->mul_mat ## ID ## _l[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \
if (device->mul_mat ## ID ## _m[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \
if (device->mul_mat ## ID ## _s[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \
if (device->mul_mat ## ID ## _l[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align); \
if (device->mul_mat ## ID ## _m[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align); \
if (device->mul_mat ## ID ## _s[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \
#define CREATE_MMQ(TYPE, PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
if (device->mul_mat ## ID ## _l[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \
if (device->mul_mat ## ID ## _m[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \
if (device->mul_mat ## ID ## _s[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16.f32acc, matmul_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16_f32.f32acc, matmul_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f32acc, matmul_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f32acc, matmul_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f32acc, matmul_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f32acc, matmul_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f32acc, matmul_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f32acc, matmul_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f32acc, matmul_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f32acc, matmul_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f32acc, matmul_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f32acc, matmul_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_S].f32acc, matmul_iq1_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_M].f32acc, matmul_iq1_m_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XXS].f32acc, matmul_iq2_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XS].f32acc, matmul_iq2_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_S].f32acc, matmul_iq2_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_XXS].f32acc, matmul_iq3_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_S].f32acc, matmul_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS].f32acc, matmul_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f32acc, matmul_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
if (device->integer_dot_product) {
CREATE_MMQ(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q4_0].f32acc, matmul_q4_0_q8_1, , mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
CREATE_MMQ(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q4_1].f32acc, matmul_q4_1_q8_1, , mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
CREATE_MMQ(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q5_0].f32acc, matmul_q5_0_q8_1, , mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
CREATE_MMQ(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q5_1].f32acc, matmul_q5_1_q8_1, , mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
CREATE_MMQ(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q8_0].f32acc, matmul_q8_0_q8_1, , mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
}
#endif
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16.f32acc, matmul_id_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16_f32.f32acc, matmul_id_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f32acc, matmul_id_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f32acc, matmul_id_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f32acc, matmul_id_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f32acc, matmul_id_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f32acc, matmul_id_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f32acc, matmul_id_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f32acc, matmul_id_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f32acc, matmul_id_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f32acc, matmul_id_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f32acc, matmul_id_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S].f32acc, matmul_id_iq1_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M].f32acc, matmul_id_iq1_m_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS].f32acc, matmul_id_iq2_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS].f32acc, matmul_id_iq2_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S].f32acc, matmul_id_iq2_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS].f32acc, matmul_id_iq3_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f32acc, matmul_id_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f32acc, matmul_id_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f32acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
#undef CREATE_MM
}
// mul mat vec
// the number of rows computed per shader depends on GPU model and quant
uint32_t rm_stdq = 1;
uint32_t rm_kq = 2;
if (device->vendor_id == VK_VENDOR_ID_AMD) {
if (device->architecture == AMD_GCN) {
rm_stdq = 2;
rm_kq = 4;
}
} else if (device->vendor_id == VK_VENDOR_ID_INTEL)
rm_stdq = 2;
uint32_t rm_iq = 2 * rm_kq;
for (uint32_t i = 0; i < mul_mat_vec_max_cols; ++i) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f32_f32_"+std::to_string(i+1), mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f32_f32_"+std::to_string(i+1), mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_f32_f32_"+std::to_string(i+1), mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_f32_f32_"+std::to_string(i+1), mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_f32_f32_"+std::to_string(i+1), mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_f32_f32_"+std::to_string(i+1), mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_f32_f32_"+std::to_string(i+1), mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ1_S][i], "mul_mat_vec_iq1_s_f32_f32_"+std::to_string(i+1), mul_mat_vec_iq1_s_f32_f32_len, mul_mat_vec_iq1_s_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ1_M][i], "mul_mat_vec_iq1_m_f32_f32_"+std::to_string(i+1), mul_mat_vec_iq1_m_f32_f32_len, mul_mat_vec_iq1_m_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ2_XXS][i], "mul_mat_vec_iq2_xxs_f32_f32_"+std::to_string(i+1), mul_mat_vec_iq2_xxs_f32_f32_len, mul_mat_vec_iq2_xxs_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ2_XS][i], "mul_mat_vec_iq2_xs_f32_f32_"+std::to_string(i+1), mul_mat_vec_iq2_xs_f32_f32_len, mul_mat_vec_iq2_xs_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ2_S][i], "mul_mat_vec_iq2_s_f32_f32_"+std::to_string(i+1), mul_mat_vec_iq2_s_f32_f32_len, mul_mat_vec_iq2_s_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ3_XXS][i], "mul_mat_vec_iq3_xxs_f32_f32_"+std::to_string(i+1), mul_mat_vec_iq3_xxs_f32_f32_len, mul_mat_vec_iq3_xxs_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ3_S][i], "mul_mat_vec_iq3_s_f32_f32_"+std::to_string(i+1), mul_mat_vec_iq3_s_f32_f32_len, mul_mat_vec_iq3_s_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_XS][i], "mul_mat_vec_iq4_xs_f32_f32_"+std::to_string(i+1), mul_mat_vec_iq4_xs_f32_f32_len, mul_mat_vec_iq4_xs_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f32_f32_"+std::to_string(i+1), mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f16_f32_"+std::to_string(i+1), mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f16_f32_"+std::to_string(i+1), mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_f16_f32_"+std::to_string(i+1), mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_f16_f32_"+std::to_string(i+1), mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_f16_f32_"+std::to_string(i+1), mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_f16_f32_"+std::to_string(i+1), mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_f16_f32_"+std::to_string(i+1), mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ1_S][i], "mul_mat_vec_iq1_s_f16_f32_"+std::to_string(i+1), mul_mat_vec_iq1_s_f16_f32_len, mul_mat_vec_iq1_s_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ1_M][i], "mul_mat_vec_iq1_m_f16_f32_"+std::to_string(i+1), mul_mat_vec_iq1_m_f16_f32_len, mul_mat_vec_iq1_m_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ2_XXS][i], "mul_mat_vec_iq2_xxs_f16_f32_"+std::to_string(i+1), mul_mat_vec_iq2_xxs_f16_f32_len, mul_mat_vec_iq2_xxs_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ2_XS][i], "mul_mat_vec_iq2_xs_f16_f32_"+std::to_string(i+1), mul_mat_vec_iq2_xs_f16_f32_len, mul_mat_vec_iq2_xs_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ2_S][i], "mul_mat_vec_iq2_s_f16_f32_"+std::to_string(i+1), mul_mat_vec_iq2_s_f16_f32_len, mul_mat_vec_iq2_s_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ3_XXS][i], "mul_mat_vec_iq3_xxs_f16_f32_"+std::to_string(i+1), mul_mat_vec_iq3_xxs_f16_f32_len, mul_mat_vec_iq3_xxs_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ3_S][i], "mul_mat_vec_iq3_s_f16_f32_"+std::to_string(i+1), mul_mat_vec_iq3_s_f16_f32_len, mul_mat_vec_iq3_s_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_XS][i], "mul_mat_vec_iq4_xs_f16_f32_"+std::to_string(i+1), mul_mat_vec_iq4_xs_f16_f32_len, mul_mat_vec_iq4_xs_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f16_f32_"+std::to_string(i+1), mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
}
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ1_S], "mul_mat_vec_id_iq1_s_f32", mul_mat_vec_id_iq1_s_f32_len, mul_mat_vec_id_iq1_s_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ1_M], "mul_mat_vec_id_iq1_m_f32", mul_mat_vec_id_iq1_m_f32_len, mul_mat_vec_id_iq1_m_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ2_XXS], "mul_mat_vec_id_iq2_xxs_f32", mul_mat_vec_id_iq2_xxs_f32_len, mul_mat_vec_id_iq2_xxs_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ2_XS], "mul_mat_vec_id_iq2_xs_f32", mul_mat_vec_id_iq2_xs_f32_len, mul_mat_vec_id_iq2_xs_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ2_S], "mul_mat_vec_id_iq2_s_f32", mul_mat_vec_id_iq2_s_f32_len, mul_mat_vec_id_iq2_s_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ3_XXS], "mul_mat_vec_id_iq3_xxs_f32", mul_mat_vec_id_iq3_xxs_f32_len, mul_mat_vec_id_iq3_xxs_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ3_S], "mul_mat_vec_id_iq3_s_f32", mul_mat_vec_id_iq3_s_f32_len, mul_mat_vec_id_iq3_s_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_XS], "mul_mat_vec_id_iq4_xs_f32", mul_mat_vec_id_iq4_xs_f32_len, mul_mat_vec_id_iq4_xs_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
// dequant shaders
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q4_0], "dequant_q4_0", dequant_q4_0_len, dequant_q4_0_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q4_1], "dequant_q4_1", dequant_q4_1_len, dequant_q4_1_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q5_0], "dequant_q5_0", dequant_q5_0_len, dequant_q5_0_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q5_1], "dequant_q5_1", dequant_q5_1_len, dequant_q5_1_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q8_0], "dequant_q8_0", dequant_q8_0_len, dequant_q8_0_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q2_K], "dequant_q2_k", dequant_q2_k_len, dequant_q2_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 64, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q3_K], "dequant_q3_k", dequant_q3_k_len, dequant_q3_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 64, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q4_K], "dequant_q4_k", dequant_q4_k_len, dequant_q4_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q5_K], "dequant_q5_k", dequant_q5_k_len, dequant_q5_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 64, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q6_K], "dequant_q6_k", dequant_q6_k_len, dequant_q6_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 64, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ1_S], "dequant_iq1_s", dequant_iq1_s_len, dequant_iq1_s_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ1_M], "dequant_iq1_m", dequant_iq1_m_len, dequant_iq1_m_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ2_XXS], "dequant_iq2_xxs", dequant_iq2_xxs_len, dequant_iq2_xxs_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ2_XS], "dequant_iq2_xs", dequant_iq2_xs_len, dequant_iq2_xs_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ2_S], "dequant_iq2_s", dequant_iq2_s_len, dequant_iq2_s_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ3_XXS], "dequant_iq3_xxs", dequant_iq3_xxs_len, dequant_iq3_xxs_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ3_S], "dequant_iq3_s", dequant_iq3_s_len, dequant_iq3_s_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ4_XS], "dequant_iq4_xs", dequant_iq4_xs_len, dequant_iq4_xs_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ4_NL], "dequant_iq4_nl", dequant_iq4_nl_len, dequant_iq4_nl_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
// get_rows
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F32 ], "get_rows_f32", get_rows_f32_len, get_rows_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F16 ], "get_rows_f16", get_rows_f16_len, get_rows_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_0], "get_rows_q4_0", get_rows_q4_0_len, get_rows_q4_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_1], "get_rows_q4_1", get_rows_q4_1_len, get_rows_q4_1_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q5_0], "get_rows_q5_0", get_rows_q5_0_len, get_rows_q5_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q5_1], "get_rows_q5_1", get_rows_q5_1_len, get_rows_q5_1_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q8_0], "get_rows_q8_0", get_rows_q8_0_len, get_rows_q8_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ1_S], "get_rows_iq1_s", get_rows_iq1_s_len, get_rows_iq1_s_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ1_M], "get_rows_iq1_m", get_rows_iq1_m_len, get_rows_iq1_m_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ2_XXS], "get_rows_iq2_xxs", get_rows_iq2_xxs_len, get_rows_iq2_xxs_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ2_XS], "get_rows_iq2_xs", get_rows_iq2_xs_len, get_rows_iq2_xs_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ2_S], "get_rows_iq2_s", get_rows_iq2_s_len, get_rows_iq2_s_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ3_XXS], "get_rows_iq3_xxs", get_rows_iq3_xxs_len, get_rows_iq3_xxs_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ3_S], "get_rows_iq3_s", get_rows_iq3_s_len, get_rows_iq3_s_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ4_XS], "get_rows_iq4_xs", get_rows_iq4_xs_len, get_rows_iq4_xs_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ4_NL], "get_rows_iq4_nl", get_rows_iq4_nl_len, get_rows_iq4_nl_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F32 ], "get_rows_f32_f32", get_rows_f32_f32_len, get_rows_f32_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F16 ], "get_rows_f16_f32", get_rows_f16_f32_len, get_rows_f16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_0], "get_rows_q4_0_f32", get_rows_q4_0_f32_len, get_rows_q4_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_1], "get_rows_q4_1_f32", get_rows_q4_1_f32_len, get_rows_q4_1_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q5_0], "get_rows_q5_0_f32", get_rows_q5_0_f32_len, get_rows_q5_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q5_1], "get_rows_q5_1_f32", get_rows_q5_1_f32_len, get_rows_q5_1_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q8_0], "get_rows_q8_0_f32", get_rows_q8_0_f32_len, get_rows_q8_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ1_S], "get_rows_iq1_s_f32", get_rows_iq1_s_f32_len, get_rows_iq1_s_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ1_M], "get_rows_iq1_m_f32", get_rows_iq1_m_f32_len, get_rows_iq1_m_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ2_XXS], "get_rows_iq2_xxs_f32", get_rows_iq2_xxs_f32_len, get_rows_iq2_xxs_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ2_XS], "get_rows_iq2_xs_f32", get_rows_iq2_xs_f32_len, get_rows_iq2_xs_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ2_S], "get_rows_iq2_s_f32", get_rows_iq2_s_f32_len, get_rows_iq2_s_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ3_XXS], "get_rows_iq3_xxs_f32", get_rows_iq3_xxs_f32_len, get_rows_iq3_xxs_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ3_S], "get_rows_iq3_s_f32", get_rows_iq3_s_f32_len, get_rows_iq3_s_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ4_XS], "get_rows_iq4_xs_f32", get_rows_iq4_xs_f32_len, get_rows_iq4_xs_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ4_NL], "get_rows_iq4_nl_f32", get_rows_iq4_nl_f32_len, get_rows_iq4_nl_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_matmul_split_k_reduce, "split_k_reduce", split_k_reduce_len, split_k_reduce_data, "main", 2, 2 * sizeof(uint32_t), {256 * 4, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_split_k_reduce, "fa_split_k_reduce", fa_split_k_reduce_len, fa_split_k_reduce_data, "main", 2, 3 * sizeof(uint32_t), {1, 1, 1}, {}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1, "quantize_q8_1", quantize_q8_1_len, quantize_q8_1_data, "main", 2, 1 * sizeof(uint32_t), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1);
for (uint32_t i = 0; i < p021_max_gqa_ratio; ++i) {
if (device->subgroup_add && device->subgroup_require_full_support) {
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_subgroup_add_len, mul_mat_vec_p021_f16_f32_subgroup_add_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true, true);
} else {
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true);
}
}
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 7 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_norm_f32, "norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_group_norm_f32, "group_norm_f32", group_norm_f32_len, group_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rms_norm_f32, "rms_norm_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rms_norm_back_f32, "rms_norm_back_f32", rms_norm_back_f32_len, rms_norm_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_l2_norm_f32, "l2_norm_f32", l2_norm_f32_len, l2_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f32, "cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f16, "cpy_f32_f16", cpy_f32_f16_len, cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f16, "cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f32, "contig_cpy_f32_f32", contig_cpy_f32_f32_len, contig_cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f16, "contig_cpy_f32_f16", contig_cpy_f32_f16_len, contig_cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f16, "contig_cpy_f16_f16", contig_cpy_f16_f16_len, contig_cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
if (device->float_controls_rte_fp16) {
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_rte_len, cpy_f32_q4_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_rte_len, cpy_f32_q4_1_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_0], "cpy_f32_q5_0", cpy_f32_q5_0_rte_len, cpy_f32_q5_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_1], "cpy_f32_q5_1", cpy_f32_q5_1_rte_len, cpy_f32_q5_1_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q8_0], "cpy_f32_q8_0", cpy_f32_q8_0_rte_len, cpy_f32_q8_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q8_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_IQ4_NL], "cpy_f32_iq4_nl", cpy_f32_iq4_nl_rte_len, cpy_f32_iq4_nl_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_IQ4_NL), 1, 1}, {}, 1);
} else {
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_len, cpy_f32_q4_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_len, cpy_f32_q4_1_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_0], "cpy_f32_q5_0", cpy_f32_q5_0_len, cpy_f32_q5_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_1], "cpy_f32_q5_1", cpy_f32_q5_1_len, cpy_f32_q5_1_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q8_0], "cpy_f32_q8_0", cpy_f32_q8_0_len, cpy_f32_q8_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q8_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_IQ4_NL], "cpy_f32_iq4_nl", cpy_f32_iq4_nl_len, cpy_f32_iq4_nl_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_IQ4_NL), 1, 1}, {}, 1);
}
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q4_0], "cpy_q4_0_f32", cpy_q4_0_f32_len, cpy_q4_0_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q4_1], "cpy_q4_1_f32", cpy_q4_1_f32_len, cpy_q4_1_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q5_0], "cpy_q5_0_f32", cpy_q5_0_f32_len, cpy_q5_0_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q5_1], "cpy_q5_1_f32", cpy_q5_1_f32_len, cpy_q5_1_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q8_0], "cpy_q8_0_f32", cpy_q8_0_f32_len, cpy_q8_0_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q8_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_IQ4_NL], "cpy_iq4_nl_f32", cpy_iq4_nl_f32_len, cpy_iq4_nl_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_IQ4_NL), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f32, "add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f32_norepeat, "add_f32_norepeat", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16, "add_f16_f32_f16", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16_norepeat, "add_f16_f32_f16_norepeat", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_acc_f32, "acc_f32", acc_f32_len, acc_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_sub_f32, "sub_f32", sub_f32_len, sub_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_sub_f32_norepeat, "sub_f32_norepeat", sub_f32_len, sub_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_mul_f32, "mul_f32", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_mul_f32_norepeat, "mul_f32_norepeat", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_div_f32, "div_f32", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_div_f32_norepeat, "div_f32_norepeat", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_concat_f32, "concat_f32", concat_f32_len, concat_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_concat_f16, "concat_f16", concat_f16_len, concat_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_concat_i32, "concat_i32", concat_i32_len, concat_i32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_upscale_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_scale_f32, "scale_f32", scale_f32_len, scale_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_sqr_f32, "sqr_f32", sqr_f32_len, sqr_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_sin_f32, "sin_f32", sin_f32_len, sin_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cos_f32, "cos_f32", cos_f32_len, cos_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_clamp_f32, "clamp_f32", clamp_f32_len, clamp_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_pad_f32, "pad_f32", pad_f32_len, pad_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_repeat_f32, "repeat_f32", repeat_f32_len, repeat_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_repeat_back_f32, "repeat_back_f32", repeat_back_f32_len, repeat_back_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_gelu_f32, "gelu_f32", gelu_f32_len, gelu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_gelu_quick_f32, "gelu_quick_f32", gelu_quick_f32_len, gelu_quick_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_silu_f32, "silu_f32", silu_f32_len, silu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_silu_back_f32, "silu_back_f32", silu_back_f32_len, silu_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_relu_f32, "relu_f32", relu_f32_len, relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_leaky_relu_f32, "leaky_relu_f32", leaky_relu_f32_len, leaky_relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_tanh_f32, "tanh_f32", tanh_f32_len, tanh_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_sigmoid_f32, "sigmoid_f32", sigmoid_f32_len, sigmoid_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {1, 512, 1}, {}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_wg512, "soft_max_f32_wg512", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16, "soft_max_f32_f16", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16_wg512, "soft_max_f32_f16_wg512", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_back_f32, "soft_max_back_f32", soft_max_back_f32_len, soft_max_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f32, "rope_norm_f32", rope_norm_f32_len, rope_norm_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_multi_f32, "rope_multi_f32", rope_multi_f32_len, rope_multi_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_vision_f32, "rope_vision_f32", rope_vision_f32_len, rope_vision_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
if (device->float_controls_rte_fp16) {
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_rte_len, rope_norm_f16_rte_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_rte_len, rope_neox_f16_rte_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_multi_f16, "rope_multi_f16", rope_multi_f16_rte_len, rope_multi_f16_rte_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_vision_f16, "rope_vision_f16", rope_vision_f16_rte_len, rope_vision_f16_rte_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
} else {
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_len, rope_norm_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_multi_f16, "rope_multi_f16", rope_multi_f16_len, rope_multi_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_vision_f16, "rope_vision_f16", rope_vision_f16_len, rope_vision_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
}
ggml_vk_create_pipeline(device, device->pipeline_argsort_f32, "argsort_f32", argsort_f32_len, argsort_f32_data, "main", 2, sizeof(vk_op_argsort_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_argmax_f32, "argmax_f32", argmax_f32_len, argmax_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_sum_rows_f32, "sum_rows_f32", sum_rows_f32_len, sum_rows_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_count_equal_i32, "count_equal_i32", count_equal_i32_len, count_equal_i32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32, "im2col_f32", im2col_f32_len, im2col_f32_data, "main", 2, sizeof(vk_op_im2col_push_constants), {512, 1, 1}, { device->subgroup_size }, 1, true);
if (device->float_controls_rte_fp16) {
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_rte_len, im2col_f32_f16_rte_data, "main", 2, sizeof(vk_op_im2col_push_constants), {512, 1, 1}, { device->subgroup_size }, 1, true);
} else {
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_len, im2col_f32_f16_data, "main", 2, sizeof(vk_op_im2col_push_constants), {512, 1, 1}, { device->subgroup_size }, 1, true);
}
ggml_vk_create_pipeline(device, device->pipeline_timestep_embedding_f32, "timestep_embedding_f32", timestep_embedding_f32_len, timestep_embedding_f32_data, "main", 2, sizeof(vk_op_timestep_embedding_push_constants), {256, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_pool2d_f32, "pool2d_f32", pool2d_f32_len, pool2d_f32_data, "main", 2, sizeof(vk_op_pool2d_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rwkv_wkv6_f32, "rwkv_wkv6_f32", rwkv_wkv6_f32_len, rwkv_wkv6_f32_data, "main", 7, sizeof(vk_op_rwkv_wkv6_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rwkv_wkv7_f32, "rwkv_wkv7_f32", rwkv_wkv7_f32_len, rwkv_wkv7_f32_data, "main", 8, sizeof(vk_op_rwkv_wkv7_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
ggml_vk_create_pipeline(device, device->pipeline_opt_step_adamw_f32, "opt_step_adamw_f32", opt_step_adamw_f32_len, opt_step_adamw_f32_data, "main", 5, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
for (auto &c : compiles) {
c.wait();
}
device->need_compiles = false;
}
static bool ggml_vk_khr_cooperative_matrix_support(const vk::PhysicalDeviceProperties& props, const vk::PhysicalDeviceDriverProperties& driver_props, vk_device_architecture arch);
static vk_device ggml_vk_get_device(size_t idx) {
VK_LOG_DEBUG("ggml_vk_get_device(" << idx << ")");
if (vk_instance.devices[idx] == nullptr) {
VK_LOG_DEBUG("Initializing new vk_device");
vk_device device = std::make_shared<vk_device_struct>();
vk_instance.devices[idx] = device;
#ifdef GGML_VULKAN_MEMORY_DEBUG
device->memory_logger = std::unique_ptr<vk_memory_logger>(new vk_memory_logger());
#endif
#ifdef GGML_VULKAN_PERF
device->perf_logger = std::unique_ptr<vk_perf_logger>(new vk_perf_logger());
#endif
size_t dev_num = vk_instance.device_indices[idx];
std::vector<vk::PhysicalDevice> physical_devices = vk_instance.instance.enumeratePhysicalDevices();
if (dev_num >= physical_devices.size()) {
std::cerr << "ggml_vulkan: Device with index " << dev_num << " does not exist." << std::endl;
throw std::runtime_error("Device not found");
}
device->physical_device = physical_devices[dev_num];
const std::vector<vk::ExtensionProperties> ext_props = device->physical_device.enumerateDeviceExtensionProperties();
device->architecture = get_device_architecture(device->physical_device);
const char* GGML_VK_PREFER_HOST_MEMORY = getenv("GGML_VK_PREFER_HOST_MEMORY");
device->prefer_host_memory = GGML_VK_PREFER_HOST_MEMORY != nullptr;
bool fp16_storage = false;
bool fp16_compute = false;
bool maintenance4_support = false;
bool sm_builtins = false;
bool amd_shader_core_properties2 = false;
bool pipeline_robustness = false;
bool coopmat2_support = false;
device->coopmat_support = false;
device->integer_dot_product = false;
for (const auto& properties : ext_props) {
if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
maintenance4_support = true;
} else if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) {
fp16_storage = true;
} else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) {
fp16_compute = true;
} else if (strcmp("VK_NV_shader_sm_builtins", properties.extensionName) == 0) {
sm_builtins = true;
} else if (strcmp("VK_AMD_shader_core_properties2", properties.extensionName) == 0) {
amd_shader_core_properties2 = true;
} else if (strcmp("VK_EXT_pipeline_robustness", properties.extensionName) == 0) {
pipeline_robustness = true;
} else if (strcmp("VK_EXT_subgroup_size_control", properties.extensionName) == 0) {
device->subgroup_size_control = true;
} else if (strcmp("VK_KHR_cooperative_matrix", properties.extensionName) == 0 &&
!getenv("GGML_VK_DISABLE_COOPMAT")) {
device->coopmat_support = true;
device->coopmat_m = 0;
device->coopmat_n = 0;
device->coopmat_k = 0;
} else if (strcmp("VK_NV_cooperative_matrix2", properties.extensionName) == 0 &&
!getenv("GGML_VK_DISABLE_COOPMAT2")) {
coopmat2_support = true;
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
} else if (strcmp("VK_KHR_shader_integer_dot_product", properties.extensionName) == 0 &&
!getenv("GGML_VK_DISABLE_INTEGER_DOT_PRODUCT")) {
device->integer_dot_product = true;
#endif
}
}
vk::PhysicalDeviceProperties2 props2;
vk::PhysicalDeviceMaintenance3Properties props3;
vk::PhysicalDeviceMaintenance4Properties props4;
vk::PhysicalDeviceSubgroupProperties subgroup_props;
vk::PhysicalDeviceDriverProperties driver_props;
vk::PhysicalDeviceShaderSMBuiltinsPropertiesNV sm_props;
vk::PhysicalDeviceShaderCoreProperties2AMD amd_shader_core_properties2_props;
vk::PhysicalDeviceVulkan11Properties vk11_props;
vk::PhysicalDeviceVulkan12Properties vk12_props;
vk::PhysicalDeviceSubgroupSizeControlPropertiesEXT subgroup_size_control_props;
vk::PhysicalDeviceShaderIntegerDotProductPropertiesKHR shader_integer_dot_product_props;
props2.pNext = &props3;
props3.pNext = &subgroup_props;
subgroup_props.pNext = &driver_props;
driver_props.pNext = &vk11_props;
vk11_props.pNext = &vk12_props;
VkBaseOutStructure * last_struct = (VkBaseOutStructure *)&vk12_props;
if (maintenance4_support) {
last_struct->pNext = (VkBaseOutStructure *)&props4;
last_struct = (VkBaseOutStructure *)&props4;
}
if (sm_builtins) {
last_struct->pNext = (VkBaseOutStructure *)&sm_props;
last_struct = (VkBaseOutStructure *)&sm_props;
}
if (amd_shader_core_properties2) {
last_struct->pNext = (VkBaseOutStructure *)&amd_shader_core_properties2_props;
last_struct = (VkBaseOutStructure *)&amd_shader_core_properties2_props;
}
if (device->subgroup_size_control) {
last_struct->pNext = (VkBaseOutStructure *)&subgroup_size_control_props;
last_struct = (VkBaseOutStructure *)&subgroup_size_control_props;
}
#if defined(VK_NV_cooperative_matrix2)
vk::PhysicalDeviceCooperativeMatrix2PropertiesNV coopmat2_props;
if (coopmat2_support) {
last_struct->pNext = (VkBaseOutStructure *)&coopmat2_props;
last_struct = (VkBaseOutStructure *)&coopmat2_props;
}
#endif
if (device->integer_dot_product) {
last_struct->pNext = (VkBaseOutStructure *)&shader_integer_dot_product_props;
last_struct = (VkBaseOutStructure *)&shader_integer_dot_product_props;
}
device->physical_device.getProperties2(&props2);
device->properties = props2.properties;
device->vendor_id = device->properties.vendorID;
const char* GGML_VK_FORCE_MAX_ALLOCATION_SIZE = getenv("GGML_VK_FORCE_MAX_ALLOCATION_SIZE");
if (GGML_VK_FORCE_MAX_ALLOCATION_SIZE != nullptr) {
device->max_memory_allocation_size = std::stoul(GGML_VK_FORCE_MAX_ALLOCATION_SIZE);
} else if (maintenance4_support) {
device->max_memory_allocation_size = std::min(props3.maxMemoryAllocationSize, props4.maxBufferSize);
} else {
device->max_memory_allocation_size = props3.maxMemoryAllocationSize;
}
const char* GGML_VK_SUBALLOCATION_BLOCK_SIZE = getenv("GGML_VK_SUBALLOCATION_BLOCK_SIZE");
if (GGML_VK_SUBALLOCATION_BLOCK_SIZE != nullptr) {
device->suballocation_block_size = std::stoul(GGML_VK_SUBALLOCATION_BLOCK_SIZE);
} else {
// Limit batching of allocations to 1GB by default to avoid fragmentation issues
device->suballocation_block_size = 1024*1024*1024;
}
device->suballocation_block_size = std::min(device->suballocation_block_size, device->max_memory_allocation_size);
device->subgroup_size = subgroup_props.subgroupSize;
device->uma = device->properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
if (sm_builtins) {
device->shader_core_count = sm_props.shaderSMCount;
} else if (amd_shader_core_properties2) {
device->shader_core_count = amd_shader_core_properties2_props.activeComputeUnitCount;
} else {
device->shader_core_count = 0;
}
device->float_controls_rte_fp16 = vk12_props.shaderRoundingModeRTEFloat16;
device->subgroup_add = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) &&
(vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eArithmetic);
const bool force_disable_f16 = getenv("GGML_VK_DISABLE_F16") != nullptr;
device->fp16 = !force_disable_f16 && fp16_storage && fp16_compute;
if (!ggml_vk_khr_cooperative_matrix_support(device->properties, driver_props, device->architecture)) {
device->coopmat_support = false;
}
device->integer_dot_product = device->integer_dot_product && shader_integer_dot_product_props.integerDotProduct4x8BitPackedSignedAccelerated;
std::vector<vk::QueueFamilyProperties> queue_family_props = device->physical_device.getQueueFamilyProperties();
// Try to find a non-graphics compute queue and transfer-focused queues
const uint32_t compute_queue_family_index = ggml_vk_find_queue_family_index(queue_family_props, vk::QueueFlagBits::eCompute, vk::QueueFlagBits::eGraphics, -1, 1);
const uint32_t transfer_queue_family_index = ggml_vk_find_queue_family_index(queue_family_props, vk::QueueFlagBits::eTransfer, vk::QueueFlagBits::eCompute | vk::QueueFlagBits::eGraphics, compute_queue_family_index, 1);
const float priorities[] = { 1.0f, 1.0f };
device->single_queue = compute_queue_family_index == transfer_queue_family_index && queue_family_props[compute_queue_family_index].queueCount == 1;
std::vector<vk::DeviceQueueCreateInfo> device_queue_create_infos;
if (compute_queue_family_index != transfer_queue_family_index) {
device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 1, priorities});
device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), transfer_queue_family_index, 1, priorities + 1});
} else if(!device->single_queue) {
device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 2, priorities});
} else {
device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 1, priorities});
}
vk::DeviceCreateInfo device_create_info;
std::vector<const char *> device_extensions;
vk::PhysicalDeviceFeatures device_features = device->physical_device.getFeatures();
VkPhysicalDeviceFeatures2 device_features2;
device_features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
device_features2.pNext = nullptr;
device_features2.features = (VkPhysicalDeviceFeatures)device_features;
VkPhysicalDeviceVulkan11Features vk11_features;
vk11_features.pNext = nullptr;
vk11_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES;
device_features2.pNext = &vk11_features;
VkPhysicalDeviceVulkan12Features vk12_features;
vk12_features.pNext = nullptr;
vk12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES;
vk11_features.pNext = &vk12_features;
last_struct = (VkBaseOutStructure *)&vk12_features;
VkPhysicalDevicePipelineRobustnessFeaturesEXT pl_robustness_features;
pl_robustness_features.pNext = nullptr;
pl_robustness_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_ROBUSTNESS_FEATURES_EXT;
pl_robustness_features.pipelineRobustness = VK_FALSE;
if (pipeline_robustness) {
last_struct->pNext = (VkBaseOutStructure *)&pl_robustness_features;
last_struct = (VkBaseOutStructure *)&pl_robustness_features;
device_extensions.push_back("VK_EXT_pipeline_robustness");
}
VkPhysicalDeviceSubgroupSizeControlFeaturesEXT subgroup_size_control_features;
subgroup_size_control_features.pNext = nullptr;
subgroup_size_control_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT;
subgroup_size_control_features.computeFullSubgroups = false;
subgroup_size_control_features.subgroupSizeControl = false;
if (device->subgroup_size_control) {
last_struct->pNext = (VkBaseOutStructure *)&subgroup_size_control_features;
last_struct = (VkBaseOutStructure *)&subgroup_size_control_features;
}
#if defined(VK_KHR_cooperative_matrix)
VkPhysicalDeviceCooperativeMatrixFeaturesKHR coopmat_features;
coopmat_features.pNext = nullptr;
coopmat_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_KHR;
coopmat_features.cooperativeMatrix = VK_FALSE;
if (device->coopmat_support) {
last_struct->pNext = (VkBaseOutStructure *)&coopmat_features;
last_struct = (VkBaseOutStructure *)&coopmat_features;
}
#endif
#if defined(VK_NV_cooperative_matrix2)
VkPhysicalDeviceCooperativeMatrix2FeaturesNV coopmat2_features {};
coopmat2_features.pNext = nullptr;
coopmat2_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_2_FEATURES_NV;
if (coopmat2_support) {
last_struct->pNext = (VkBaseOutStructure *)&coopmat2_features;
last_struct = (VkBaseOutStructure *)&coopmat2_features;
device_extensions.push_back("VK_NV_cooperative_matrix2");
}
#endif
VkPhysicalDeviceMaintenance4Features maint4_features {};
maint4_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES;
if (maintenance4_support) {
last_struct->pNext = (VkBaseOutStructure *)&maint4_features;
last_struct = (VkBaseOutStructure *)&maint4_features;
device_extensions.push_back("VK_KHR_maintenance4");
}
VkPhysicalDeviceShaderIntegerDotProductFeaturesKHR shader_integer_dot_product_features {};
shader_integer_dot_product_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_FEATURES_KHR;
if (device->integer_dot_product) {
last_struct->pNext = (VkBaseOutStructure *)&shader_integer_dot_product_features;
last_struct = (VkBaseOutStructure *)&shader_integer_dot_product_features;
device_extensions.push_back("VK_KHR_shader_integer_dot_product");
}
vkGetPhysicalDeviceFeatures2(device->physical_device, &device_features2);
device->fp16 = device->fp16 && vk12_features.shaderFloat16;
device->pipeline_robustness = pl_robustness_features.pipelineRobustness;
if (device->subgroup_size_control) {
device->subgroup_min_size = subgroup_size_control_props.minSubgroupSize;
device->subgroup_max_size = subgroup_size_control_props.maxSubgroupSize;
device_extensions.push_back("VK_EXT_subgroup_size_control");
}
device->subgroup_size_control = device->subgroup_size_control &&
(subgroup_size_control_props.requiredSubgroupSizeStages & vk::ShaderStageFlagBits::eCompute) &&
subgroup_size_control_features.subgroupSizeControl;
if (device->subgroup_size_control) {
device->subgroup_require_full_support = subgroup_size_control_features.computeFullSubgroups;
}
#if defined(VK_KHR_cooperative_matrix)
device->coopmat_support = device->coopmat_support && coopmat_features.cooperativeMatrix;
#endif
if (coopmat2_support) {
#if defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
if (coopmat2_features.cooperativeMatrixWorkgroupScope &&
coopmat2_features.cooperativeMatrixFlexibleDimensions &&
coopmat2_features.cooperativeMatrixReductions &&
coopmat2_features.cooperativeMatrixConversions &&
coopmat2_features.cooperativeMatrixPerElementOperations &&
coopmat2_features.cooperativeMatrixTensorAddressing &&
coopmat2_features.cooperativeMatrixBlockLoads &&
vk12_features.bufferDeviceAddress) {
std::vector<VkCooperativeMatrixFlexibleDimensionsPropertiesNV> flexible_dimensions;
uint32_t count = 0;
PFN_vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV
_vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV =
(PFN_vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV)
vk_instance.instance.getProcAddr("vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV");
_vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV(device->physical_device, &count, nullptr);
VkCooperativeMatrixFlexibleDimensionsPropertiesNV empty_prop {};
empty_prop.sType = VK_STRUCTURE_TYPE_COOPERATIVE_MATRIX_FLEXIBLE_DIMENSIONS_PROPERTIES_NV;
flexible_dimensions.resize(count, empty_prop);
_vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV(device->physical_device, &count, flexible_dimensions.data());
bool found_fp16_128 = false,
found_fp16_256 = false,
found_fp32_128 = false,
found_fp32_256 = false;
// need to support fp16*fp16 with fp16/fp32 accumulator, for workgroupsize 128
// with 32x16x16 and 256 with 32x32x16.
for (auto &prop : flexible_dimensions) {
if (prop.saturatingAccumulation == VK_FALSE &&
prop.scope == VK_SCOPE_WORKGROUP_KHR &&
prop.AType == VK_COMPONENT_TYPE_FLOAT16_KHR &&
prop.BType == VK_COMPONENT_TYPE_FLOAT16_KHR) {
if (prop.workgroupInvocations == 128 &&
prop.MGranularity <= 32 &&
prop.NGranularity <= 16 &&
prop.KGranularity <= 16) {
if (prop.CType == VK_COMPONENT_TYPE_FLOAT16_KHR &&
prop.ResultType == VK_COMPONENT_TYPE_FLOAT16_KHR) {
found_fp16_128 = true;
}
if (prop.CType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
prop.ResultType == VK_COMPONENT_TYPE_FLOAT32_KHR) {
found_fp32_128 = true;
}
}
if (prop.workgroupInvocations == 256 &&
prop.MGranularity <= 32 &&
prop.NGranularity <= 32 &&
prop.KGranularity <= 16) {
if (prop.CType == VK_COMPONENT_TYPE_FLOAT16_KHR &&
prop.ResultType == VK_COMPONENT_TYPE_FLOAT16_KHR) {
found_fp16_256 = true;
}
if (prop.CType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
prop.ResultType == VK_COMPONENT_TYPE_FLOAT32_KHR) {
found_fp32_256 = true;
}
}
}
}
if (found_fp16_128 && found_fp16_256 &&
found_fp32_128 && found_fp32_256 &&
coopmat2_props.cooperativeMatrixFlexibleDimensionsMaxDimension >= 512) {
device->coopmat2 = true;
}
}
#endif
}
if (!vk11_features.storageBuffer16BitAccess) {
std::cerr << "ggml_vulkan: device " << GGML_VK_NAME << idx << " does not support 16-bit storage." << std::endl;
throw std::runtime_error("Unsupported device");
}
device_extensions.push_back("VK_KHR_16bit_storage");
#ifdef GGML_VULKAN_VALIDATE
device_extensions.push_back("VK_KHR_shader_non_semantic_info");
#endif
if (device->fp16) {
device_extensions.push_back("VK_KHR_shader_float16_int8");
}
#if defined(VK_KHR_cooperative_matrix)
if (device->coopmat_support) {
// Query supported shapes
std::vector<VkCooperativeMatrixPropertiesKHR> cm_props;
PFN_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR pfn_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR =
(PFN_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR)vkGetInstanceProcAddr(vk_instance.instance, "vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR");
uint32_t cm_props_num;
pfn_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR(device->physical_device, &cm_props_num, nullptr);
cm_props.resize(cm_props_num);
for (auto& prop : cm_props) {
prop.sType = VK_STRUCTURE_TYPE_COOPERATIVE_MATRIX_PROPERTIES_KHR;
}
pfn_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR(device->physical_device, &cm_props_num, cm_props.data());
VK_LOG_DEBUG("ggml_vulkan: Cooperative Matrix Shapes: " << cm_props.size());
for (auto& prop : cm_props) {
VK_LOG_DEBUG("ggml_vulkan: M: " << prop.MSize << " N: " << prop.NSize << " K: " << prop.KSize << " A: " << vk::to_string((vk::ComponentTypeKHR)prop.AType) << " B: " << vk::to_string((vk::ComponentTypeKHR)prop.BType) << " C: " << vk::to_string((vk::ComponentTypeKHR)prop.CType) << " Result: " << vk::to_string((vk::ComponentTypeKHR)prop.ResultType) << " saturatingAccumulation: " << prop.saturatingAccumulation << " scope: " << vk::to_string((vk::ScopeKHR)prop.scope));
if ((vk::ComponentTypeKHR)prop.AType == vk::ComponentTypeKHR::eFloat16 &&
(vk::ComponentTypeKHR)prop.BType == vk::ComponentTypeKHR::eFloat16 &&
(vk::ScopeKHR)prop.scope == vk::ScopeKHR::eSubgroup
) {
if ((vk::ComponentTypeKHR)prop.CType == vk::ComponentTypeKHR::eFloat32 &&
(vk::ComponentTypeKHR)prop.ResultType == vk::ComponentTypeKHR::eFloat32) {
// coopmat sizes not set yet
if (device->coopmat_m == 0) {
device->coopmat_acc_f32_support = true;
device->coopmat_m = prop.MSize;
device->coopmat_n = prop.NSize;
device->coopmat_k = prop.KSize;
} else if (device->coopmat_m == prop.MSize && device->coopmat_n == prop.NSize && device->coopmat_k == prop.KSize) {
// Only enable if shape is identical
device->coopmat_acc_f32_support = true;
}
} else if ((vk::ComponentTypeKHR)prop.CType == vk::ComponentTypeKHR::eFloat16 &&
(vk::ComponentTypeKHR)prop.ResultType == vk::ComponentTypeKHR::eFloat16) {
// coopmat sizes not set yet
if (device->coopmat_m == 0) {
device->coopmat_acc_f16_support = true;
device->coopmat_m = prop.MSize;
device->coopmat_n = prop.NSize;
device->coopmat_k = prop.KSize;
} else if (device->coopmat_m == prop.MSize && device->coopmat_n == prop.NSize && device->coopmat_k == prop.KSize) {
// Only enable if shape is identical
device->coopmat_acc_f16_support = true;
}
}
} else if ((vk::ComponentTypeKHR)prop.AType == vk::ComponentTypeKHR::eSint8 &&
(vk::ComponentTypeKHR)prop.BType == vk::ComponentTypeKHR::eSint8 &&
(vk::ComponentTypeKHR)prop.CType == vk::ComponentTypeKHR::eSint32 &&
(vk::ComponentTypeKHR)prop.ResultType == vk::ComponentTypeKHR::eSint32 &&
(vk::ScopeKHR)prop.scope == vk::ScopeKHR::eSubgroup &&
device->coopmat_int_m == 0
) {
device->coopmat_int_support = true;
device->coopmat_int_m = prop.MSize;
device->coopmat_int_n = prop.NSize;
device->coopmat_int_k = prop.KSize;
}
}
if (device->coopmat_m == 0 || !device->coopmat_acc_f32_support) {
// No suitable matmul mode found
GGML_LOG_DEBUG("ggml_vulkan: WARNING: No suitable matrix core mode found. Disabling matrix cores.\n");
device->coopmat_support = false;
}
}
if (device->coopmat_support) {
device_extensions.push_back("VK_KHR_cooperative_matrix");
}
#endif
device->name = GGML_VK_NAME + std::to_string(idx);
device_create_info = {
vk::DeviceCreateFlags(),
device_queue_create_infos,
{},
device_extensions
};
device_create_info.setPNext(&device_features2);
device->device = device->physical_device.createDevice(device_create_info);
// Queues
ggml_vk_create_queue(device, device->compute_queue, compute_queue_family_index, 0, { vk::PipelineStageFlagBits::eComputeShader | vk::PipelineStageFlagBits::eTransfer }, false);
// Shaders
// Disable matmul tile sizes early if performance low or not supported
for (uint32_t i = 0; i < GGML_TYPE_COUNT; ++i) {
switch (device->vendor_id) {
#ifndef GGML_VULKAN_RUN_TESTS
case VK_VENDOR_ID_AMD:
case VK_VENDOR_ID_INTEL:
device->mul_mat_l[i] = false;
device->mul_mat_m[i] = true;
device->mul_mat_s[i] = true;
device->mul_mat_id_l[i] = false;
device->mul_mat_id_m[i] = true;
device->mul_mat_id_s[i] = true;
break;
case VK_VENDOR_ID_APPLE:
device->mul_mat_l[i] = false;
device->mul_mat_m[i] = true;
device->mul_mat_s[i] = false;
device->mul_mat_id_l[i] = false;
device->mul_mat_id_m[i] = true;
device->mul_mat_id_s[i] = false;
break;
#endif
default:
device->mul_mat_l[i] = true;
device->mul_mat_m[i] = true;
device->mul_mat_s[i] = true;
device->mul_mat_id_l[i] = true;
device->mul_mat_id_m[i] = true;
device->mul_mat_id_s[i] = true;
break;
}
}
ggml_vk_load_shaders(device);
if (!device->single_queue) {
const uint32_t transfer_queue_index = compute_queue_family_index == transfer_queue_family_index ? 1 : 0;
ggml_vk_create_queue(device, device->transfer_queue, transfer_queue_family_index, transfer_queue_index, { vk::PipelineStageFlagBits::eTransfer }, true);
} else {
// TODO: Use pointer or reference to avoid copy
device->transfer_queue = device->compute_queue;
}
device->buffer_type = {
/* .iface = */ ggml_backend_vk_buffer_type_interface,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_vk_reg(), idx),
/* .context = */ new ggml_backend_vk_buffer_type_context{ device->name, device },
};
device->fence = device->device.createFence({});
device->idx = idx;
return device;
}
return vk_instance.devices[idx];
}
static void ggml_vk_print_gpu_info(size_t idx) {
GGML_ASSERT(idx < vk_instance.device_indices.size());
size_t dev_num = vk_instance.device_indices[idx];
VK_LOG_DEBUG("ggml_vk_print_gpu_info(" << dev_num << ")");
GGML_ASSERT(vk_instance_initialized);
std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices();
if (dev_num >= devices.size()) {
std::cerr << "ggml_vulkan: Device with index " << dev_num << " does not exist." << std::endl;
throw std::runtime_error("Device not found");
}
vk::PhysicalDevice physical_device = devices[dev_num];
std::vector<vk::ExtensionProperties> ext_props = physical_device.enumerateDeviceExtensionProperties();
bool fp16_storage = false;
bool fp16_compute = false;
bool coopmat_support = false;
bool coopmat2_support = false;
bool integer_dot_product = false;
for (auto properties : ext_props) {
if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) {
fp16_storage = true;
} else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) {
fp16_compute = true;
#if defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT)
} else if (strcmp("VK_KHR_cooperative_matrix", properties.extensionName) == 0 &&
!getenv("GGML_VK_DISABLE_COOPMAT")) {
coopmat_support = true;
#endif
#if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
} else if (strcmp("VK_NV_cooperative_matrix2", properties.extensionName) == 0 &&
!getenv("GGML_VK_DISABLE_COOPMAT2")) {
coopmat2_support = true;
#endif
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
} else if (strcmp("VK_KHR_shader_integer_dot_product", properties.extensionName) == 0 &&
!getenv("GGML_VK_DISABLE_INTEGER_DOT_PRODUCT")) {
integer_dot_product = true;
#endif
}
}
const vk_device_architecture device_architecture = get_device_architecture(physical_device);
const char* GGML_VK_DISABLE_F16 = getenv("GGML_VK_DISABLE_F16");
bool force_disable_f16 = GGML_VK_DISABLE_F16 != nullptr;
bool fp16 = !force_disable_f16 && fp16_storage && fp16_compute;
vk::PhysicalDeviceProperties2 props2;
vk::PhysicalDeviceMaintenance3Properties props3;
vk::PhysicalDeviceSubgroupProperties subgroup_props;
vk::PhysicalDeviceDriverProperties driver_props;
vk::PhysicalDeviceShaderIntegerDotProductPropertiesKHR shader_integer_dot_product_props;
props2.pNext = &props3;
props3.pNext = &subgroup_props;
subgroup_props.pNext = &driver_props;
// Pointer to the last chain element
VkBaseOutStructure * last_struct = (VkBaseOutStructure *)&driver_props;
if (integer_dot_product) {
last_struct->pNext = (VkBaseOutStructure *)&shader_integer_dot_product_props;
last_struct = (VkBaseOutStructure *)&shader_integer_dot_product_props;
}
physical_device.getProperties2(&props2);
VkPhysicalDeviceFeatures2 device_features2;
device_features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
device_features2.pNext = nullptr;
VkPhysicalDeviceVulkan11Features vk11_features;
vk11_features.pNext = nullptr;
vk11_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES;
device_features2.pNext = &vk11_features;
VkPhysicalDeviceVulkan12Features vk12_features;
vk12_features.pNext = nullptr;
vk12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES;
vk11_features.pNext = &vk12_features;
// Pointer to the last chain element
last_struct = (VkBaseOutStructure *)&vk12_features;
#if defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT)
VkPhysicalDeviceCooperativeMatrixFeaturesKHR coopmat_features;
coopmat_features.pNext = nullptr;
coopmat_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_KHR;
coopmat_features.cooperativeMatrix = VK_FALSE;
if (coopmat_support) {
last_struct->pNext = (VkBaseOutStructure *)&coopmat_features;
last_struct = (VkBaseOutStructure *)&coopmat_features;
}
#endif
VkPhysicalDeviceShaderIntegerDotProductFeaturesKHR shader_integer_dot_product_features {};
shader_integer_dot_product_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_FEATURES_KHR;
if (integer_dot_product) {
last_struct->pNext = (VkBaseOutStructure *)&shader_integer_dot_product_features;
last_struct = (VkBaseOutStructure *)&shader_integer_dot_product_features;
}
vkGetPhysicalDeviceFeatures2(physical_device, &device_features2);
fp16 = fp16 && vk12_features.shaderFloat16;
uint32_t default_subgroup_size = get_subgroup_size("", device_architecture);
const size_t subgroup_size = (default_subgroup_size != 0) ? default_subgroup_size : subgroup_props.subgroupSize;
const bool uma = props2.properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
integer_dot_product = integer_dot_product
&& shader_integer_dot_product_props.integerDotProduct4x8BitPackedSignedAccelerated
&& shader_integer_dot_product_features.shaderIntegerDotProduct;
coopmat_support = coopmat_support
#if defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT)
&& coopmat_features.cooperativeMatrix
#endif
&& ggml_vk_khr_cooperative_matrix_support(props2.properties, driver_props, device_architecture);
std::string matrix_cores = coopmat2_support ? "NV_coopmat2" : coopmat_support ? "KHR_coopmat" : "none";
std::string device_name = props2.properties.deviceName.data();
GGML_LOG_DEBUG("ggml_vulkan: %zu = %s (%s) | uma: %d | fp16: %d | warp size: %zu | shared memory: %d | int dot: %d | matrix cores: %s\n",
idx, device_name.c_str(), driver_props.driverName.data(), uma, fp16, subgroup_size,
props2.properties.limits.maxComputeSharedMemorySize, integer_dot_product, matrix_cores.c_str());
if (props2.properties.deviceType == vk::PhysicalDeviceType::eCpu) {
GGML_LOG_DEBUG("ggml_vulkan: Warning: Device type is CPU. This is probably not the device you want.\n");
}
}
static bool ggml_vk_instance_validation_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions);
static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions);
static void ggml_vk_instance_init() {
if (vk_instance_initialized) {
return;
}
VK_LOG_DEBUG("ggml_vk_instance_init()");
uint32_t api_version = vk::enumerateInstanceVersion();
if (api_version < VK_API_VERSION_1_2) {
std::cerr << "ggml_vulkan: Error: Vulkan 1.2 required." << std::endl;
GGML_ABORT("fatal error");
}
vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, api_version };
const std::vector<vk::ExtensionProperties> instance_extensions = vk::enumerateInstanceExtensionProperties();
const bool validation_ext = ggml_vk_instance_validation_ext_available(instance_extensions);
#ifdef __APPLE__
const bool portability_enumeration_ext = ggml_vk_instance_portability_enumeration_ext_available(instance_extensions);
#endif
std::vector<const char*> layers;
if (validation_ext) {
layers.push_back("VK_LAYER_KHRONOS_validation");
}
std::vector<const char*> extensions;
if (validation_ext) {
extensions.push_back("VK_EXT_validation_features");
}
#ifdef __APPLE__
if (portability_enumeration_ext) {
extensions.push_back("VK_KHR_portability_enumeration");
}
#endif
vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags{}, &app_info, layers, extensions);
#ifdef __APPLE__
if (portability_enumeration_ext) {
instance_create_info.flags |= vk::InstanceCreateFlagBits::eEnumeratePortabilityKHR;
}
#endif
std::vector<vk::ValidationFeatureEnableEXT> features_enable;
vk::ValidationFeaturesEXT validation_features;
if (validation_ext) {
features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices };
validation_features = {
features_enable,
{},
};
validation_features.setPNext(nullptr);
instance_create_info.setPNext(&validation_features);
GGML_LOG_DEBUG("ggml_vulkan: Validation layers enabled\n");
}
vk_instance.instance = vk::createInstance(instance_create_info);
vk_instance_initialized = true;
size_t num_available_devices = vk_instance.instance.enumeratePhysicalDevices().size();
// Emulate behavior of CUDA_VISIBLE_DEVICES for Vulkan
char * devices_env = getenv("GGML_VK_VISIBLE_DEVICES");
if (devices_env != nullptr) {
std::string devices(devices_env);
std::replace(devices.begin(), devices.end(), ',', ' ');
std::stringstream ss(devices);
size_t tmp;
while (ss >> tmp) {
if(tmp >= num_available_devices) {
std::cerr << "ggml_vulkan: Invalid device index " << tmp << " in GGML_VK_VISIBLE_DEVICES." << std::endl;
throw std::runtime_error("Invalid Vulkan device index");
}
vk_instance.device_indices.push_back(tmp);
}
} else {
std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices();
// Make sure at least one device exists
if (devices.empty()) {
std::cerr << "ggml_vulkan: Error: No devices found." << std::endl;
return;
}
// Default to using all dedicated GPUs
for (size_t i = 0; i < devices.size(); i++) {
vk::PhysicalDeviceProperties2 new_props;
vk::PhysicalDeviceDriverProperties new_driver;
vk::PhysicalDeviceIDProperties new_id;
new_props.pNext = &new_driver;
new_driver.pNext = &new_id;
devices[i].getProperties2(&new_props);
if (new_props.properties.deviceType == vk::PhysicalDeviceType::eDiscreteGpu) {
// Check if there are two physical devices corresponding to the same GPU
auto old_device = std::find_if(
vk_instance.device_indices.begin(),
vk_instance.device_indices.end(),
[&devices, &new_id](const size_t k){
vk::PhysicalDeviceProperties2 old_props;
vk::PhysicalDeviceIDProperties old_id;
old_props.pNext = &old_id;
devices[k].getProperties2(&old_props);
return std::equal(std::begin(old_id.deviceUUID), std::end(old_id.deviceUUID), std::begin(new_id.deviceUUID));
}
);
if (old_device == vk_instance.device_indices.end()) {
vk_instance.device_indices.push_back(i);
} else {
// There can be two physical devices corresponding to the same GPU if there are 2 different drivers
// This can cause error when splitting layers aross the devices, need to keep only 1
VK_LOG_DEBUG("Device " << i << " and device " << *old_device << " have the same deviceUUID");
vk::PhysicalDeviceProperties2 old_props;
vk::PhysicalDeviceDriverProperties old_driver;
old_props.pNext = &old_driver;
devices[*old_device].getProperties2(&old_props);
std::map<vk::DriverId, int> driver_priorities {};
int old_priority = std::numeric_limits<int>::max();
int new_priority = std::numeric_limits<int>::max();
// Check https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkDriverId.html for the list of driver id
// Smaller number -> higher priority
switch (old_props.properties.vendorID) {
case VK_VENDOR_ID_AMD:
driver_priorities[vk::DriverId::eMesaRadv] = 1;
driver_priorities[vk::DriverId::eAmdOpenSource] = 2;
driver_priorities[vk::DriverId::eAmdProprietary] = 3;
break;
case VK_VENDOR_ID_INTEL:
driver_priorities[vk::DriverId::eIntelOpenSourceMESA] = 1;
driver_priorities[vk::DriverId::eIntelProprietaryWindows] = 2;
break;
case VK_VENDOR_ID_NVIDIA:
driver_priorities[vk::DriverId::eNvidiaProprietary] = 1;
#if defined(VK_API_VERSION_1_3) && VK_HEADER_VERSION >= 235
driver_priorities[vk::DriverId::eMesaNvk] = 2;
#endif
break;
}
if (driver_priorities.count(old_driver.driverID)) {
old_priority = driver_priorities[old_driver.driverID];
}
if (driver_priorities.count(new_driver.driverID)) {
new_priority = driver_priorities[new_driver.driverID];
}
if (new_priority < old_priority) {
auto r = std::remove(vk_instance.device_indices.begin(), vk_instance.device_indices.end(), *old_device);
vk_instance.device_indices.erase(r, vk_instance.device_indices.end());
vk_instance.device_indices.push_back(i);
VK_LOG_DEBUG("Prioritize device " << i << " driver " << new_driver.driverName << " over device " << *old_device << " driver " << old_driver.driverName);
}
else {
VK_LOG_DEBUG("Prioritize device " << *old_device << " driver " << old_driver.driverName << " over device " << i << " driver " << new_driver.driverName << std::endl);
}
}
}
}
// If no dedicated GPUs found, fall back to GPU 0
if (vk_instance.device_indices.empty()) {
vk_instance.device_indices.push_back(0);
}
}
GGML_LOG_DEBUG("ggml_vulkan: Found %zu Vulkan devices:\n", vk_instance.device_indices.size());
for (size_t i = 0; i < vk_instance.device_indices.size(); i++) {
ggml_vk_print_gpu_info(i);
}
}
static void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) {
VK_LOG_DEBUG("ggml_vk_init(" << ctx->name << ", " << idx << ")");
ggml_vk_instance_init();
GGML_ASSERT(idx < vk_instance.device_indices.size());
ctx->name = GGML_VK_NAME + std::to_string(idx);
ctx->device = ggml_vk_get_device(idx);
ctx->semaphore_idx = 0;
ctx->event_idx = 0;
ctx->prealloc_size_x = 0;
ctx->prealloc_size_y = 0;
ctx->prealloc_size_split_k = 0;
ctx->fence = ctx->device->device.createFence({});
ctx->almost_ready_fence = ctx->device->device.createFence({});
#ifdef GGML_VULKAN_CHECK_RESULTS
const char* skip_checks = getenv("GGML_VULKAN_SKIP_CHECKS");
vk_skip_checks = (skip_checks == NULL ? 0 : atoi(skip_checks));
const char* output_tensor = getenv("GGML_VULKAN_OUTPUT_TENSOR");
vk_output_tensor = (output_tensor == NULL ? 0 : atoi(output_tensor));
#endif
}
static vk_pipeline ggml_vk_get_to_fp16(ggml_backend_vk_context * ctx, ggml_type type) {
VK_LOG_DEBUG("ggml_vk_get_to_fp16()");
switch (type) {
case GGML_TYPE_F32:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
break;
default:
return nullptr;
}
return ctx->device->pipeline_dequant[type];
}
static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_context * ctx, ggml_type src0_type, ggml_type src1_type, ggml_prec prec) {
VK_LOG_DEBUG("ggml_vk_get_mul_mat_mat_pipeline(" << ggml_type_name(src0_type) << ", " << ggml_type_name(src1_type) << ")");
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_f32;
}
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
return ctx->device->pipeline_matmul_f32_f16;
}
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) {
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_f16_f32.f16acc;
}
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
return ctx->device->pipeline_matmul_f16.f16acc;
}
} else {
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_f16_f32.f32acc;
}
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
return ctx->device->pipeline_matmul_f16.f32acc;
}
}
// MMQ
if (src1_type == GGML_TYPE_Q8_1) {
vk_matmul_pipeline pipelines = ctx->device->pipeline_dequant_mul_mat_mat_q8_1[src0_type].f16acc;
if (pipelines->s == nullptr && pipelines->m == nullptr && pipelines->l == nullptr) {
return nullptr;
}
return pipelines;
}
if (src1_type != GGML_TYPE_F32 && !ctx->device->coopmat2) {
return nullptr;
}
switch (src0_type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
break;
default:
return nullptr;
}
if (ctx->device->coopmat2) {
assert(src1_type == GGML_TYPE_F16);
return ctx->device->pipeline_dequant_mul_mat_mat_f16[src0_type].f16acc;
}
return ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[src0_type].f16acc : ctx->device->pipeline_dequant_mul_mat_mat[src0_type].f32acc;
}
static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type, uint32_t num_cols) {
VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec()");
GGML_ASSERT(b_type == GGML_TYPE_F32 || b_type == GGML_TYPE_F16);
GGML_ASSERT(num_cols >= 1 && num_cols <= mul_mat_vec_max_cols);
switch (a_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
break;
default:
return nullptr;
}
return b_type == GGML_TYPE_F32 ? ctx->device->pipeline_dequant_mul_mat_vec_f32_f32[a_type][num_cols-1] : ctx->device->pipeline_dequant_mul_mat_vec_f16_f32[a_type][num_cols-1];
}
static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_context * ctx, ggml_type src0_type, ggml_type src1_type, ggml_prec prec) {
VK_LOG_DEBUG("ggml_vk_get_mul_mat_mat_id_pipeline()");
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_id_f32;
}
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) {
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_id_f16_f32.f16acc;
}
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
return ctx->device->pipeline_matmul_id_f16.f16acc;
}
} else {
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_id_f16_f32.f32acc;
}
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
return ctx->device->pipeline_matmul_id_f16.f32acc;
}
}
GGML_ASSERT(src1_type == GGML_TYPE_F32 || (ctx->device->coopmat2 && src1_type == GGML_TYPE_F16));
switch (src0_type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
break;
default:
return nullptr;
}
return ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat_id[src0_type].f16acc : ctx->device->pipeline_dequant_mul_mat_mat_id[src0_type].f32acc;
}
static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type) {
VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec()");
GGML_ASSERT(b_type == GGML_TYPE_F32);
switch (a_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
break;
default:
return nullptr;
}
return ctx->device->pipeline_dequant_mul_mat_vec_id_f32[a_type];
}
static vk_buffer ggml_vk_pool_malloc(ggml_backend_vk_context * ctx, size_t size) {
VK_LOG_DEBUG("ggml_vk_pool_malloc(" << size << ")");
VK_LOG_MEMORY("ggml_vk_pool_malloc");
int best_i = -1;
size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
int worst_i = -1;
size_t worst_size = 0; //largest unused buffer seen so far
for (int i = 0; i < MAX_VK_BUFFERS; ++i) {
vk_buffer &b = ctx->buffer_pool[i];
if (b != nullptr && b->size >= size && b->size < best_size) {
best_i = i;
best_size = b->size;
}
if (b != nullptr && b->size > worst_size) {
worst_i = i;
worst_size = b->size;
}
}
if(best_i != -1) {
//found the smallest buffer that fits our needs
vk_buffer b = ctx->buffer_pool[best_i];
ctx->buffer_pool[best_i].reset();
return b;
}
if(worst_i != -1) {
//no buffer that fits our needs, resize largest one to save memory
vk_buffer& b = ctx->buffer_pool[worst_i];
ggml_vk_destroy_buffer(b);
}
return ggml_vk_create_buffer_device(ctx->device, size);
}
static void ggml_vk_pool_free(ggml_backend_vk_context * ctx, vk_buffer& buffer) {
VK_LOG_DEBUG("ggml_vk_pool_free(" << buffer->size << ")");
for (int i = 0; i < MAX_VK_BUFFERS; ++i) {
vk_buffer& b = ctx->buffer_pool[i];
if (b == nullptr) {
b = buffer;
return;
}
}
std::cerr << "ggml_vulkan: WARNING: vk buffer pool full, increase MAX_VK_BUFFERS" << std::endl;
ggml_vk_destroy_buffer(buffer);
}
// Returns an available temporary buffer that may only be used temporarily, it will be reused
static vk_buffer ggml_vk_create_buffer_temp(ggml_backend_vk_context * ctx, size_t size) {
// Try to find existing temp buffer with enough capacity
for (auto& buffer : ctx->gc.temp_buffers) {
if (buffer->size >= size) {
return buffer;
}
}
VK_LOG_MEMORY("ggml_vk_create_buffer_temp(" << size << ")");
// Otherwise create new buffer
vk_buffer buf = ggml_vk_pool_malloc(ctx, size);
ctx->gc.temp_buffers.push_back(buf);
return buf;
}
static void * ggml_vk_host_malloc(vk_device& device, size_t size) {
VK_LOG_MEMORY("ggml_vk_host_malloc(" << size << ")");
vk_buffer buf = ggml_vk_create_buffer(device, size,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
if(!(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible)) {
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory\n",
size/1024.0/1024.0);
device->device.freeMemory(buf->device_memory);
device->device.destroyBuffer(buf->buffer);
return nullptr;
}
device->pinned_memory.push_back(std::make_tuple(buf->ptr, size, buf));
return buf->ptr;
}
static void ggml_vk_host_free(vk_device& device, void* ptr) {
if (ptr == nullptr) {
return;
}
VK_LOG_MEMORY("ggml_vk_host_free(" << ptr << ")");
vk_buffer buf;
size_t index;
for (size_t i = 0; i < device->pinned_memory.size(); i++) {
const uint8_t* addr = (const uint8_t*) std::get<0>(device->pinned_memory[i]);
const uint8_t* endr = addr + std::get<1>(device->pinned_memory[i]);
if (ptr >= addr && ptr < endr) {
buf = std::get<2>(device->pinned_memory[i]);
index = i;
break;
}
}
if (buf == nullptr) {
fprintf(stderr, "WARNING: failed to free pinned memory: memory not in map\n");
return;
}
ggml_vk_destroy_buffer(buf);
device->pinned_memory.erase(device->pinned_memory.begin() + index);
}
static void ggml_vk_host_get(vk_device& device, const void * ptr, vk_buffer& buf, size_t& buf_offset) {
buf = nullptr;
buf_offset = 0;
for (size_t i = 0; i < device->pinned_memory.size(); i++) {
const uint8_t* addr = (const uint8_t*) std::get<0>(device->pinned_memory[i]);
const uint8_t* endr = addr + std::get<1>(device->pinned_memory[i]);
if (ptr >= addr && ptr < endr) {
buf = std::get<2>(device->pinned_memory[i]);
buf_offset = ((const uint8_t *)ptr) - addr;
break;
}
}
}
static vk_submission ggml_vk_begin_submission(vk_device& device, vk_queue& q, bool one_time = true) {
vk_submission s;
s.buffer = ggml_vk_create_cmd_buffer(device, q);
if (one_time) {
s.buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit });
} else {
s.buffer.begin({ vk::CommandBufferUsageFlags{} });
}
return s;
}
static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context& subctx, vk_pipeline& pipeline, std::initializer_list<vk::DescriptorBufferInfo> const& descriptor_buffer_infos, size_t push_constant_size, const void* push_constants, std::array<uint32_t, 3> elements) {
const uint32_t wg0 = CEIL_DIV(elements[0], pipeline->wg_denoms[0]);
const uint32_t wg1 = CEIL_DIV(elements[1], pipeline->wg_denoms[1]);
const uint32_t wg2 = CEIL_DIV(elements[2], pipeline->wg_denoms[2]);
VK_LOG_DEBUG("ggml_vk_dispatch_pipeline(" << pipeline->name << ", {";
for (auto& buffer : descriptor_buffer_infos) {
std::cerr << "(" << buffer.buffer << ", " << buffer.offset << ", " << buffer.range << "), ";
}
std::cerr << "}, (" << wg0 << "," << wg1 << "," << wg2 << "))");
GGML_ASSERT(pipeline->descriptor_set_idx < pipeline->descriptor_sets.size());
GGML_ASSERT(descriptor_buffer_infos.size() == pipeline->parameter_count);
vk::DescriptorSet& descriptor_set = pipeline->descriptor_sets[pipeline->descriptor_set_idx++];
vk::WriteDescriptorSet write_descriptor_set{ descriptor_set, 0, 0, pipeline->parameter_count, vk::DescriptorType::eStorageBuffer, nullptr, descriptor_buffer_infos.begin() };
ctx->device->device.updateDescriptorSets({ write_descriptor_set }, {});
subctx->s->buffer.pushConstants(pipeline->layout, vk::ShaderStageFlagBits::eCompute, 0, push_constant_size, push_constants);
subctx->s->buffer.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline->pipeline);
subctx->s->buffer.bindDescriptorSets(vk::PipelineBindPoint::eCompute,
pipeline->layout,
0,
{ descriptor_set },
{});
subctx->s->buffer.dispatch(wg0, wg1, wg2);
}
static void ggml_vk_end_submission(vk_submission& s, std::vector<vk_semaphore> wait_semaphores, std::vector<vk_semaphore> signal_semaphores) {
s.buffer.end();
s.wait_semaphores = std::move(wait_semaphores);
s.signal_semaphores = std::move(signal_semaphores);
}
static void ggml_vk_ctx_end(vk_context& ctx) {
VK_LOG_DEBUG("ggml_vk_ctx_end(" << ctx << ", " << ctx->seqs.size() << ")");
if (ctx->s == nullptr) {
return;
}
ctx->s->buffer.end();
ctx->s = nullptr;
}
static void ggml_vk_ctx_begin(vk_device& device, vk_context& subctx) {
VK_LOG_DEBUG("ggml_vk_ctx_begin(" << device->name << ")");
if (subctx->s != nullptr) {
ggml_vk_ctx_end(subctx);
}
subctx->seqs.push_back({ ggml_vk_begin_submission(device, *subctx->q) });
subctx->s = subctx->seqs[subctx->seqs.size() - 1].data();
}
static size_t ggml_vk_align_size(size_t width, size_t align) {
VK_LOG_DEBUG("ggml_vk_align_size(" << width << ", " << align << ")");
return CEIL_DIV(width, align) * align;
}
static void deferred_memcpy(void * dst, const void * src, size_t size, std::vector<vk_staging_memcpy>* memcpys = nullptr) {
if (memcpys == nullptr) {
memcpy(dst, src, size);
} else {
memcpys->emplace_back(dst, src, size);
}
}
static void ggml_vk_ensure_sync_staging_buffer(vk_device& device, size_t size) {
if (device->sync_staging == nullptr || device->sync_staging->size < size) {
VK_LOG_MEMORY("ggml_vk_ensure_sync_staging_buffer(" << size << ")");
ggml_vk_destroy_buffer(device->sync_staging);
device->sync_staging = ggml_vk_create_buffer_check(device, size,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
}
}
static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_context& subctx, vk_buffer& dst, size_t offset, const ggml_tensor * tensor, bool sync_staging = false) {
VK_LOG_DEBUG("ggml_vk_buffer_write_nc_async(" << tensor << ")");
GGML_ASSERT(!ggml_is_contiguous(tensor));
// Buffer is already mapped
if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
std::cerr << "ggml_vulkan: buffer_write_nc_async dst buffer is host_visible. Use synchronous write." << std::endl;
GGML_ABORT("fatal error");
}
// Check if src is pinned memory
vk_buffer buf = nullptr;
size_t buf_offset = 0;
ggml_vk_host_get(ctx->device, tensor->data, buf, buf_offset);
const uint64_t ne0 = tensor->ne[0];
const uint64_t ne1 = tensor->ne[1];
const uint64_t ne2 = tensor->ne[2];
const uint64_t ne3 = tensor->ne[3];
const uint64_t nb0 = tensor->nb[0];
const uint64_t nb1 = tensor->nb[1];
const uint64_t nb2 = tensor->nb[2];
const uint64_t nb3 = tensor->nb[3];
const ggml_type type = tensor->type;
const uint64_t ts = ggml_type_size(type);
const uint64_t bs = ggml_blck_size(type);
const uint64_t dstnb0 = ts;
const uint64_t dstnb1 = dstnb0*(ne0/bs);
const uint64_t dstnb2 = dstnb1*ne1;
const uint64_t dstnb3 = dstnb2*ne2;
const uint64_t ne = ggml_nelements(tensor);
if (buf != nullptr) {
// Memory is pinned, use as staging buffer
std::vector<vk::BufferCopy> slices;
for (uint64_t i3 = 0; i3 < ne3; i3++) {
for (uint64_t i2 = 0; i2 < ne2; i2++) {
// Find longest contiguous slice
if (ne1*nb1 == dstnb2) {
slices.push_back({ buf_offset + i3*nb3 + i2*nb2, offset + i3*dstnb3 + i2*dstnb2, dstnb2 });
} else {
for (uint64_t i1 = 0; i1 < ne1; i1++) {
if (ne0*nb0/bs == dstnb1) {
slices.push_back({ buf_offset + i3*nb3 + i2*nb2 + i1*nb1, offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, dstnb1 });
} else {
const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1;
const uint64_t d_off = offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1;
for (uint64_t i0 = 0; i0 < ne0; i0++) {
slices.push_back({ s_off + i1*nb0, d_off + i0*dstnb0, dstnb0 });
}
}
}
}
}
}
ggml_vk_sync_buffers(subctx);
subctx->s->buffer.copyBuffer(buf->buffer, dst->buffer, slices);
return;
}
if (!sync_staging) {
GGML_ABORT("Asynchronous write to non-pinned memory not supported");
}
// Staging buffer required
vk_buffer& staging = ctx->device->sync_staging;
const uint64_t copy_size = ts*ne/bs;
ggml_vk_ensure_sync_staging_buffer(ctx->device, copy_size);
VkBufferCopy buf_copy{ 0, offset, copy_size };
ggml_vk_sync_buffers(subctx);
vkCmdCopyBuffer(subctx->s->buffer, (VkBuffer)staging->buffer, (VkBuffer)dst->buffer, 1, &buf_copy);
for (uint64_t i3 = 0; i3 < ne3; i3++) {
for (uint64_t i2 = 0; i2 < ne2; i2++) {
// Find longest contiguous slice
if (ne1*nb1 == dstnb2) {
deferred_memcpy((uint8_t *)staging->ptr + i3*dstnb3 + i2*dstnb2, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2, dstnb2, &subctx->in_memcpys);
} else {
for (uint64_t i1 = 0; i1 < ne1; i1++) {
if (ne0*nb0/bs == dstnb1) {
deferred_memcpy((uint8_t *)staging->ptr + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2 + i1*nb1, dstnb1, &subctx->in_memcpys);
} else {
const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1;
const uint64_t d_off = i3*dstnb3 + i2*dstnb2 + i1*dstnb1;
for (uint64_t i0 = 0; i0 < ne0; i0++) {
deferred_memcpy((uint8_t *)staging->ptr + d_off + i0*dstnb0, (const uint8_t *) tensor->data + s_off + i0*nb0, dstnb0, &subctx->in_memcpys);
}
}
}
}
}
}
}
static void ggml_vk_buffer_write_2d_async(vk_context subctx, vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height, bool sync_staging = false) {
VK_LOG_DEBUG("ggml_vk_buffer_write_2d_async(" << width << ", " << height << ")");
// Buffer is already mapped
if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
std::cerr << "ggml_vulkan: buffer_write_async dst buffer is host_visible. Use synchronous write." << std::endl;
GGML_ABORT("fatal error");
}
// Check if src is pinned memory
vk_buffer buf = nullptr;
size_t buf_offset = 0;
ggml_vk_host_get(dst->device, src, buf, buf_offset);
if (buf != nullptr) {
// Memory is pinned, use as staging buffer
std::vector<vk::BufferCopy> slices(1);
if (width == spitch) {
// Only do single write if stride is equal
slices[0].srcOffset = buf_offset;
slices[0].dstOffset = offset;
slices[0].size = width * height;
} else {
slices.resize(height);
for (size_t i = 0; i < height; i++) {
slices[i].srcOffset = buf_offset + i * spitch;
slices[i].dstOffset = offset + i * width;
slices[i].size = width;
}
}
ggml_vk_sync_buffers(subctx);
subctx->s->buffer.copyBuffer(buf->buffer, dst->buffer, slices);
return;
}
VK_LOG_DEBUG("STAGING");
if (!sync_staging) {
GGML_ABORT("Asynchronous write to non-pinned memory not supported");
}
// Staging buffer required
const size_t copy_size = width*height;
ggml_vk_ensure_sync_staging_buffer(dst->device, copy_size);
vk_buffer& staging_buffer = dst->device->sync_staging;
VkBufferCopy buf_copy = {
0,
offset,
copy_size};
ggml_vk_sync_buffers(subctx);
vkCmdCopyBuffer(subctx->s->buffer, (VkBuffer)staging_buffer->buffer, (VkBuffer)dst->buffer, 1, &buf_copy);
if (width == spitch) {
deferred_memcpy((uint8_t *)staging_buffer->ptr, src, width * height, &subctx->in_memcpys);
} else {
for (size_t i = 0; i < height; i++) {
deferred_memcpy((uint8_t *)staging_buffer->ptr + i * width, (const uint8_t *) src + i * spitch, width, &subctx->in_memcpys);
}
}
}
static void ggml_vk_buffer_write_async(vk_context subctx, vk_buffer& dst, size_t offset, const void * src, size_t size, bool sync_staging = false) {
VK_LOG_DEBUG("ggml_vk_buffer_write_async(" << size << ")");
return ggml_vk_buffer_write_2d_async(subctx, dst, offset, src, size, size, 1, sync_staging);
}
static void ggml_vk_buffer_write_2d(vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height) {
VK_LOG_DEBUG("ggml_vk_buffer_write_2d(" << width << ", " << height << ")");
// Buffer is already mapped
if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
GGML_ASSERT(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent);
for (size_t i = 0; i < height; i++) {
memcpy((uint8_t *)dst->ptr + offset + i * width, (const uint8_t *) src + i * spitch, width);
}
} else {
vk_context subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue);
ggml_vk_ctx_begin(dst->device, subctx);
ggml_vk_buffer_write_2d_async(subctx, dst, offset, src, spitch, width, height, true);
ggml_vk_ctx_end(subctx);
for (auto& cpy : subctx->in_memcpys) {
memcpy(cpy.dst, cpy.src, cpy.n);
}
ggml_vk_submit(subctx, dst->device->fence);
VK_CHECK(dst->device->device.waitForFences({ dst->device->fence }, true, UINT64_MAX), "vk_buffer_write_2d waitForFences");
dst->device->device.resetFences({ dst->device->fence });
}
}
static void ggml_vk_buffer_write(vk_buffer& dst, size_t offset, const void * src, size_t size) {
VK_LOG_DEBUG("ggml_vk_buffer_write(" << size << ")");
ggml_vk_buffer_write_2d(dst, offset, src, 0, size, 1);
}
static void ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t spitch, size_t dpitch, size_t width, size_t height, bool sync_staging = false) {
VK_LOG_DEBUG("ggml_vk_buffer_read_2d_async(offset=" << offset << ", width=" << width << ", height=" << height << ")");
GGML_ASSERT(width > 0);
GGML_ASSERT(height > 0);
GGML_ASSERT(src != nullptr);
// TODO: staging_offset is not used
// Check if dst is pinned memory
vk_buffer buf = nullptr;
size_t buf_offset = 0;
ggml_vk_host_get(src->device, dst, buf, buf_offset);
std::vector<vk::BufferCopy> slices(1);
if (width == spitch && width == dpitch) {
// Only do single write if stride is equal
slices[0].srcOffset = offset;
slices[0].dstOffset = buf_offset;
slices[0].size = width * height;
} else {
slices.resize(height);
for (size_t i = 0; i < height; i++) {
slices[i].srcOffset = offset + i * spitch;
slices[i].dstOffset = buf_offset + i * dpitch;
slices[i].size = width;
}
}
if (buf != nullptr) {
// Memory is pinned, use as staging buffer
ggml_vk_sync_buffers(subctx);
subctx->s->buffer.copyBuffer(src->buffer, buf->buffer, slices);
return;
}
VK_LOG_DEBUG("STAGING");
if (!sync_staging) {
GGML_ABORT("Asynchronous read from non-pinned memory not supported");
}
// Fall back to staging buffer
const size_t copy_size = dpitch * height;
ggml_vk_ensure_sync_staging_buffer(src->device, copy_size);
vk_buffer& staging_buffer = src->device->sync_staging;
ggml_vk_sync_buffers(subctx);
subctx->s->buffer.copyBuffer(src->buffer, staging_buffer->buffer, slices);
deferred_memcpy(dst, staging_buffer->ptr, copy_size, &subctx->out_memcpys);
}
static void ggml_vk_buffer_read_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t size, bool sync_staging = false) {
return ggml_vk_buffer_read_2d_async(subctx, src, offset, dst, size, size, size, 1, sync_staging);
}
static void ggml_vk_buffer_read(vk_buffer& src, size_t offset, void * dst, size_t size) {
VK_LOG_DEBUG("ggml_vk_buffer_read(" << src->buffer << ", " << offset << ", " << size << ")");
// If the device is not an UMA device the memory is host-accessible through rebar. While writing
// through PCIe is sufficient fast reading back data from PCIe is slower than going through
// the HW device to host copy path.
if(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible && src->device->uma) {
GGML_ASSERT(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent);
memcpy(dst, (uint8_t *) src->ptr + offset, size);
} else {
vk_context subctx = ggml_vk_create_temporary_context(src->device->transfer_queue);
ggml_vk_ctx_begin(src->device, subctx);
ggml_vk_buffer_read_async(subctx, src, offset, dst, size, true);
ggml_vk_ctx_end(subctx);
ggml_vk_submit(subctx, src->device->fence);
VK_CHECK(src->device->device.waitForFences({ src->device->fence }, true, UINT64_MAX), "vk_buffer_read waitForFences");
src->device->device.resetFences({ src->device->fence });
for (auto& cpy : subctx->out_memcpys) {
memcpy(cpy.dst, cpy.src, cpy.n);
}
}
}
static void ggml_vk_buffer_copy_async(vk_context& ctx, vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) {
VK_LOG_DEBUG("ggml_vk_buffer_copy_async(" << size << ")");
// Make sure both buffers are on same device
GGML_ASSERT(src->device == dst->device);
VkBufferCopy bc{ src_offset, dst_offset, size };
vkCmdCopyBuffer(ctx->s->buffer, (VkBuffer)src->buffer, (VkBuffer)dst->buffer, 1, &bc);
}
static void ggml_vk_buffer_copy(vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) {
if (src->device == dst->device) {
VK_LOG_DEBUG("ggml_vk_buffer_copy(SINGLE_DEVICE, " << size << ")");
// Copy within the device
vk_context subctx = ggml_vk_create_temporary_context(src->device->transfer_queue);
ggml_vk_ctx_begin(src->device, subctx);
ggml_vk_buffer_copy_async(subctx, dst, dst_offset, src, src_offset, size);
ggml_vk_ctx_end(subctx);
ggml_vk_submit(subctx, src->device->fence);
VK_CHECK(src->device->device.waitForFences({ src->device->fence }, true, UINT64_MAX), "vk_buffer_copy waitForFences");
src->device->device.resetFences({ src->device->fence });
} else {
VK_LOG_DEBUG("ggml_vk_buffer_copy(MULTI_DEVICE, " << size << ")");
// Copy device to device
ggml_vk_ensure_sync_staging_buffer(src->device, size);
ggml_vk_ensure_sync_staging_buffer(dst->device, size);
// Copy to src staging buffer
ggml_vk_buffer_copy(src->device->sync_staging, 0, src, src_offset, size);
// memcpy to dst staging buffer
memcpy(dst->device->sync_staging->ptr, src->device->sync_staging->ptr, size);
// Copy to dst buffer
ggml_vk_buffer_copy(dst, dst_offset, dst->device->sync_staging, 0, size);
}
}
static void ggml_vk_buffer_memset_async(vk_context& ctx, vk_buffer& dst, size_t offset, uint32_t c, size_t size) {
VK_LOG_DEBUG("ggml_vk_buffer_memset_async(" << offset << ", " << c << ", " << size << ")");
ctx->s->buffer.fillBuffer(dst->buffer, offset, size, c);
}
static void ggml_vk_buffer_memset(vk_buffer& dst, size_t offset, uint32_t c, size_t size) {
VK_LOG_DEBUG("ggml_vk_buffer_memset(" << offset << ", " << c << ", " << size << ")");
vk_context subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue);
ggml_vk_ctx_begin(dst->device, subctx);
subctx->s->buffer.fillBuffer(dst->buffer, offset, size, c);
ggml_vk_ctx_end(subctx);
ggml_vk_submit(subctx, dst->device->fence);
VK_CHECK(dst->device->device.waitForFences({ dst->device->fence }, true, UINT64_MAX), "vk_memset waitForFences");
dst->device->device.resetFences({ dst->device->fence });
}
static uint32_t ggml_vk_guess_split_k(ggml_backend_vk_context * ctx, int m, int n, int k, const vk_pipeline& pipeline) {
VK_LOG_DEBUG("ggml_vk_guess_split_k(" << m << ", " << n << ", " << k << ")");
uint32_t split_k = 1;
if (ctx->device->shader_core_count != 0 && m >= (int)pipeline->wg_denoms[0] && n >= (int)pipeline->wg_denoms[1]) {
// If k is 'large' and the SMs will fill less than halfway, use split_k.
uint32_t m_tiles = CEIL_DIV(m, pipeline->wg_denoms[0]);
uint32_t n_tiles = CEIL_DIV(n, pipeline->wg_denoms[1]);
if (k >= 2048 && m_tiles * n_tiles < ctx->device->shader_core_count / 2) {
split_k = ctx->device->shader_core_count / (m_tiles * n_tiles);
// Clamp to 2 or 4
split_k = std::min(split_k, 4u);
if (split_k == 3) {
split_k = 2;
}
if (ctx->device->coopmat2) {
// coopmat2 shader expects splits to be aligned to 256
while (split_k > 1 && ((k / split_k) % 256) != 0) {
split_k /= 2;
}
}
}
}
return split_k;
}
static vk_pipeline ggml_vk_guess_matmul_pipeline(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, uint32_t m, uint32_t n, bool aligned, ggml_type src0_type, ggml_type src1_type) {
VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline(" << m << ", " << n << ", " << aligned << ", " << ggml_type_name(src0_type) << ", " << ggml_type_name(src1_type) << ")");
if (ctx->device->coopmat2) {
// Use large shader when the N dimension is greater than the medium shader's tile size
uint32_t crossover_large = mmp->m->wg_denoms[1];
if ((ctx->device->mul_mat_l[src0_type] && (n > crossover_large)) || (!ctx->device->mul_mat_m[src0_type] && !ctx->device->mul_mat_s[src0_type])) {
return aligned ? mmp->a_l : mmp->l;
}
// Use medium shader when the N dimension is greater than the small shader's tile size
uint32_t crossover_medium = mmp->s->wg_denoms[1];
if ((ctx->device->mul_mat_m[src0_type] && (n > crossover_medium)) || !ctx->device->mul_mat_s[src0_type]) {
return aligned ? mmp->a_m : mmp->m;
}
return aligned ? mmp->a_s : mmp->s;
}
if ((ctx->device->mul_mat_s[src0_type] && (m <= 32 || n <= 32)) || (!ctx->device->mul_mat_m[src0_type] && !ctx->device->mul_mat_l[src0_type])) {
return aligned ? mmp->a_s : mmp->s;
}
if ((ctx->device->mul_mat_m[src0_type] && (m <= 64 || n <= 64)) || !ctx->device->mul_mat_l[src0_type]) {
return aligned ? mmp->a_m : mmp->m;
}
return aligned ? mmp->a_l : mmp->l;
}
static uint32_t ggml_vk_guess_matmul_pipeline_align(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, int m, int n, ggml_type src0_type, ggml_type src1_type) {
VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline_align(" << m << ", " << n << ", " << ggml_type_name(src0_type) << ", " << ggml_type_name(src1_type) << ")");
return ggml_vk_guess_matmul_pipeline(ctx, mmp, m, n, true, src0_type, src1_type)->align;
}
static void ggml_vk_matmul(
ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline& pipeline,
vk_subbuffer&& a, vk_subbuffer&& b, vk_subbuffer&& d, vk_subbuffer&& split_k_buffer,
uint32_t m, uint32_t n, uint32_t k, uint32_t stride_a, uint32_t stride_b, uint32_t stride_d,
uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d,
uint32_t split_k, uint32_t batch, uint32_t ne02, uint32_t ne12, uint32_t broadcast2, uint32_t broadcast3,
uint32_t padded_n) {
VK_LOG_DEBUG("ggml_vk_matmul(a: (" << a.buffer->buffer << ", " << a.offset << ", " << a.size << "), b: (" << b.buffer->buffer << ", " << b.offset << ", " << b.size << "), d: (" << d.buffer->buffer << ", " << d.offset << ", " << d.size << "), split_k: (" << (split_k_buffer.buffer != nullptr ? split_k_buffer.buffer->buffer : VK_NULL_HANDLE) << ", " << split_k_buffer.offset << ", " << split_k_buffer.size << "), m: " << m << ", n: " << n << ", k: " << k << ", stride_a: " << stride_a << ", stride_b: " << stride_b << ", stride_d: " << stride_d << ", batch_stride_a: " << batch_stride_a << ", batch_stride_b: " << batch_stride_b << ", batch_stride_d: " << batch_stride_d << ", split_k: " << split_k << ", batch: " << batch << ", ne02: " << ne02 << ", ne12: " << ne12 << ", broadcast2: " << broadcast2 << ", broadcast3: " << broadcast3 << ", padded_n: " << padded_n << ")");
ggml_vk_sync_buffers(subctx);
if (split_k == 1) {
const vk_mat_mat_push_constants pc = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, k, ne02, ne12, broadcast2, broadcast3, padded_n };
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d }, sizeof(vk_mat_mat_push_constants), &pc, { m, n, batch });
return;
}
GGML_ASSERT(batch_stride_d == m * n);
const vk_mat_mat_push_constants pc1 = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, CEIL_DIV(k, split_k), ne02, ne12, broadcast2, broadcast3, padded_n };
// Make sure enough workgroups get assigned for split k to work
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, split_k_buffer }, sizeof(vk_mat_mat_push_constants), &pc1, { (CEIL_DIV(m, pipeline->wg_denoms[0]) * pipeline->wg_denoms[0]) * split_k, n, batch });
ggml_vk_sync_buffers(subctx);
const std::array<uint32_t, 2> pc2 = { (uint32_t)(m * n * batch), split_k };
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_matmul_split_k_reduce, { split_k_buffer, d }, pc2.size() * sizeof(uint32_t), pc2.data(), { m * n * batch, 1, 1 });
}
static vk_pipeline ggml_vk_guess_matmul_id_pipeline(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, uint32_t m, uint32_t n, bool aligned, ggml_type src0_type) {
VK_LOG_DEBUG("ggml_vk_guess_matmul_id_pipeline(" << m << ", " << n << ", " << aligned << ", " << ggml_type_name(src0_type) << ")");
if (ctx->device->coopmat2) {
// Use large shader when the N dimension is greater than the medium shader's tile size
uint32_t crossover_large = mmp->m->wg_denoms[1];
if ((ctx->device->mul_mat_id_l[src0_type] && (n > crossover_large)) || (!ctx->device->mul_mat_id_m[src0_type] && !ctx->device->mul_mat_id_s[src0_type])) {
return aligned ? mmp->a_l : mmp->l;
}
// Use medium shader when the N dimension is greater than the small shader's tile size
uint32_t crossover_medium = mmp->s->wg_denoms[1];
if ((ctx->device->mul_mat_id_m[src0_type] && (n > crossover_medium)) || !ctx->device->mul_mat_id_s[src0_type]) {
return aligned ? mmp->a_m : mmp->m;
}
return aligned ? mmp->a_s : mmp->s;
}
if ((ctx->device->mul_mat_id_s[src0_type] && (m <= 32 || n <= 32)) || (!ctx->device->mul_mat_id_m[src0_type] && !ctx->device->mul_mat_id_l[src0_type])) {
return aligned ? mmp->a_s : mmp->s;
}
if ((ctx->device->mul_mat_id_m[src0_type] && (m <= 64 || n <= 64)) || !ctx->device->mul_mat_id_l[src0_type]) {
return aligned ? mmp->a_m : mmp->m;
}
return aligned ? mmp->a_l : mmp->l;
}
static uint32_t ggml_vk_guess_matmul_id_pipeline_align(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, int m, int n, ggml_type src0_type) {
VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline_align(" << m << ", " << n << ", " << ggml_type_name(src0_type) << ")");
return ggml_vk_guess_matmul_id_pipeline(ctx, mmp, m, n, true, src0_type)->align;
}
static void ggml_vk_matmul_id(
ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline& pipeline,
vk_subbuffer&& a, vk_subbuffer&& b, vk_subbuffer&& d, vk_subbuffer&& ids,
uint32_t m, uint32_t n, uint32_t k, uint32_t stride_a, uint32_t stride_b, uint32_t stride_d,
uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d,
uint32_t n_as, uint32_t nei0, uint32_t nei1, uint32_t nbi1, uint32_t ne11,
uint32_t padded_n) {
VK_LOG_DEBUG("ggml_vk_matmul_id(a: (" << a.buffer->buffer << ", " << a.offset << ", " << a.size << "), b: (" << b.buffer->buffer << ", " << b.offset << ", " << b.size << "), d: (" << d.buffer->buffer << ", " << d.offset << ", " << d.size << "), ids: (" << ids.buffer->buffer << ", " << ids.offset << ", " << ids.size << "), " <<
"m: " << m << ", n: " << n << ", k: " << k << ", stride_a: " << stride_a << ", stride_b: " << stride_b << ", stride_d: " << stride_d << ", " <<
"batch_stride_a: " << batch_stride_a << ", batch_stride_b: " << batch_stride_b << ", batch_stride_d: " << batch_stride_d << ", " <<
"n_as: " << n_as << ", nei0: " << nei0 << ", nei1: " << nei1 << ", nbi1: " << nbi1 << ", ne11: " << ne11 << ")");
ggml_vk_sync_buffers(subctx);
const vk_mat_mat_id_push_constants pc = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d,
nei0, nei1, nbi1, ne11, padded_n };
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d, ids }, sizeof(vk_mat_mat_id_push_constants), &pc, { m, nei1, n_as });
}
static bool ggml_vk_dim01_contiguous(const ggml_tensor * tensor) {
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src, const ggml_tensor * dst, ggml_type to) {
// Choose "contiguous copy" shader if src/dst are contiguous
bool contig = ggml_is_contiguous(src) && (!dst || ggml_is_contiguous(dst));
if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_F32) {
if (contig) {
return ctx->device->pipeline_contig_cpy_f32_f32;
} else {
return ctx->device->pipeline_cpy_f32_f32;
}
}
if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_F16) {
if (contig) {
return ctx->device->pipeline_contig_cpy_f32_f16;
} else {
return ctx->device->pipeline_cpy_f32_f16;
}
}
if (src->type == GGML_TYPE_F16 && to == GGML_TYPE_F16) {
if (contig) {
return ctx->device->pipeline_contig_cpy_f16_f16;
} else {
return ctx->device->pipeline_cpy_f16_f16;
}
}
if (src->type == GGML_TYPE_F32) {
switch (to) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_IQ4_NL:
return ctx->device->pipeline_cpy_f32_quant[to];
default:
break;
}
}
if (to == GGML_TYPE_F32) {
switch (src->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_IQ4_NL:
return ctx->device->pipeline_cpy_quant_f32[src->type];
default:
break;
}
}
std::cerr << "Missing CPY op for types: " << ggml_type_name(src->type) << " " << ggml_type_name(to) << std::endl;
GGML_ABORT("fatal error");
}
static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline pipeline, const ggml_tensor * tensor, vk_subbuffer&& in, vk_subbuffer&& out) {
VK_LOG_DEBUG("ggml_vk_cpy_to_contiguous((" << tensor << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << "), ";
std::cerr << "buffer in size=" << in.buffer->size << ", buffer out size=" << out.buffer->size << ")");
const int tensor_type_size = ggml_type_size(tensor->type);
const uint32_t ne = ggml_nelements(tensor);
std::array<uint32_t, 3> elements;
if (ne > 262144) {
elements = { 512, 512, CEIL_DIV(ne, 262144) };
} else if (ne > 512) {
elements = { 512, CEIL_DIV(ne, 512), 1 };
} else {
elements = { ne, 1, 1 };
}
vk_op_unary_push_constants pc = {
(uint32_t)ne,
(uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], (uint32_t)tensor->ne[2], (uint32_t)tensor->ne[3], (uint32_t)tensor->nb[0] / tensor_type_size, (uint32_t)tensor->nb[1] / tensor_type_size, (uint32_t)tensor->nb[2] / tensor_type_size, (uint32_t)tensor->nb[3] / tensor_type_size,
(uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], (uint32_t)tensor->ne[2], (uint32_t)tensor->ne[3], 1 , (uint32_t)tensor->ne[0] , (uint32_t)(tensor->ne[0] * tensor->ne[1]) , (uint32_t)(tensor->ne[0] * tensor->ne[1] * tensor->ne[2]),
0,
0.0f, 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
init_pushconst_fastdiv(pc);
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, sizeof(vk_op_unary_push_constants), &pc, elements);
}
static vk_pipeline ggml_vk_get_quantize_pipeline(ggml_backend_vk_context * ctx, ggml_type type) {
switch(type) {
case GGML_TYPE_Q8_1:
return ctx->device->pipeline_quantize_q8_1;
default:
std::cerr << "Missing quantize pipeline for type: " << ggml_type_name(type) << std::endl;
GGML_ABORT("fatal error");
}
}
static void ggml_vk_quantize_q8_1(ggml_backend_vk_context * ctx, vk_context& subctx, vk_subbuffer&& in, vk_subbuffer&& out, uint32_t ne) {
VK_LOG_DEBUG("ggml_vk_quantize_q8_1(" << "buffer in size=" << in.buffer->size << ", buffer out size=" << out.buffer->size << ", " << ne << ")");
vk_pipeline pipeline = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1);
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, sizeof(uint32_t), &ne, { ne, 1, 1 });
}
static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
VK_LOG_DEBUG("ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
std::cerr << "), " << (dryrun ? "dryrun" : "") << ")");
GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT
GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
const uint64_t ne00 = src0->ne[0];
const uint64_t ne01 = src0->ne[1];
const uint64_t ne02 = src0->ne[2];
const uint64_t ne03 = src0->ne[3];
const uint64_t ne10 = src1->ne[0];
const uint64_t ne11 = src1->ne[1];
const uint64_t ne12 = src1->ne[2];
const uint64_t ne13 = src1->ne[3];
const uint64_t ne20 = dst->ne[0];
const uint64_t ne21 = dst->ne[1];
const uint64_t r2 = ne12 / ne02;
const uint64_t r3 = ne13 / ne03;
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
vk_buffer d_Qx = nullptr;
size_t qx_buf_offset = 0;
vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0;
bool src0_uma = false;
bool src1_uma = false;
if (ctx->device->uma) {
ggml_vk_host_get(ctx->device, src0->data, d_Qx, qx_buf_offset);
ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset);
src0_uma = d_Qx != nullptr;
src1_uma = d_Qy != nullptr;
}
// Reformat and convert to fp16 if non-contiguous, or for coopmat2 for better perf
const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src1);
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
bool quantize_y = ctx->device->integer_dot_product && src1->type == GGML_TYPE_F32 && ggml_is_contiguous(src1) && (ne11 * ne10) % 4 == 0;
// Check for mmq first
vk_matmul_pipeline mmp = quantize_y ? ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, GGML_TYPE_Q8_1, (ggml_prec)dst->op_params[0]) : nullptr;
if (mmp == nullptr) {
// Fall back to f16 dequant mul mat
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]);
quantize_y = false;
}
const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
const bool qy_needs_dequant = !quantize_y && ((src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig);
if (qx_needs_dequant) {
// Fall back to dequant + f16 mulmat
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, GGML_TYPE_F16, y_f32_kernel ? GGML_TYPE_F32 : GGML_TYPE_F16, (ggml_prec)dst->op_params[0]);
}
// Not implemented
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
const uint32_t kpad = quantize_y ? 0 : ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, mmp, ne01, ne11, qx_needs_dequant ? GGML_TYPE_F16 : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type)));
const bool aligned = !quantize_y && ne10 == kpad && ne01 > 8 && ne11 > 8;
vk_pipeline pipeline = ggml_vk_guess_matmul_pipeline(ctx, mmp, ne01, ne11, aligned, qx_needs_dequant ? GGML_TYPE_F16 : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type));
// Reserve extra storage in the N dimension for the Y matrix, so we can avoid bounds-checking
uint32_t padded_n = qy_needs_dequant ? ROUNDUP_POW2(ne11, pipeline->wg_denoms[1]) : ne11;
const int x_ne = ne01 * ne00;
const int y_ne = padded_n * ne10;
const int d_ne = ne11 * ne01;
const uint32_t split_k = ggml_vk_guess_split_k(ctx, ne01, ne11, ne10, pipeline);
const uint64_t qx_sz = ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type);
const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
const uint64_t x_sz = !qx_needs_dequant ? qx_sz : sizeof(ggml_fp16_t) * x_ne;
const uint64_t y_sz = quantize_y ? (y_ne * ggml_type_size(GGML_TYPE_Q8_1) / ggml_blck_size(GGML_TYPE_Q8_1)) : (y_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne);
const uint64_t d_sz = sizeof(float) * d_ne;
vk_pipeline to_fp16_vk_0 = nullptr;
vk_pipeline to_fp16_vk_1 = nullptr;
vk_pipeline to_q8_1 = nullptr;
if (x_non_contig) {
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
} else {
to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
}
if (y_non_contig) {
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16);
} else {
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
}
GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
if (quantize_y) {
to_q8_1 = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1);
}
if (dryrun) {
const uint64_t x_sz_upd = x_sz * ne02 * ne03;
const uint64_t y_sz_upd = y_sz * ne12 * ne13;
const uint64_t split_k_size = split_k > 1 ? d_sz * ne12 * ne13 * split_k : 0;
if (
(qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) ||
(qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size) ||
(split_k > 1 && split_k_size > ctx->device->max_memory_allocation_size)) {
GGML_ABORT("Requested preallocation size is too large");
}
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
ctx->prealloc_size_x = x_sz_upd;
}
if ((qy_needs_dequant || quantize_y) && ctx->prealloc_size_y < y_sz_upd) {
ctx->prealloc_size_y = y_sz_upd;
}
if (split_k > 1 && ctx->prealloc_size_split_k < split_k_size) {
ctx->prealloc_size_split_k = split_k_size;
}
// Request descriptor sets
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
if (qx_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1);
}
if (qy_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1);
}
if (quantize_y) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_q8_1, 1);
}
if (split_k > 1) {
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, 1);
}
return;
}
vk_buffer d_D = dst_buf_ctx->dev_buffer;
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
GGML_ASSERT(d_D != nullptr);
GGML_ASSERT(d_D->size >= d_buf_offset + d_sz * ne02 * ne03);
vk_buffer d_X;
uint64_t x_buf_offset = 0;
vk_buffer d_Y;
uint64_t y_buf_offset = 0;
if (!src0_uma) {
d_Qx = src0_buf_ctx->dev_buffer;
qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
GGML_ASSERT(d_Qx != nullptr);
}
if (!src1_uma) {
d_Qy = src1_buf_ctx->dev_buffer;
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
GGML_ASSERT(d_Qy != nullptr);
}
if (qx_needs_dequant) {
d_X = ctx->prealloc_x;
GGML_ASSERT(d_X->size >= x_sz * ne02 * ne03);
} else {
d_X = d_Qx;
x_buf_offset = qx_buf_offset;
GGML_ASSERT(qx_sz == x_sz);
}
if (qy_needs_dequant) {
d_Y = ctx->prealloc_y;
GGML_ASSERT(d_Y->size >= y_sz * ne12 * ne13);
} else if (quantize_y) {
d_Y = ctx->prealloc_y;
GGML_ASSERT(d_Y->size >= y_ne * ggml_type_size(GGML_TYPE_Q8_1) / ggml_blck_size(GGML_TYPE_Q8_1));
} else {
d_Y = d_Qy;
y_buf_offset = qy_buf_offset;
GGML_ASSERT(qy_sz == y_sz);
}
if (x_non_contig) {
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE });
} else if (qx_needs_dequant) {
const std::vector<uint32_t> pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) };
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
}
if (y_non_contig) {
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
}
if (quantize_y) {
ggml_vk_quantize_q8_1(ctx, subctx, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, y_ne * ne12 * ne13);
}
uint32_t stride_batch_x = ne00*ne01;
uint32_t stride_batch_y = ne10*ne11;
if (!ggml_vk_dim01_contiguous(src0) && !qx_needs_dequant) {
stride_batch_x = src0->nb[0] / ggml_type_size(src0->type);
}
if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant && !quantize_y) {
stride_batch_y = src1->nb[0] / ggml_type_size(src1->type);
}
// compute
ggml_vk_matmul(
ctx, subctx, pipeline,
{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 },
{ d_D, d_buf_offset, d_sz * ne12 * ne13 }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k },
ne01, ne11, ne10,
ne10, ne10, ne01, stride_batch_x, stride_batch_y, ne20*ne21,
split_k, ne12*ne13, ne02, ne12, r2, r3, padded_n
); // NOLINT
}
static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
VK_LOG_DEBUG("ggml_vk_mul_mat_vec_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
std::cerr << "), " << (dryrun ? "dryrun" : "") << "),)");
GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT
GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
const uint64_t ne00 = src0->ne[0];
const uint64_t ne01 = src0->ne[1];
const uint64_t ne02 = src0->ne[2];
const uint64_t ne03 = src0->ne[3];
const uint64_t ne10 = src1->ne[0];
const uint64_t ne11 = src1->ne[1];
const uint64_t ne12 = src1->ne[2];
const uint64_t ne13 = src1->ne[3];
const uint64_t ne20 = dst->ne[0];
const uint64_t ne21 = dst->ne[1];
const uint64_t ne22 = dst->ne[2];
const uint64_t ne23 = dst->ne[3];
const uint64_t r2 = ne12 / ne02;
const uint64_t r3 = ne13 / ne03;
// batch_n indicates that we need to compute a few vector results, and this assumes
// ne12 and ne13 are 1. It overloads the batch_strides to hold the row strides.
GGML_ASSERT(ne11 == 1 || ne12 * ne13 == 1);
bool batch_n = ne11 > 1;
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
vk_buffer d_Qx = nullptr;
size_t qx_buf_offset = 0;
vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0;
bool src0_uma = false;
bool src1_uma = false;
if (ctx->device->uma) {
ggml_vk_host_get(ctx->device, src0->data, d_Qx, qx_buf_offset);
ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset);
src0_uma = d_Qx != nullptr;
src1_uma = d_Qy != nullptr;
}
const bool x_non_contig = !ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = !ggml_vk_dim01_contiguous(src1);
const bool f16_f32_kernel = src1->type == GGML_TYPE_F32;
const bool qx_needs_dequant = x_non_contig;
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig;
// Not implemented
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
const uint64_t x_ne = ne01 * ne00;
const uint64_t y_ne = ne11 * ne10;
const uint64_t d_ne = ne11 * ne01;
const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment);
const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : qx_sz;
const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
const uint64_t d_sz = sizeof(float) * d_ne;
vk_pipeline to_fp16_vk_0 = nullptr;
vk_pipeline to_fp16_vk_1 = nullptr;
if (x_non_contig) {
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, src0->type);
}
if (y_non_contig) {
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, src1->type);
} else {
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
}
vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, src1->type, ne11);
GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
GGML_ASSERT(dmmv != nullptr);
if (dryrun) {
const uint64_t x_sz_upd = x_sz * ne02 * ne03;
const uint64_t y_sz_upd = y_sz * ne12 * ne13;
if (
(qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) ||
(qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) {
GGML_ABORT("Requested preallocation size is too large");
}
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
ctx->prealloc_size_x = x_sz_upd;
}
if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) {
ctx->prealloc_size_y = y_sz_upd;
}
// Request descriptor sets
if (qx_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1);
}
if (qy_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1);
}
ggml_pipeline_request_descriptor_sets(ctx->device, dmmv, 1);
return;
}
vk_buffer d_D = dst_buf_ctx->dev_buffer;
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
GGML_ASSERT(d_D != nullptr);
vk_buffer d_X;
uint64_t x_buf_offset = 0;
vk_buffer d_Y;
uint64_t y_buf_offset = 0;
if(!src0_uma) {
d_Qx = src0_buf_ctx->dev_buffer;
qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
GGML_ASSERT(d_Qx != nullptr);
}
if(!src1_uma) {
d_Qy = src1_buf_ctx->dev_buffer;
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
GGML_ASSERT(d_Qy != nullptr);
}
if (qx_needs_dequant) {
d_X = ctx->prealloc_x;
} else {
d_X = d_Qx;
x_buf_offset = qx_buf_offset;
GGML_ASSERT(qx_sz == x_sz);
}
if (qy_needs_dequant) {
d_Y = ctx->prealloc_y;
} else {
d_Y = d_Qy;
y_buf_offset = qy_buf_offset;
GGML_ASSERT(qy_sz == y_sz);
}
if (x_non_contig) {
GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment));
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE });
}
if (y_non_contig) {
GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne);
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
}
// For batch_n, the A matrix is the same for each batch, and B/D use the row stride as the batch stride
uint32_t stride_batch_x = batch_n ? 0 : ne00*ne01;
uint32_t stride_batch_y = batch_n ? ne10 : (ne10*ne11);
uint32_t stride_batch_d = batch_n ? ne20 : (ne20*ne21);
if (!ggml_vk_dim01_contiguous(src0) && !qx_needs_dequant) {
stride_batch_x = src0->nb[0] / ggml_type_size(src0->type);
}
if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant) {
stride_batch_y = src1->nb[0] / ggml_type_size(src1->type);
}
const uint32_t max_groups_x = ctx->device->properties.limits.maxComputeWorkGroupCount[0];
uint32_t groups_x = ne01;
uint32_t groups_z = 1;
if (ne01 > max_groups_x) {
groups_z = 64;
groups_x = CEIL_DIV(groups_x, groups_z);
}
// compute
const vk_mat_vec_push_constants pc = {
(uint32_t)ne00, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne01,
stride_batch_x, stride_batch_y, stride_batch_d,
(uint32_t)ne02, (uint32_t)ne12, (uint32_t)r2, (uint32_t)r3,
};
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, dmmv,
{ vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, vk_subbuffer{ d_Y, y_buf_offset, y_sz * ne12 * ne13 }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23} },
sizeof(vk_mat_vec_push_constants), &pc, { groups_x, (uint32_t)(ne12 * ne13), groups_z });
}
static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
VK_LOG_DEBUG("ggml_vk_mul_mat_p021_f16_f32(" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
std::cerr << "), " << (dryrun ? "dryrun" : "") << ")");
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // NOLINT
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // NOLINT
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
const uint64_t ne00 = src0->ne[0];
const uint64_t ne01 = src0->ne[1];
const uint64_t ne02 = src0->ne[2];
// const uint64_t ne03 = src0->ne[3];
const uint64_t ne10 = src1->ne[0];
const uint64_t ne11 = src1->ne[1];
const uint64_t ne12 = src1->ne[2];
// const uint64_t ne13 = src1->ne[3];
GGML_ASSERT(ne11 == 1);
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0;
bool src1_uma = false;
if (ctx->device->uma) {
ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset);
src1_uma = d_Qy != nullptr;
}
const uint64_t x_ne = ne00 * ne01 * ne02;
const uint64_t y_ne = ne10 * ne11 * ne12;
const uint64_t d_ne = ne01 * ne11 * ne12;
const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment);
const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
const uint64_t d_sz = sizeof(float) * d_ne;
// With grouped query attention there are > 1 Q matrices per K, V matrix.
uint32_t gqa_ratio = (uint32_t)ne12 / (uint32_t)ne02;
if (gqa_ratio > 8 || gqa_ratio == 0 || ne12 != ne02 * gqa_ratio) {
gqa_ratio = 1;
}
if (dryrun) {
// Request descriptor sets
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_mul_mat_vec_p021_f16_f32[gqa_ratio - 1], 1);
return;
}
vk_buffer d_D = dst_buf_ctx->dev_buffer;
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
GGML_ASSERT(d_D != nullptr);
vk_buffer d_Qx = src0_buf_ctx->dev_buffer;
const uint64_t qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
GGML_ASSERT(d_Qx != nullptr);
if (!src1_uma) {
d_Qy = src1_buf_ctx->dev_buffer;
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
GGML_ASSERT(d_Qx != nullptr);
}
const uint64_t qy_buffer_offset = (qy_buf_offset / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment;
const uint64_t qy_shader_offset = qy_buf_offset - qy_buffer_offset;
const uint64_t d_buffer_offset = (d_buf_offset / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment;
const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset;
// compute
const std::array<uint32_t, 6> pc = { (uint32_t)ne00, (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
uint32_t workgroups_z = (uint32_t)ne12;
// When gqa_ratio > 1, each invocation does multiple rows and we can launch fewer workgroups
if (gqa_ratio > 1) {
workgroups_z /= gqa_ratio;
}
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32[gqa_ratio - 1], { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, workgroups_z });
}
static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
VK_LOG_DEBUG("ggml_vk_mul_mat_nc_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
std::cerr << "), " << (dryrun ? "dryrun" : "") << ")");
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(!ggml_is_permuted(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
const uint64_t ne00 = src0->ne[0];
const uint64_t ne01 = src0->ne[1];
const uint64_t ne02 = src0->ne[2];
// const uint64_t ne03 = src0->ne[3];
const uint64_t nb01 = src0->nb[1];
const uint64_t nb02 = src0->nb[2];
// const uint64_t ne10 = src1->ne[0];
const uint64_t ne11 = src1->ne[1];
const uint64_t ne12 = src1->ne[2];
// const uint64_t ne13 = src1->ne[3];
GGML_ASSERT(ne11 == 1);
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0;
bool src1_uma = false;
if (ctx->device->uma) {
ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset);
src1_uma = d_Qy != nullptr;
}
const uint64_t d_ne = ne01 * ne11 * ne12;
const uint32_t row_stride_x = nb01 / sizeof(ggml_fp16_t);
const uint32_t channel_stride_x = nb02 / sizeof(ggml_fp16_t);
const uint64_t qx_sz = ggml_nbytes(src0);
const uint64_t qy_sz = ggml_nbytes(src1);
const uint64_t d_sz = sizeof(float) * d_ne;
if (dryrun) {
// Request descriptor sets
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, 1);
return;
}
vk_buffer d_D = dst_buf_ctx->dev_buffer;
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
GGML_ASSERT(d_D != nullptr);
vk_buffer d_Qx = src0_buf_ctx->dev_buffer;
const uint64_t qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
GGML_ASSERT(d_Qx != nullptr);
if (!src1_uma) {
d_Qy = src1_buf_ctx->dev_buffer;
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
GGML_ASSERT(d_Qx != nullptr);
}
const uint64_t qy_buffer_offset = (qy_buf_offset / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment;
const uint64_t qy_shader_offset = qy_buf_offset - qy_buffer_offset;
const uint64_t d_buffer_offset = (d_buf_offset / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment;
const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset;
// compute
const std::array<uint32_t, 7> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32,
{ vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
}
static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
VK_LOG_DEBUG("ggml_vk_mul_mat(" << src0 << ", " << src1 << ", " << dst << ")");
if (src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && dst->ne[1] == 1 &&
// detect 0213 permutation, and batch size of 1
src0->nb[0] <= src0->nb[2] &&
src0->nb[2] <= src0->nb[1] &&
src0->nb[1] <= src0->nb[3] &&
src1->nb[0] <= src1->nb[2] &&
src1->nb[2] <= src1->nb[1] &&
src1->nb[1] <= src1->nb[3] &&
src0->ne[3] == 1 &&
src1->ne[3] == 1) {
ggml_vk_mul_mat_vec_p021_f16_f32(ctx, subctx, src0, src1, dst, dryrun);
} else if (src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && dst->ne[1] == 1 &&
!ggml_is_permuted(src0) && !ggml_is_permuted(src1)) {
ggml_vk_mul_mat_vec_nc_f16_f32(ctx, subctx, src0, src1, dst, dryrun);
// mul_mat_vec supports batching ne12*ne13 when ne11==1, or treating ne11 as the batch size (up to four)
// when ne12 and ne13 are one.
} else if ((dst->ne[1] == 1 || (dst->ne[1] <= mul_mat_vec_max_cols && src1->ne[2] * src1->ne[3] == 1)) &&
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) {
ggml_vk_mul_mat_vec_q_f16(ctx, subctx, src0, src1, dst, dryrun);
} else {
ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst, dryrun);
}
}
static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst, bool dryrun = false) {
VK_LOG_DEBUG("ggml_vk_mul_mat_id_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
std::cerr << "), (" << ids << ", name=" << ids->name << ", type=" << ids->type << ", ne0=" << ids->ne[0] << ", ne1=" << ids->ne[1] << ", ne2=" << ids->ne[2] << ", ne3=" << ids->ne[3] << ", nb0=" << ids->nb[0] << ", nb1=" << ids->nb[1] << ", nb2=" << ids->nb[2] << ", nb3=" << ids->nb[3];
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)");
GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
GGML_ASSERT(ids->type == GGML_TYPE_I32);
const uint64_t ne00 = src0->ne[0];
const uint64_t ne01 = src0->ne[1];
const uint64_t ne02 = src0->ne[2];
const uint64_t ne03 = src0->ne[3];
const uint64_t ne10 = src1->ne[0];
const uint64_t ne11 = src1->ne[1];
const uint64_t ne12 = src1->ne[2];
const uint64_t ne13 = src1->ne[3];
const uint64_t nei0 = ids->ne[0];
const uint64_t nei1 = ids->ne[1];
GGML_ASSERT(nei0 * nei1 <= 3072);
const uint32_t nbi1 = ids->nb[1];
const uint32_t nbi2 = ids->nb[2];
const uint64_t ne20 = dst->ne[0];
const uint64_t ne21 = dst->ne[1];
const uint64_t ne22 = dst->ne[2];
const uint64_t ne23 = dst->ne[3];
const uint64_t n_as = ne02;
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context;
vk_buffer d_Qx = nullptr;
size_t qx_buf_offset = 0;
vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0;
vk_buffer d_ids = nullptr;
size_t ids_buf_offset = 0;
bool src0_uma = false;
bool src1_uma = false;
bool ids_uma = false;
if (ctx->device->uma) {
ggml_vk_host_get(ctx->device, src0->data, d_Qx, qx_buf_offset);
ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset);
ggml_vk_host_get(ctx->device, ids->data, d_ids, ids_buf_offset);
src0_uma = d_Qx != nullptr;
src1_uma = d_Qy != nullptr;
ids_uma = d_ids != nullptr;
}
// Reformat and convert to fp16 if non-contiguous, or for coopmat2 for better perf
const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src1);
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
vk_matmul_pipeline mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]);
const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig;
if (qx_needs_dequant) {
// Fall back to dequant + f16 mulmat
mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, GGML_TYPE_F16, y_f32_kernel ? GGML_TYPE_F32 : GGML_TYPE_F16, (ggml_prec)dst->op_params[0]);
}
// Not implemented
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_id_pipeline_align(ctx, mmp, ne01, nei1, qx_needs_dequant ? GGML_TYPE_F16 : src0->type));
const bool aligned = ne10 == kpad && ne01 > 8 && nei1 > 8;
vk_pipeline pipeline = ggml_vk_guess_matmul_id_pipeline(ctx, mmp, ne01, nei1, aligned, qx_needs_dequant ? GGML_TYPE_F16 : src0->type);
// Reserve extra storage in the N dimension for the Y matrix, so we can avoid bounds-checking
uint32_t padded_n = qy_needs_dequant ? ROUNDUP_POW2(ne11, pipeline->wg_denoms[1]) :ne11;
const uint64_t x_ne = ne01 * ne00;
const uint64_t y_ne = padded_n * ne10;
const uint64_t d_ne = ne21 * ne20;
const uint64_t qx_sz = ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type);
const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
const uint64_t x_sz = !qx_needs_dequant ? qx_sz : sizeof(ggml_fp16_t) * x_ne;
const uint64_t y_sz = y_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
const uint64_t ids_sz = nbi2;
const uint64_t d_sz = sizeof(float) * d_ne;
vk_pipeline to_fp16_vk_0 = nullptr;
vk_pipeline to_fp16_vk_1 = nullptr;
if (x_non_contig) {
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
} else {
to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
}
if (y_non_contig) {
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16);
} else {
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
}
GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
if (dryrun) {
const uint64_t x_sz_upd = x_sz * ne02 * ne03;
const uint64_t y_sz_upd = y_sz * ne12 * ne13;
if (
(qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) ||
(qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) {
GGML_ABORT("Requested preallocation size is too large");
}
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
ctx->prealloc_size_x = x_sz_upd;
}
if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) {
ctx->prealloc_size_y = y_sz_upd;
}
// Request descriptor sets
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
if (qx_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1);
}
if (qy_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1);
}
return;
}
vk_buffer d_D = dst_buf_ctx->dev_buffer;
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
GGML_ASSERT(d_D != nullptr);
vk_buffer d_X;
uint64_t x_buf_offset = 0;
vk_buffer d_Y;
uint64_t y_buf_offset = 0;
if (!src0_uma) {
d_Qx = src0_buf_ctx->dev_buffer;
qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
GGML_ASSERT(d_Qx != nullptr);
}
if (!src1_uma) {
d_Qy = src1_buf_ctx->dev_buffer;
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
GGML_ASSERT(d_Qy != nullptr);
}
if (!ids_uma) {
d_ids = ids_buf_ctx->dev_buffer;
ids_buf_offset = vk_tensor_offset(ids) + ids->view_offs;
GGML_ASSERT(d_ids != nullptr);
}
if (qx_needs_dequant) {
d_X = ctx->prealloc_x;
GGML_ASSERT(d_X->size >= x_sz * ne02 * ne03);
} else {
d_X = d_Qx;
x_buf_offset = qx_buf_offset;
GGML_ASSERT(qx_sz == x_sz);
}
if (qy_needs_dequant) {
d_Y = ctx->prealloc_y;
GGML_ASSERT(d_Y->size >= y_sz * ne12 * ne13);
} else {
d_Y = d_Qy;
y_buf_offset = qy_buf_offset;
GGML_ASSERT(qy_sz == y_sz);
}
if (x_non_contig) {
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE });
} else if (qx_needs_dequant) {
const std::vector<uint32_t> pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) };
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0,
{ vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
}
if (y_non_contig) {
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
}
uint32_t stride_batch_x = ne00*ne01;
uint32_t stride_batch_y = ne10*ne11;
if (!ggml_vk_dim01_contiguous(src0) && !qx_needs_dequant) {
stride_batch_x = src0->nb[0] / ggml_type_size(src0->type);
}
if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant) {
stride_batch_y = src1->nb[0] / ggml_type_size(src1->type);
}
// compute
ggml_vk_matmul_id(
ctx, subctx, pipeline,
{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 },
{ d_D, d_buf_offset, d_sz * ne22 * ne23 }, { d_ids, ids_buf_offset, ids_sz },
ne01, ne21, ne10, ne10, ne10, ne01,
stride_batch_x, stride_batch_y, ne20*ne21,
n_as, nei0, nei1, nbi1 / ggml_type_size(ids->type), ne11, padded_n
); // NOLINT
}
static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst, bool dryrun = false) {
VK_LOG_DEBUG("ggml_vk_mul_mat_vec_id_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
std::cerr << "), (" << ids << ", name=" << ids->name << ", type=" << ids->type << ", ne0=" << ids->ne[0] << ", ne1=" << ids->ne[1] << ", ne2=" << ids->ne[2] << ", ne3=" << ids->ne[3] << ", nb0=" << ids->nb[0] << ", nb1=" << ids->nb[1] << ", nb2=" << ids->nb[2] << ", nb3=" << ids->nb[3];
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
std::cerr << "), " << (dryrun ? "dryrun" : "") << ")");
GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT
GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
GGML_ASSERT(ids->type == GGML_TYPE_I32);
const uint64_t ne00 = src0->ne[0];
const uint64_t ne01 = src0->ne[1];
const uint64_t ne02 = src0->ne[2];
const uint64_t ne03 = src0->ne[3];
const uint64_t ne10 = src1->ne[0];
const uint64_t ne11 = src1->ne[1];
const uint64_t ne12 = src1->ne[2];
const uint64_t ne13 = src1->ne[3];
const uint64_t nei0 = ids->ne[0];
const uint64_t nei1 = ids->ne[1];
const uint64_t nbi2 = ids->nb[2];
GGML_ASSERT(nei1 == 1);
const uint64_t ne20 = dst->ne[0];
const uint64_t ne21 = dst->ne[1];
const uint64_t ne22 = dst->ne[2];
const uint64_t ne23 = dst->ne[3];
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context;
vk_buffer d_Qx = nullptr;
size_t qx_buf_offset = 0;
vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0;
vk_buffer d_ids = nullptr;
size_t ids_buf_offset = 0;
bool src0_uma = false;
bool src1_uma = false;
bool ids_uma = false;
if (ctx->device->uma) {
ggml_vk_host_get(ctx->device, src0->data, d_Qx, qx_buf_offset);
ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset);
ggml_vk_host_get(ctx->device, ids->data, d_ids, ids_buf_offset);
src0_uma = d_Qx != nullptr;
src1_uma = d_Qy != nullptr;
ids_uma = d_ids != nullptr;
}
const bool x_non_contig = !ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = !ggml_vk_dim01_contiguous(src1);
const bool f16_f32_kernel = src1->type == GGML_TYPE_F32;
const bool qx_needs_dequant = x_non_contig;
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig;
// Not implemented
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
const uint64_t x_ne = ne01 * ne00;
const uint64_t y_ne = ne11 * ne10;
const uint64_t d_ne = ne21 * ne20;
const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment);
const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : qx_sz;
const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
const uint64_t ids_sz = nbi2;
const uint64_t d_sz = sizeof(float) * d_ne;
vk_pipeline to_fp16_vk_0 = nullptr;
vk_pipeline to_fp16_vk_1 = nullptr;
if (x_non_contig) {
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, src0->type);
}
if (y_non_contig) {
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, src1->type);
} else {
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
}
vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec_id(ctx, src0->type, src1->type);
GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
GGML_ASSERT(dmmv != nullptr);
if (dryrun) {
const uint64_t x_sz_upd = x_sz * ne02 * ne03;
const uint64_t y_sz_upd = y_sz * ne12 * ne13;
if (
(qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) ||
(qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) {
GGML_ABORT("Requested preallocation size is too large");
}
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
ctx->prealloc_size_x = x_sz_upd;
}
if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) {
ctx->prealloc_size_y = y_sz_upd;
}
// Request descriptor sets
if (qx_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1);
}
if (qy_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1);
}
ggml_pipeline_request_descriptor_sets(ctx->device, dmmv, 1);
return;
}
vk_buffer d_D = dst_buf_ctx->dev_buffer;
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
GGML_ASSERT(d_D != nullptr);
vk_buffer d_X;
uint64_t x_buf_offset = 0;
vk_buffer d_Y;
uint64_t y_buf_offset = 0;
if(!src0_uma) {
d_Qx = src0_buf_ctx->dev_buffer;
qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
GGML_ASSERT(d_Qx != nullptr);
}
if(!src1_uma) {
d_Qy = src1_buf_ctx->dev_buffer;
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
GGML_ASSERT(d_Qy != nullptr);
}
if(!ids_uma) {
d_ids = ids_buf_ctx->dev_buffer;
ids_buf_offset = vk_tensor_offset(ids) + ids->view_offs;
GGML_ASSERT(d_ids != nullptr);
}
if (qx_needs_dequant) {
d_X = ctx->prealloc_x;
} else {
d_X = d_Qx;
x_buf_offset = qx_buf_offset;
GGML_ASSERT(qx_sz == x_sz);
}
if (qy_needs_dequant) {
d_Y = ctx->prealloc_y;
} else {
d_Y = d_Qy;
y_buf_offset = qy_buf_offset;
GGML_ASSERT(qy_sz == y_sz);
}
if (x_non_contig) {
GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment));
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE });
}
if (y_non_contig) {
GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne);
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
}
uint32_t stride_batch_y = ne10*ne11;
if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant) {
stride_batch_y = src1->nb[0] / ggml_type_size(src1->type);
}
const uint32_t max_groups_x = ctx->device->properties.limits.maxComputeWorkGroupCount[0];
uint32_t groups_x = ne01;
uint32_t groups_z = 1;
if (ne01 > max_groups_x) {
groups_z = 64;
groups_x = CEIL_DIV(groups_x, groups_z);
}
// compute
const vk_mat_vec_id_push_constants pc = {
(uint32_t)ne00, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne01,
(uint32_t)x_ne, stride_batch_y, (uint32_t)(ne20*ne21),
(uint32_t)nei0, (uint32_t)ne11,
};
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, dmmv,
{ vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 },
vk_subbuffer{ d_Y, y_buf_offset, y_sz * ne12 * ne13 }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23}, vk_subbuffer{ d_ids, ids_buf_offset, ids_sz } },
sizeof(vk_mat_vec_id_push_constants), &pc, { groups_x, (uint32_t)nei0, groups_z });
}
static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool dryrun = false) {
VK_LOG_DEBUG("ggml_vk_mul_mat_id(" << src0 << ", " << src1 << ", " << src2 << ", " << dst << ")");
if (src2->ne[1] == 1 && (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) {
ggml_vk_mul_mat_vec_id_q_f16(ctx, subctx, src0, src1, src2, dst, dryrun);
} else {
ggml_vk_mul_mat_id_q_f16(ctx, subctx, src0, src1, src2, dst, dryrun);
}
}
static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * q, const ggml_tensor * k, const ggml_tensor * v, const ggml_tensor * mask, ggml_tensor * dst, bool dryrun = false) {
VK_LOG_DEBUG("ggml_vk_flash_attn((" << q << ", name=" << q->name << ", type=" << q->type << ", ne0=" << q->ne[0] << ", ne1=" << q->ne[1] << ", ne2=" << q->ne[2] << ", ne3=" << q->ne[3] << ", nb0=" << q->nb[0] << ", nb1=" << q->nb[1] << ", nb2=" << q->nb[2] << ", nb3=" << q->nb[3];
std::cerr << "), (" << k << ", name=" << k->name << ", type=" << k->type << ", ne0=" << k->ne[0] << ", ne1=" << k->ne[1] << ", ne2=" << k->ne[2] << ", ne3=" << k->ne[3] << ", nb0=" << k->nb[0] << ", nb1=" << k->nb[1] << ", nb2=" << k->nb[2] << ", nb3=" << k->nb[3];
std::cerr << "), (" << v << ", name=" << v->name << ", type=" << v->type << ", ne0=" << v->ne[0] << ", ne1=" << v->ne[1] << ", ne2=" << v->ne[2] << ", ne3=" << v->ne[3] << ", nb0=" << v->nb[0] << ", nb1=" << v->nb[1] << ", nb2=" << v->nb[2] << ", nb3=" << v->nb[3];
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
std::cerr << "), " << (dryrun ? "dryrun" : "") << ")");
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
const uint32_t nem1 = mask ? mask->ne[1] : 0;
const uint32_t nbm1 = mask ? mask->nb[1] : 0;
const uint32_t D = neq0;
uint32_t N = neq1;
const uint32_t KV = nek1;
GGML_ASSERT(ne0 == D);
GGML_ASSERT(ne2 == N);
// input tensor rows must be contiguous
GGML_ASSERT(nbq0 == ggml_type_size(q->type));
GGML_ASSERT(nbk0 == ggml_type_size(k->type));
GGML_ASSERT(nbv0 == ggml_type_size(v->type));
GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
GGML_ASSERT(nev0 == D);
GGML_ASSERT(neq1 == N);
GGML_ASSERT(nev0 == D);
GGML_ASSERT(nev1 == nek1);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
assert(dst->type == GGML_TYPE_F32);
assert(q->type == GGML_TYPE_F32);
assert(k->type == v->type);
vk_pipeline *pipelines;
// XXX TODO other backends may be changing accumulator precision to default to f32 soon
bool f32acc = dst->op_params[3] == GGML_PREC_F32;
bool small_rows = N <= flash_attention_num_small_rows;
switch (D) {
case 64: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D64[k->type][f32acc][small_rows][0]; break;
case 80: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D80[k->type][f32acc][small_rows][0]; break;
case 96: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D96[k->type][f32acc][small_rows][0]; break;
case 112: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D112[k->type][f32acc][small_rows][0]; break;
case 128: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D128[k->type][f32acc][small_rows][0]; break;
case 256: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D256[k->type][f32acc][small_rows][0]; break;
default:
assert(!"unsupported D value");
return;
}
assert(pipelines);
const uint32_t q_stride = (uint32_t)(nbq1 / ggml_type_size(q->type));
const uint32_t k_stride = (uint32_t)(nbk1 / ggml_type_size(k->type));
const uint32_t v_stride = (uint32_t)(nbv1 / ggml_type_size(v->type));
bool aligned = (KV % pipelines[1]->align) == 0 &&
// the "aligned" shader variant will forcibly align strides, for performance
(q_stride & 7) == 0 && (k_stride & 7) == 0 && (v_stride & 7) == 0;
// mask dim1 is padded to 64, we rely on this to avoid clamping mask loads
GGML_ASSERT((nem1 % GGML_KQ_MASK_PAD) == 0);
vk_pipeline pipeline = pipelines[aligned];
assert(pipeline);
uint32_t gqa_ratio = 1;
uint32_t qk_ratio = neq2 / nek2;
uint32_t workgroups_x = (uint32_t)neq1;
uint32_t workgroups_y = (uint32_t)neq2;
uint32_t workgroups_z = (uint32_t)neq3;
if (N == 1 && qk_ratio > 1 && is_pow2(qk_ratio) && gqa_ratio <= flash_attention_num_small_rows &&
qk_ratio * nek2 == neq2 && nek2 == nev2 && neq3 == 1 && nek3 == 1 && nev3 == 1) {
// grouped query attention - make the N dimension equal to gqa_ratio, reduce
// workgroups proportionally in y dimension. The shader will detect gqa_ratio > 1
// and change addressing calculations to index Q's dimension 2.
gqa_ratio = qk_ratio;
N = gqa_ratio;
workgroups_y /= N;
}
uint32_t split_kv = KV;
uint32_t split_k = 1;
if (gqa_ratio > 1 && ctx->device->shader_core_count > 0) {
GGML_ASSERT(workgroups_x == 1);
// Try to run two workgroups per SM.
split_k = ctx->device->shader_core_count * 2 / workgroups_y;
if (split_k > 1) {
// Try to evenly split KV into split_k chunks, but it needs to be a multiple
// of "align", so recompute split_k based on that.
split_kv = ROUNDUP_POW2(KV / split_k, pipelines[1]->align);
split_k = CEIL_DIV(KV, split_kv);
workgroups_x = split_k;
}
}
// Reserve space for split_k temporaries. For each split, we need to store the O matrix (D x ne1)
// and the per-row m and L values (ne1 rows).
const uint64_t split_k_size = split_k > 1 ? (D * ne1 * sizeof(float) + ne1 * sizeof(float) * 2) * split_k : 0;
if (split_k_size > ctx->device->max_memory_allocation_size) {
GGML_ABORT("Requested preallocation size is too large");
}
if (ctx->prealloc_size_split_k < split_k_size) {
ctx->prealloc_size_split_k = split_k_size;
}
if (dryrun) {
// Request descriptor sets
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
if (split_k > 1) {
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_flash_attn_split_k_reduce, 1);
}
return;
}
float scale = 1.0f;
float max_bias = 0.0f;
float logit_softcap = 0.0f;
memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
memcpy(&logit_softcap, (const float *) dst->op_params + 2, sizeof(float));
if (logit_softcap != 0) {
scale /= logit_softcap;
}
const uint32_t n_head_kv = neq2;
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
vk_buffer d_Q = nullptr, d_K = nullptr, d_V = nullptr, d_D = nullptr, d_M = nullptr;
size_t q_buf_offset = 0, k_buf_offset = 0, v_buf_offset = 0, d_buf_offset = 0, m_buf_offset = 0;
bool Q_uma = false, K_uma = false, V_uma = false, D_uma = false, M_uma = false;
if (ctx->device->uma) {
ggml_vk_host_get(ctx->device, q->data, d_Q, q_buf_offset);
ggml_vk_host_get(ctx->device, k->data, d_K, k_buf_offset);
ggml_vk_host_get(ctx->device, v->data, d_V, v_buf_offset);
ggml_vk_host_get(ctx->device, dst->data, d_D, d_buf_offset);
Q_uma = d_Q != nullptr;
K_uma = d_K != nullptr;
V_uma = d_V != nullptr;
D_uma = d_D != nullptr;
if (mask) {
ggml_vk_host_get(ctx->device, mask->data, d_M, m_buf_offset);
M_uma = d_M != nullptr;
}
}
ggml_backend_vk_buffer_context * d_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
ggml_backend_vk_buffer_context * q_buf_ctx = (ggml_backend_vk_buffer_context *)q->buffer->context;
ggml_backend_vk_buffer_context * k_buf_ctx = (ggml_backend_vk_buffer_context *)k->buffer->context;
ggml_backend_vk_buffer_context * v_buf_ctx = (ggml_backend_vk_buffer_context *)v->buffer->context;
if (!Q_uma) {
d_Q = q_buf_ctx->dev_buffer;
q_buf_offset = vk_tensor_offset(q) + q->view_offs;
}
if (!K_uma) {
d_K = k_buf_ctx->dev_buffer;
k_buf_offset = vk_tensor_offset(k) + k->view_offs;
}
if (!V_uma) {
d_V = v_buf_ctx->dev_buffer;
v_buf_offset = vk_tensor_offset(v) + v->view_offs;
}
if (!D_uma) {
d_D = d_buf_ctx->dev_buffer;
d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
}
if (!M_uma) {
d_M = d_Q;
m_buf_offset = q_buf_offset;
if (mask) {
ggml_backend_vk_buffer_context * m_buf_ctx = (ggml_backend_vk_buffer_context*)mask->buffer->context;
d_M = m_buf_ctx->dev_buffer;
m_buf_offset = vk_tensor_offset(mask) + mask->view_offs;
}
}
const vk_flash_attn_push_constants pc = { N, KV,
(uint32_t)ne1, (uint32_t)ne2, (uint32_t)ne3,
(uint32_t)neq2, (uint32_t)neq3,
(uint32_t)nek2, (uint32_t)nek3,
(uint32_t)nev2, (uint32_t)nev3,
nem1,
q_stride, (uint32_t)nbq2, (uint32_t)nbq3,
k_stride, (uint32_t)nbk2, (uint32_t)nbk3,
v_stride, (uint32_t)nbv2, (uint32_t)nbv3,
nbm1,
scale, max_bias, logit_softcap,
mask != nullptr, n_head_log2, m0, m1,
gqa_ratio, split_kv, split_k };
ggml_vk_sync_buffers(subctx);
if (split_k > 1) {
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
{
vk_subbuffer{d_Q, q_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_K, k_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_V, v_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_M, m_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{ctx->prealloc_split_k, 0, VK_WHOLE_SIZE},
},
// We only use split_k when group query attention is enabled, which means
// there's no more than one tile of rows (i.e. workgroups_x would have been
// one). We reuse workgroups_x to mean the number of splits, so we need to
// cancel out the divide by wg_denoms[0].
sizeof(vk_flash_attn_push_constants), &pc, { workgroups_x * pipeline->wg_denoms[0], workgroups_y, workgroups_z });
ggml_vk_sync_buffers(subctx);
const std::array<uint32_t, 3> pc2 = { D, (uint32_t)ne1, split_k };
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_flash_attn_split_k_reduce,
{
vk_subbuffer{ctx->prealloc_split_k, 0, VK_WHOLE_SIZE},
vk_subbuffer{d_D, d_buf_offset, VK_WHOLE_SIZE},
},
pc2.size() * uint32_t{sizeof(uint32_t)}, pc2.data(), { (uint32_t)ne1, 1, 1 });
} else {
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
{
vk_subbuffer{d_Q, q_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_K, k_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_V, v_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_M, m_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_D, d_buf_offset, VK_WHOLE_SIZE},
},
sizeof(vk_flash_attn_push_constants), &pc, { workgroups_x, workgroups_y, workgroups_z });
}
}
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op) {
switch (op) {
case GGML_OP_GET_ROWS:
GGML_ASSERT(src1->type == GGML_TYPE_I32);
if (dst->type == GGML_TYPE_F16) {
return ctx->device->pipeline_get_rows[src0->type];
}
if (dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_get_rows_f32[src0->type];
}
return nullptr;
case GGML_OP_ACC:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_acc_f32;
}
return nullptr;
case GGML_OP_ADD:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_f32_norepeat : ctx->device->pipeline_add_f32;
}
if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_f16_f32_f16_norepeat : ctx->device->pipeline_add_f16_f32_f16;
}
return nullptr;
case GGML_OP_SUB:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_sub_f32_norepeat : ctx->device->pipeline_sub_f32;
}
return nullptr;
case GGML_OP_MUL:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_mul_f32_norepeat : ctx->device->pipeline_mul_f32;
}
return nullptr;
case GGML_OP_DIV:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_div_f32_norepeat : ctx->device->pipeline_div_f32;
}
return nullptr;
case GGML_OP_CONCAT:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_concat_f32;
}
if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
return ctx->device->pipeline_concat_f16;
}
if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
return ctx->device->pipeline_concat_i32;
}
return nullptr;
case GGML_OP_UPSCALE:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_upscale_f32;
}
return nullptr;
case GGML_OP_SCALE:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_scale_f32;
}
return nullptr;
case GGML_OP_SQR:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_sqr_f32;
}
return nullptr;
case GGML_OP_SIN:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_sin_f32;
}
return nullptr;
case GGML_OP_COS:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_cos_f32;
}
return nullptr;
case GGML_OP_CLAMP:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_clamp_f32;
}
return nullptr;
case GGML_OP_PAD:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_pad_f32;
}
return nullptr;
case GGML_OP_REPEAT:
if (ggml_type_size(src0->type) == sizeof(float) && ggml_type_size(dst->type) == sizeof(float)) {
return ctx->device->pipeline_repeat_f32;
}
return nullptr;
case GGML_OP_REPEAT_BACK:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_repeat_back_f32;
}
return nullptr;
case GGML_OP_CPY:
case GGML_OP_CONT:
case GGML_OP_DUP:
return ggml_vk_get_cpy_pipeline(ctx, src0, dst, dst->type);
case GGML_OP_SILU_BACK:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_silu_back_f32;
}
return nullptr;
case GGML_OP_NORM:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_norm_f32;
}
return nullptr;
case GGML_OP_GROUP_NORM:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_group_norm_f32;
}
return nullptr;
case GGML_OP_RMS_NORM:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_rms_norm_f32;
}
return nullptr;
case GGML_OP_RMS_NORM_BACK:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_rms_norm_back_f32;
}
return nullptr;
case GGML_OP_L2_NORM:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_l2_norm_f32;
}
return nullptr;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(dst)) {
case GGML_UNARY_OP_SILU:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_silu_f32;
}
break;
case GGML_UNARY_OP_GELU:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_gelu_f32;
}
break;
case GGML_UNARY_OP_GELU_QUICK:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_gelu_quick_f32;
}
break;
case GGML_UNARY_OP_RELU:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_relu_f32;
}
break;
case GGML_UNARY_OP_TANH:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_tanh_f32;
}
break;
case GGML_UNARY_OP_SIGMOID:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_sigmoid_f32;
}
break;
default:
break;
}
return nullptr;
case GGML_OP_DIAG_MASK_INF:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_diag_mask_inf_f32;
}
return nullptr;
case GGML_OP_SOFT_MAX:
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16);
if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) {
return src0->ne[0] > 1024 ? ctx->device->pipeline_soft_max_f32_wg512 : ctx->device->pipeline_soft_max_f32;
}
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
return src0->ne[0] > 1024 ? ctx->device->pipeline_soft_max_f32_f16_wg512 : ctx->device->pipeline_soft_max_f32_f16;
}
return nullptr;
case GGML_OP_SOFT_MAX_BACK:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_soft_max_back_f32;
}
return nullptr;
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
{
const int mode = ((const int32_t *) dst->op_params)[2];
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (is_neox) {
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_rope_neox_f32;
}
if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
return ctx->device->pipeline_rope_neox_f16;
}
} else if (is_mrope && !is_vision) {
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_rope_multi_f32;
}
if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
return ctx->device->pipeline_rope_multi_f16;
}
} else if (is_vision) {
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_rope_vision_f32;
}
if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
return ctx->device->pipeline_rope_vision_f16;
}
} else {
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_rope_norm_f32;
}
if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
return ctx->device->pipeline_rope_norm_f16;
}
}
return nullptr;
}
case GGML_OP_ARGSORT:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_I32) {
return ctx->device->pipeline_argsort_f32;
}
return nullptr;
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_sum_rows_f32;
}
return nullptr;
case GGML_OP_ARGMAX:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_I32) {
return ctx->device->pipeline_argmax_f32;
}
return nullptr;
case GGML_OP_COUNT_EQUAL:
if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I64) {
return ctx->device->pipeline_count_equal_i32;
}
return nullptr;
case GGML_OP_IM2COL:
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_im2col_f32;
}
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
return ctx->device->pipeline_im2col_f32_f16;
}
return nullptr;
case GGML_OP_TIMESTEP_EMBEDDING:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_timestep_embedding_f32;
}
return nullptr;
case GGML_OP_POOL_2D:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_pool2d_f32;
}
return nullptr;
case GGML_OP_RWKV_WKV6:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_rwkv_wkv6_f32;
}
return nullptr;
case GGML_OP_RWKV_WKV7:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_rwkv_wkv7_f32;
}
return nullptr;
case GGML_OP_OPT_STEP_ADAMW:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_opt_step_adamw_f32;
}
return nullptr;
case GGML_OP_LEAKY_RELU:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_leaky_relu_f32;
}
return nullptr;
default:
return nullptr;
}
GGML_UNUSED(src2);
}
static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
switch (op) {
case GGML_OP_CPY:
case GGML_OP_GET_ROWS:
case GGML_OP_ADD:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_SQR:
case GGML_OP_SIN:
case GGML_OP_COS:
case GGML_OP_CLAMP:
case GGML_OP_PAD:
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
case GGML_OP_ROPE:
return true;
default:
return false;
}
}
static uint32_t get_misalign_bytes(ggml_backend_vk_context * ctx, const ggml_tensor * t)
{
return ((vk_tensor_offset(t) + t->view_offs) & (ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1));;
}
template <typename T> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, T &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
GGML_UNUSED(p);
GGML_UNUSED(src0);
GGML_UNUSED(src1);
GGML_UNUSED(src2);
GGML_UNUSED(dst);
static_assert(!std::is_const<T>::value, "unexpected type");
GGML_ASSERT(!src0 || get_misalign_bytes(ctx, src0) == 0);
GGML_ASSERT(!src1 || get_misalign_bytes(ctx, src1) == 0);
GGML_ASSERT(!src2 || get_misalign_bytes(ctx, src2) == 0);
GGML_ASSERT(!dst || get_misalign_bytes(ctx, dst) == 0);
}
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_unary_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
p.misalign_offsets = (a_offset << 16) | d_offset;
GGML_UNUSED(src1);
GGML_UNUSED(src2);
}
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_binary_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
const uint32_t b_offset = get_misalign_bytes(ctx, src1) / ggml_type_size(src1->type);
const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
GGML_ASSERT(dst->op != GGML_OP_GET_ROWS || (a_offset == 0 && b_offset == 0 && d_offset == 0));
p.misalign_offsets = (a_offset << 16) | (b_offset << 8) | d_offset;
GGML_UNUSED(src2);
}
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_upscale_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
p.a_offset = a_offset;
p.d_offset = d_offset;
GGML_UNUSED(src1);
GGML_UNUSED(src2);
}
template<typename PC>
static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, PC&& pc, bool dryrun = false) {
VK_LOG_DEBUG("ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
if (src1 != nullptr) {
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
}
if (src2 != nullptr) {
std::cerr << "), (" << src2 << ", name=" << src2->name << ", type=" << src2->type << ", ne0=" << src2->ne[0] << ", ne1=" << src2->ne[1] << ", ne2=" << src2->ne[2] << ", ne3=" << src2->ne[3] << ", nb0=" << src2->nb[0] << ", nb1=" << src2->nb[1] << ", nb2=" << src2->nb[2] << ", nb3=" << src2->nb[3];
}
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
std::cerr << "), " << ggml_op_name(op) << ", " << (dryrun ? "dryrun" : "") << ")");
GGML_ASSERT(op == GGML_OP_GET_ROWS || op == GGML_OP_CPY || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT
GGML_ASSERT(ggml_vk_op_supports_incontiguous(op) || ggml_vk_dim01_contiguous(src0)); // NOLINT
GGML_ASSERT(dst->buffer != nullptr);
const uint64_t ne00 = src0->ne[0];
const uint64_t ne01 = src0->ne[1];
const uint64_t ne02 = src0->ne[2];
const uint64_t ne03 = src0->ne[3];
const uint64_t ne0 = ne00 * ne01;
const bool use_src1 = src1 != nullptr;
const uint64_t ne10 = use_src1 ? src1->ne[0] : 0;
const uint64_t ne11 = use_src1 ? src1->ne[1] : 0;
const uint64_t ne12 = use_src1 ? src1->ne[2] : 0;
const uint64_t ne13 = use_src1 ? src1->ne[3] : 0;
const uint64_t ne1 = ne10 * ne11;
// const uint64_t nb10 = use_src1 ? src1->nb[0] : 0;
const bool use_src2 = src2 != nullptr;
const uint64_t ne20 = use_src2 ? src2->ne[0] : 0;
const uint64_t ne21 = use_src2 ? src2->ne[1] : 0;
const uint64_t ne22 = use_src2 ? src2->ne[2] : 0;
const uint64_t ne23 = use_src2 ? src2->ne[3] : 0;
const uint64_t ne2 = ne20 * ne21;
const uint64_t ned0 = dst->ne[0];
const uint64_t ned1 = dst->ne[1];
const uint64_t ned2 = dst->ne[2];
const uint64_t ned3 = dst->ne[3];
const uint64_t ned = ned0 * ned1;
init_pushconst_fastdiv(pc);
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, dst, op);
if (pipeline == nullptr) {
std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(op) << " for " << ggml_type_name(src0->type);
if (src1 != nullptr) {
std::cerr << " and " << ggml_type_name(src1->type);
}
std::cerr << " to " << ggml_type_name(dst->type) << std::endl;
GGML_ABORT("fatal error");
}
if (dryrun) {
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
return;
}
const bool op_supports_incontiguous = ggml_vk_op_supports_incontiguous(op);
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
ggml_backend_vk_buffer_context * src1_buf_ctx = use_src1 ? (ggml_backend_vk_buffer_context *)src1->buffer->context : nullptr;
ggml_backend_vk_buffer_context * src2_buf_ctx = use_src2 ? (ggml_backend_vk_buffer_context *)src2->buffer->context : nullptr;
vk_buffer d_X = nullptr;
size_t x_buf_offset = 0;
vk_buffer d_Y = nullptr;
size_t y_buf_offset = 0;
vk_buffer d_Z = nullptr;
size_t z_buf_offset = 0;
bool src0_uma = false;
bool src1_uma = false;
bool src2_uma = false;
if (ctx->device->uma) {
ggml_vk_host_get(ctx->device, src0->data, d_X, x_buf_offset);
src0_uma = d_X != nullptr;
if (use_src1) {
ggml_vk_host_get(ctx->device, src1->data, d_Y, y_buf_offset);
src1_uma = d_Y != nullptr;
}
if (use_src2) {
ggml_vk_host_get(ctx->device, src2->data, d_Z, z_buf_offset);
src2_uma = d_Z != nullptr;
}
}
uint64_t x_sz = ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0;
uint64_t y_sz = use_src1 ? ggml_type_size(src1->type) * ne1 : 0;
uint64_t z_sz = use_src2 ? ggml_type_size(src2->type) * ne2 : 0;
uint64_t d_sz = ggml_type_size(dst->type) * ned;
vk_buffer d_D = dst_buf_ctx->dev_buffer;
// Workaround for tiny tensor inputs on ROPE
if (op == GGML_OP_ROPE && use_src1 && y_sz > d_D->size) {
y_sz = VK_WHOLE_SIZE;
}
GGML_ASSERT(d_D != nullptr);
uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
if(!src0_uma) {
d_X = src0_buf_ctx->dev_buffer;
x_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
GGML_ASSERT(d_X != nullptr);
}
if (use_src1 && !src1_uma) {
d_Y = src1_buf_ctx->dev_buffer;
y_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
GGML_ASSERT(d_Y != nullptr);
}
if (use_src2 && !src2_uma) {
d_Z = src2_buf_ctx->dev_buffer;
z_buf_offset = vk_tensor_offset(src2) + src2->view_offs;
GGML_ASSERT(d_Z != nullptr);
}
// Compute misalignment offset for descriptors and store it in in push constants, then align the descriptor offsets.
init_pushconst_tensor_offsets(ctx, pc, src0, src1, src2, dst);
x_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
y_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
z_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
d_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
if (op_supports_incontiguous) {
x_sz = ggml_nbytes(src0);
y_sz = use_src1 ? ggml_nbytes(src1) : 0;
z_sz = use_src2 ? ggml_nbytes(src2) : 0;
d_sz = ggml_nbytes(dst);
if (x_buf_offset + x_sz >= d_X->size) {
x_sz = VK_WHOLE_SIZE;
}
if (use_src1 && y_buf_offset + y_sz >= d_Y->size) {
y_sz = VK_WHOLE_SIZE;
}
if (use_src2 && z_buf_offset + z_sz >= d_Z->size) {
z_sz = VK_WHOLE_SIZE;
}
if (d_buf_offset + d_sz >= d_D->size) {
d_sz = VK_WHOLE_SIZE;
}
}
std::array<uint32_t, 3> elements;
// Single call if dimension 2 is contiguous
GGML_ASSERT(op_supports_incontiguous || (ggml_is_contiguous(src0) && (src1 == nullptr || ggml_is_contiguous(src1))));
switch (op) {
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_L2_NORM:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGMAX:
{
const uint32_t nr = ggml_nrows(src0);
if (nr > 262144) {
elements = { 512, 512, CEIL_DIV(nr, 262144) };
} else if (nr > 512) {
elements = { 512, CEIL_DIV(nr, 512), 1 };
} else {
elements = { nr, 1, 1 };
}
} break;
case GGML_OP_SUM:
// We use GGML_OP_SUM_ROWS with 1 row.
elements = { 1, 1, 1 };
break;
case GGML_OP_GROUP_NORM:
{
const uint32_t num_groups = dst->op_params[0];
elements = { num_groups * (uint32_t)src0->ne[3], 1, 1 };
} break;
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
elements = { (uint32_t)ggml_nrows(src0), (uint32_t)ne00, 1 };
break;
case GGML_OP_GET_ROWS:
elements = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) };
break;
case GGML_OP_ARGSORT:
elements = { (uint32_t)ne00, (uint32_t)ggml_nrows(src0), 1 };
break;
case GGML_OP_IM2COL:
{
const bool is_2D = dst->op_params[6] == 1;
const uint32_t IC = src1->ne[is_2D ? 2 : 1];
const uint32_t KH = is_2D ? src0->ne[1] : 1;
const uint32_t KW = src0->ne[0];
const uint32_t OH = is_2D ? dst->ne[2] : 1;
const uint32_t OW = dst->ne[1];
const uint32_t batch = src1->ne[is_2D ? 3 : 2];
elements = { OW * KW * KH, OH, batch * IC };
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
const uint32_t dim = dst->op_params[0];
uint32_t half_ceil = (dim + 1) / 2;
elements = { half_ceil, (uint32_t)src0->ne[0], 1 };
} break;
case GGML_OP_POOL_2D:
{
const uint32_t N = dst->ne[3];
const uint32_t OC = dst->ne[2];
const uint32_t OH = dst->ne[1];
const uint32_t OW = dst->ne[0];
elements = { N * OC * OH * OW, 1, 1};
} break;
case GGML_OP_ADD:
case GGML_OP_SUB:
case GGML_OP_DIV:
case GGML_OP_MUL:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SIN:
case GGML_OP_COS:
case GGML_OP_CLAMP:
case GGML_OP_PAD:
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
case GGML_OP_CPY:
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_UNARY:
{
const uint32_t ne = ggml_nelements(dst);
if (ne > 262144) {
elements = { 512, 512, CEIL_DIV(ne, 262144) };
} else if (ne > 512) {
elements = { 512, CEIL_DIV(ne, 512), 1 };
} else {
elements = { ne, 1, 1 };
}
} break;
default:
elements = { (uint32_t)ggml_nelements(src0), 1, 1 };
break;
}
if (!op_supports_incontiguous) {
if (x_sz != VK_WHOLE_SIZE) {
x_sz *= ne02 * ne03;
}
if (use_src1 && y_sz != VK_WHOLE_SIZE) {
y_sz *= ne12 * ne13;
}
if (use_src2 && z_sz != VK_WHOLE_SIZE) {
z_sz *= ne22 * ne23;
}
if (d_sz != VK_WHOLE_SIZE) {
d_sz *= ned2 * ned3;
}
}
if (op == GGML_OP_SOFT_MAX) {
// Empty src1 is possible in soft_max, but the shader needs a buffer
vk_subbuffer subbuf_y;
if (use_src1) {
subbuf_y = { d_Y, y_buf_offset, y_sz };
} else {
subbuf_y = { d_X, 0, x_sz };
}
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, subbuf_y, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
} else if (op == GGML_OP_ROPE || op == GGML_OP_ROPE_BACK) {
// Empty src2 is possible in rope, but the shader needs a buffer
vk_subbuffer subbuf_z;
if (use_src2) {
subbuf_z = { d_Z, z_buf_offset, z_sz };
} else {
subbuf_z = { d_X, 0, x_sz };
}
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, subbuf_z, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
} else if (op == GGML_OP_IM2COL) {
// im2col uses only src1 and dst buffers
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
} else if (op == GGML_OP_COUNT_EQUAL) {
ggml_vk_sync_buffers(subctx);
// count_equal assumes that destination buffer is initialized with zeroes
ggml_vk_buffer_memset_async(subctx, d_D, d_buf_offset, 0, d_sz);
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
} else if (use_src2) {
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_Z, z_buf_offset, z_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
} else if (use_src1) {
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
} else {
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
}
}
static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_GET_ROWS, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f, 0,
}, dryrun);
}
static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
int offset = dst->op_params[3] / 4; // offset in bytes
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ACC, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f, offset,
}, dryrun);
}
static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ADD, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f, 0,
}, dryrun);
}
static void ggml_vk_sub(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SUB, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f, 0,
}, dryrun);
}
static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_MUL, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f, 0,
}, dryrun);
}
static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_DIV, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f, 0,
}, dryrun);
}
static void ggml_vk_op_f32_wkv(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, const vk_op_rwkv_wkv6_push_constants&& pc, int version, bool dryrun = false) {
GGML_ASSERT(version == 6 || version == 7);
int num_srcs = version == 6 ? 6 : 7;
for (int i = 0; i < num_srcs; i++) {
GGML_ASSERT(!ggml_is_quantized(dst->src[i]->type));
}
GGML_ASSERT(dst->buffer != nullptr);
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, dst->src[0], dst->src[1], dst->src[2], dst, dst->op);
GGML_ASSERT(pipeline != nullptr);
if (dryrun) {
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
return;
}
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
ggml_backend_vk_buffer_context * src_buf_ctxs[7] = { nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr };
for (int i = 0; i < num_srcs; i++) {
src_buf_ctxs[i] = (ggml_backend_vk_buffer_context *)dst->src[i]->buffer->context;
}
ggml_vk_sync_buffers(subctx);
vk_buffer d_D = nullptr, d_srcs[7] = { nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr };
size_t dst_offset = 0, src_offsets[7] = { 0, 0, 0, 0, 0, 0, 0 };
bool dst_uma = false, srcs_uma[7] = { false, false, false, false, false, false, false };
if (ctx->device->uma) {
for (int i = 0; i < num_srcs; i++) {
ggml_vk_host_get(ctx->device, dst->src[i]->data, d_srcs[i], src_offsets[i]);
srcs_uma[i] = d_srcs[i] != nullptr;
}
ggml_vk_host_get(ctx->device, dst->data, d_D, dst_offset);
dst_uma = d_D != nullptr;
}
uint64_t src_sizes[7] = { 0, 0, 0, 0, 0, 0, 0 };
for (int i = 0; i < num_srcs; i++) {
src_sizes[i] = ggml_nbytes(dst->src[i]);
if (!srcs_uma[i]) {
d_srcs[i] = src_buf_ctxs[i]->dev_buffer;
src_offsets[i] = vk_tensor_offset(dst->src[i]) + dst->src[i]->view_offs;
}
}
const uint64_t dst_size = ggml_nbytes(dst);
if (!dst_uma) {
d_D = dst_buf_ctx->dev_buffer;
dst_offset = vk_tensor_offset(dst) + dst->view_offs;
}
std::array<uint32_t, 3> elements = {
(uint32_t)(pc.B * pc.H),
1,
1
};
if (version == 6) {
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, {
vk_subbuffer{ d_srcs[0], src_offsets[0], src_sizes[0] },
vk_subbuffer{ d_srcs[1], src_offsets[1], src_sizes[1] },
vk_subbuffer{ d_srcs[2], src_offsets[2], src_sizes[2] },
vk_subbuffer{ d_srcs[3], src_offsets[3], src_sizes[3] },
vk_subbuffer{ d_srcs[4], src_offsets[4], src_sizes[4] },
vk_subbuffer{ d_srcs[5], src_offsets[5], src_sizes[5] },
vk_subbuffer{ d_D, dst_offset, dst_size }
}, sizeof(vk_op_rwkv_wkv6_push_constants), &pc, elements);
} else if (version == 7) {
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, {
vk_subbuffer{ d_srcs[0], src_offsets[0], src_sizes[0] },
vk_subbuffer{ d_srcs[1], src_offsets[1], src_sizes[1] },
vk_subbuffer{ d_srcs[2], src_offsets[2], src_sizes[2] },
vk_subbuffer{ d_srcs[3], src_offsets[3], src_sizes[3] },
vk_subbuffer{ d_srcs[4], src_offsets[4], src_sizes[4] },
vk_subbuffer{ d_srcs[5], src_offsets[5], src_sizes[5] },
vk_subbuffer{ d_srcs[6], src_offsets[6], src_sizes[6] },
vk_subbuffer{ d_D, dst_offset, dst_size }
}, sizeof(vk_op_rwkv_wkv7_push_constants), &pc, elements);
} else {
// shouldn't happen
GGML_ASSERT(false);
}
}
static void ggml_vk_rwkv_wkv6(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, bool dryrun = false) {
const size_t seq_length = dst->src[0]->ne[2];
const size_t n_embed = dst->ne[0];
const size_t n_heads = dst->src[0]->ne[1];
const size_t n_seqs = dst->src[5]->ne[1];
ggml_vk_op_f32_wkv(
ctx, subctx, dst,
{
(uint32_t)n_seqs,
(uint32_t)seq_length,
(uint32_t)n_embed,
(uint32_t)n_heads,
},
6,
dryrun
);
}
static void ggml_vk_rwkv_wkv7(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, bool dryrun = false) {
const size_t seq_length = dst->src[0]->ne[2];
const size_t n_embed = dst->ne[0];
const size_t n_heads = dst->src[0]->ne[1];
const size_t n_seqs = dst->src[6]->ne[1];
ggml_vk_op_f32_wkv(
ctx, subctx, dst,
{
(uint32_t)n_seqs,
(uint32_t)seq_length,
(uint32_t)n_embed,
(uint32_t)n_heads,
},
7,
dryrun
);
}
static void ggml_vk_op_f32_opt_step_adamw(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, const vk_op_push_constants&& pc, bool dryrun = false) {
const ggml_tensor * x = dst->src[0];
const ggml_tensor * g = dst->src[1];
const ggml_tensor * gm = dst->src[2];
const ggml_tensor * gv = dst->src[3];
const ggml_tensor * p = dst->src[4];
GGML_ASSERT(x->type == GGML_TYPE_F32);
GGML_ASSERT(g->type == GGML_TYPE_F32);
GGML_ASSERT(gm->type == GGML_TYPE_F32);
GGML_ASSERT(gv->type == GGML_TYPE_F32);
GGML_ASSERT(p->type == GGML_TYPE_F32);
GGML_ASSERT(dst->buffer != nullptr);
GGML_ASSERT(ggml_is_contiguous(x));
GGML_ASSERT(ggml_is_contiguous(g));
GGML_ASSERT(ggml_is_contiguous(gm));
GGML_ASSERT(ggml_is_contiguous(gv));
GGML_ASSERT(ggml_is_contiguous(p));
GGML_ASSERT(ggml_are_same_shape(x, g));
GGML_ASSERT(ggml_are_same_shape(x, gm));
GGML_ASSERT(ggml_are_same_shape(x, gv));
GGML_ASSERT(ggml_nelements(p) == 7);
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, g, gm, gv, dst, GGML_OP_OPT_STEP_ADAMW);
GGML_ASSERT(pipeline != nullptr);
if (dryrun) {
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
return;
}
ggml_backend_vk_buffer_context * x_buf_ctx = (ggml_backend_vk_buffer_context *)x->buffer->context;
ggml_backend_vk_buffer_context * g_buf_ctx = (ggml_backend_vk_buffer_context *)g->buffer->context;
ggml_backend_vk_buffer_context * gm_buf_ctx = (ggml_backend_vk_buffer_context *)gm->buffer->context;
ggml_backend_vk_buffer_context * gv_buf_ctx = (ggml_backend_vk_buffer_context *)gv->buffer->context;
ggml_backend_vk_buffer_context * p_buf_ctx = (ggml_backend_vk_buffer_context *)p->buffer->context;
ggml_vk_sync_buffers(subctx);
vk_buffer d_X = nullptr, d_G = nullptr, d_GM = nullptr, d_GV = nullptr, d_P = nullptr;
size_t x_offset = 0, g_offset = 0, gm_offset = 0, gv_offset = 0, p_offset = 0;
bool X_uma = false, G_uma = false, GM_uma = false, GV_uma = false, P_uma = false;
if (ctx->device->uma) {
ggml_vk_host_get(ctx->device, x->data, d_X, x_offset);
ggml_vk_host_get(ctx->device, g->data, d_G, g_offset);
ggml_vk_host_get(ctx->device, gm->data, d_GM, gm_offset);
ggml_vk_host_get(ctx->device, gv->data, d_GV, gv_offset);
ggml_vk_host_get(ctx->device, p->data, d_P, p_offset);
X_uma = d_X != nullptr;
G_uma = d_G != nullptr;
GM_uma = d_GM != nullptr;
GV_uma = d_GV != nullptr;
P_uma = d_P != nullptr;
}
if (!X_uma) {
d_X = x_buf_ctx->dev_buffer;
x_offset = vk_tensor_offset(x) + x->view_offs;
}
if (!G_uma) {
d_G = g_buf_ctx->dev_buffer;
g_offset = vk_tensor_offset(g) + g->view_offs;
}
if (!GM_uma) {
d_GM = gm_buf_ctx->dev_buffer;
gm_offset = vk_tensor_offset(gm) + gm->view_offs;
}
if (!GV_uma) {
d_GV = gv_buf_ctx->dev_buffer;
gv_offset = vk_tensor_offset(gv) + gv->view_offs;
}
if (!P_uma) {
d_P = p_buf_ctx->dev_buffer;
p_offset = vk_tensor_offset(p) + p->view_offs;
}
const uint64_t x_size = ggml_nbytes(x);
const uint64_t g_size = ggml_nbytes(g);
const uint64_t gm_size = ggml_nbytes(gm);
const uint64_t gv_size = ggml_nbytes(gv);
const uint64_t p_size = ggml_nbytes(p);
std::array<uint32_t, 3> elements = { (uint32_t)ggml_nelements(x), 1, 1 };
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, {
vk_subbuffer{ d_X, x_offset, x_size },
vk_subbuffer{ d_G, g_offset, g_size },
vk_subbuffer{ d_GM, gm_offset, gm_size },
vk_subbuffer{ d_GV, gv_offset, gv_size },
vk_subbuffer{ d_P, p_offset, p_size },
}, sizeof(vk_op_push_constants), &pc, elements);
}
static void ggml_vk_opt_step_adamw(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, bool dryrun = false) {
const size_t n = ggml_nelements(dst->src[0]);
ggml_vk_op_f32_opt_step_adamw(
ctx, subctx, dst,
{ (uint32_t)n, 0, 0.0f, 0.0f },
dryrun
);
}
static void ggml_vk_concat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
int * op_params = (int *)dst->op_params;
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONCAT, {
(uint32_t)ggml_nelements(dst),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f, op_params[0],
}, dryrun);
}
static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const float sf0 = (float)dst->ne[0] / src0->ne[0];
const float sf1 = (float)dst->ne[1] / src0->ne[1];
const float sf2 = (float)dst->ne[2] / src0->ne[2];
const float sf3 = (float)dst->ne[3] / src0->ne[3];
ggml_vk_op_f32<vk_op_upscale_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UPSCALE, {
(uint32_t)ggml_nelements(dst), 0, 0,
(uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)dst->ne[0], (uint32_t)dst->ne[1], (uint32_t)dst->ne[2],(uint32_t)dst->ne[3],
sf0, sf1, sf2, sf3,
}, dryrun);
}
static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SCALE, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
op_params[0], 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
}
static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQR, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
}
static void ggml_vk_sin(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SIN, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
}
static void ggml_vk_cos(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_COS, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
}
static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CLAMP, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
op_params[0], op_params[1],
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
}
static void ggml_vk_pad(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_PAD, {
(uint32_t)ggml_nelements(dst),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
}
static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT, {
(uint32_t)ggml_nelements(dst),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
}
static void ggml_vk_repeat_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT_BACK, {
(uint32_t)ggml_nelements(dst),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
}
static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
}
static void ggml_vk_silu_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SILU_BACK, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }, dryrun);
}
static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun);
}
static void ggml_vk_group_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const int * int_op_params = (const int *)dst->op_params;
const float * float_op_params = (const float *)dst->op_params;
const uint32_t num_groups = int_op_params[0];
const float eps = float_op_params[1];
const uint32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_GROUP_NORM, { group_size, 0, eps, 0.0f }, dryrun);
}
static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun);
}
static void ggml_vk_rms_norm_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_RMS_NORM_BACK, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun);
}
static void ggml_vk_l2_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_L2_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun);
}
static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }, dryrun);
}
static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
int32_t * op_params = (int32_t *)dst->op_params;
ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }, dryrun);
}
static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
float scale = op_params[0];
float max_bias = op_params[1];
const uint32_t ncols = (uint32_t)src0->ne[0];
const uint32_t nrows_x = (uint32_t)ggml_nrows(src0);
const uint32_t nrows_y = (uint32_t)src0->ne[1];
const uint32_t n_head_kv = nrows_x/nrows_y;
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SOFT_MAX, {
ncols,
src1 != nullptr ? nrows_y : (uint32_t)0,
scale, max_bias,
m0, m1,
n_head_log2,
nrows_x,
}, dryrun);
}
static void ggml_vk_soft_max_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SOFT_MAX_BACK, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], op_params[1] }, dryrun);
}
static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool backprop, bool dryrun = false) {
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
// const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
const float freq_base = ((float *) dst->op_params)[5];
const float freq_scale = ((float *) dst->op_params)[6];
const float ext_factor = ((float *) dst->op_params)[7];
const float attn_factor = ((float *) dst->op_params)[8];
const float beta_fast = ((float *) dst->op_params)[9];
const float beta_slow = ((float *) dst->op_params)[10];
int sections[4] {};
if (mode & GGML_ROPE_TYPE_MROPE) {
memcpy(sections, (int32_t *) dst->op_params + 11, sizeof(int)*4);
}
float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
const float theta_scale = powf(freq_base, -2.0f/n_dims);
uint32_t s1 = src0->nb[1] / ggml_type_size(src0->type);
uint32_t s2 = src0->nb[2] / ggml_type_size(src0->type);
ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_ROPE, {
(uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1],
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1]}, theta_scale,
src2 != nullptr, (uint32_t)src0->ne[2], s1, s2,
sections[0], sections[1], sections[2], sections[3], backprop
}, dryrun);
}
static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
int32_t * op_params = (int32_t *)dst->op_params;
uint32_t ncols = src0->ne[0];
uint32_t ncols_pad = 1;
while (ncols_pad < ncols) {
ncols_pad *= 2;
}
GGML_ASSERT(ncols_pad <= 1024);
ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ARGSORT, {
ncols,
ncols_pad,
op_params[0],
}, dryrun);
}
static void ggml_vk_sum(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SUM, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }, dryrun);
}
static void ggml_vk_sum_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SUM_ROWS, { (uint32_t)src0->ne[0], 0, 0.0f, 0.0f }, dryrun);
}
static void ggml_vk_argmax(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ARGMAX, { (uint32_t)src0->ne[0], 0, 0.0f, 0.0f }, dryrun);
}
static void ggml_vk_count_equal(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_COUNT_EQUAL, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }, dryrun);
}
static void ggml_vk_im2col(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
const int32_t s0 = dst->op_params[0];
const int32_t s1 = dst->op_params[1];
const int32_t p0 = dst->op_params[2];
const int32_t p1 = dst->op_params[3];
const int32_t d0 = dst->op_params[4];
const int32_t d1 = dst->op_params[5];
const bool is_2D = dst->op_params[6] == 1;
const uint32_t IC = src1->ne[is_2D ? 2 : 1];
const uint32_t IH = is_2D ? src1->ne[1] : 1;
const uint32_t IW = src1->ne[0];
const uint32_t KH = is_2D ? src0->ne[1] : 1;
const uint32_t KW = src0->ne[0];
const uint32_t OH = is_2D ? dst->ne[2] : 1;
const uint32_t OW = dst->ne[1];
const uint32_t offset_delta = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
const uint32_t batch_offset = src1->nb[is_2D ? 3 : 2] / 4; // nb is byte offset, src is type float32
const uint32_t pelements = OW * KW * KH;
ggml_vk_op_f32<vk_op_im2col_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_IM2COL, {
batch_offset, offset_delta,
IC, IW, IH, OW, OH, KW, KH,
pelements,
IC * KH * KW,
s0, s1, p0, p1, d0, d1,
}, dryrun);
}
static void ggml_vk_timestep_embedding(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t dim = dst->op_params[0];
const uint32_t max_period = dst->op_params[1];
const uint32_t nb1 = dst->nb[1] / ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_timestep_embedding_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_TIMESTEP_EMBEDDING, {
nb1, dim, max_period,
}, dryrun);
}
static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
uint32_t op = static_cast<uint32_t>(dst->op_params[0]);
const int32_t k1 = dst->op_params[1];
const int32_t k0 = dst->op_params[2];
const int32_t s1 = dst->op_params[3];
const int32_t s0 = dst->op_params[4];
const int32_t p1 = dst->op_params[5];
const int32_t p0 = dst->op_params[6];
const uint32_t IH = src0->ne[1];
const uint32_t IW = src0->ne[0];
const uint32_t N = dst->ne[3];
const uint32_t OC = dst->ne[2];
const uint32_t OH = dst->ne[1];
const uint32_t OW = dst->ne[0];
const uint32_t parallel_elements = N * OC * OH * OW;
ggml_vk_op_f32<vk_op_pool2d_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_POOL_2D, {
IW, IH, OW, OH, OC,
parallel_elements,
op,
k0, k1, s0, s1, p0, p1,
}, dryrun);
}
static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const float * op_params = (const float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }, dryrun);
}
#ifdef GGML_VULKAN_RUN_TESTS
static void ggml_vk_print_matrix_area(const void * data, ggml_type type, int ne0, int ne1, int i0, int i1, int i2) {
if (type != GGML_TYPE_F32 && type != GGML_TYPE_F16) {
return;
}
i0 = std::max(i0, 5);
i1 = std::max(i1, 5);
i2 = std::max(i2, 0);
fprintf(stderr, " ");
for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
fprintf(stderr, "%7d ", idx1);
}
fprintf(stderr, "\n");
for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
fprintf(stderr, "%7d: ", idx0);
for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
if (idx0 >= 0 && idx0 < ne0 && idx1 >= 0 && idx1 < ne1) {
float val;
if (type == GGML_TYPE_F32) {
val = *((const float *) data + i2*ne1*ne0 + idx1*ne0 + idx0);
} else if (type == GGML_TYPE_F16) {
val = ggml_fp16_to_fp32(*((const ggml_fp16_t *) data + i2*ne1*ne0 + idx1*ne0 + idx0));
} else {
GGML_ABORT("fatal error");
}
fprintf(stderr, "% 7.2f ", val);
} else {
fprintf(stderr, " ");
}
}
fprintf(stderr, "\n");
}
}
template <typename X_TYPE, typename Y_TYPE>
static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t n, size_t k, size_t batch, size_t num_it, int split_k, int shader_size) {
VK_LOG_DEBUG("ggml_vk_test_matmul(" << m << ", " << n << ", " << k << ", " << batch << ", " << num_it << ", " << split_k << ", " << shader_size << ")");
const size_t x_ne = m * k * batch;
const size_t y_ne = k * n * batch;
const size_t d_ne = m * n * batch;
vk_pipeline p;
std::string shname;
if (shader_size == 0) {
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f32->a_s;
shname = "F32_ALIGNED_S";
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f32_f16->a_s;
shname = "F32_F16_ALIGNED_S";
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f16_f32.f32acc->a_s;
shname = "F16_F32_ALIGNED_S";
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f16.f32acc->a_s;
shname = "F16_ALIGNED_S";
} else {
GGML_ABORT("fatal error");
}
} else if (shader_size == 1) {
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f32->a_m;
shname = "F32_ALIGNED_M";
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f32_f16->a_m;
shname = "F32_F16_ALIGNED_M";
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f16_f32.f32acc->a_m;
shname = "F16_F32_ALIGNED_M";
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f16.f32acc->a_m;
shname = "F16_ALIGNED_M";
} else {
GGML_ABORT("fatal error");
}
} else if (shader_size == 2) {
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f32->a_l;
shname = "F32_ALIGNED_L";
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f32_f16->a_l;
shname = "F32_F16_ALIGNED_L";
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f16_f32.f32acc->a_l;
shname = "F16_F32_ALIGNED_L";
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f16.f32acc->a_l;
shname = "F16_ALIGNED_L";
} else {
GGML_ABORT("fatal error");
}
} else {
GGML_ASSERT(0);
}
const size_t kpad = ggml_vk_align_size(k, p->align);
if (k != kpad) {
if (shader_size == 0) {
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f32->s;
shname = "F32_S";
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f32_f16->s;
shname = "F32_F16_S";
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f16_f32.f32acc->s;
shname = "F16_F32_S";
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f16.f32acc->s;
shname = "F16_S";
}
} else if (shader_size == 1) {
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f32->m;
shname = "F32_M";
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f32_f16->m;
shname = "F32_F16_M";
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f16_f32.f32acc->m;
shname = "F16_F32_M";
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f16.f32acc->m;
shname = "F16_M";
}
} else if (shader_size == 2) {
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f32->l;
shname = "F32_L";
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f32_f16->l;
shname = "F32_F16_L";
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f16_f32.f32acc->l;
shname = "F16_F32_L";
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
p = ctx->device->pipeline_matmul_f16.f32acc->l;
shname = "F16_L";
}
}
}
ggml_pipeline_request_descriptor_sets(ctx->device, p, num_it);
if (split_k > 1) {
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, num_it);
if (ctx->prealloc_split_k == nullptr || ctx->prealloc_split_k->size < sizeof(float) * d_ne * split_k) {
// Resize buffer
if (ctx->prealloc_split_k != nullptr) {
ggml_vk_destroy_buffer(ctx->prealloc_split_k);
}
ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
}
}
if (ctx->device->need_compiles) {
ggml_vk_load_shaders(ctx->device);
}
ggml_pipeline_allocate_descriptor_sets(ctx->device);
vk_buffer d_X = ggml_vk_create_buffer_check(ctx->device, sizeof(X_TYPE) * x_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer d_Y = ggml_vk_create_buffer_check(ctx->device, sizeof(Y_TYPE) * y_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer d_D = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
X_TYPE* x = (X_TYPE *) malloc(sizeof(X_TYPE) * x_ne);
Y_TYPE* y = (Y_TYPE *) malloc(sizeof(Y_TYPE) * y_ne);
float* d = (float *) malloc(sizeof(float) * d_ne);
for (size_t i = 0; i < x_ne; i++) {
if (std::is_same<float, X_TYPE>()) {
x[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
// x[i] = 1.0f;
// x[i] = i + 1;
// x[i] = (i % k == i / k) ? 1.0f : 0.0f;
} else if (std::is_same<ggml_fp16_t, X_TYPE>()) {
x[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f);
// x[i] = ggml_fp32_to_fp16(1.0f);
// x[i] = ggml_fp32_to_fp16(i + 1);
// x[i] = ggml_fp32_to_fp16((i % k == i / k) ? 1.0f : 0.0f);
} else {
GGML_ABORT("fatal error");
}
}
for (size_t i = 0; i < y_ne; i++) {
if (std::is_same<float, Y_TYPE>()) {
y[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
// y[i] = (i % k == i / k) ? 1.0f : 0.0f;
// y[i] = i + 1;
} else if (std::is_same<ggml_fp16_t, Y_TYPE>()) {
y[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f);
// y[i] = ggml_fp32_to_fp16((i % k == i / k) ? 1.0f : 0.0f);
// y[i] = ggml_fp32_to_fp16(i + 1);
} else {
GGML_ABORT("fatal error");
}
}
ggml_vk_buffer_write(d_X, 0, x, sizeof(X_TYPE) * k * m * batch);
ggml_vk_buffer_write(d_Y, 0, y, sizeof(Y_TYPE) * k * n * batch);
vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue);
ggml_vk_ctx_begin(ctx->device, subctx);
for (size_t i = 0; i < num_it; i++) {
ggml_vk_matmul(
ctx, subctx, p, ggml_vk_subbuffer(d_X), ggml_vk_subbuffer(d_Y), ggml_vk_subbuffer(d_D), ggml_vk_subbuffer(ctx->prealloc_split_k),
m, n, k,
k, k, m, k*m, k*n, m*n,
split_k, batch, batch, batch, 1, 1, n
);
}
ggml_vk_ctx_end(subctx);
auto begin = std::chrono::high_resolution_clock::now();
ggml_vk_submit(subctx, ctx->fence);
VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_matmul waitForFences");
ctx->device->device.resetFences({ ctx->fence });
auto end = std::chrono::high_resolution_clock::now();
double time = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
// copy dst to host
ggml_vk_buffer_read(d_D, 0, d, sizeof(float) * d_ne);
float * d_chk = (float *) malloc(sizeof(float) * d_ne);
ggml_init_params iparams = {
/*.mem_size =*/ 1024*1024*1024,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ggml_ctx = ggml_init(iparams);
ggml_type src0_type;
ggml_type src1_type;
if (std::is_same<float, X_TYPE>()) {
src0_type = GGML_TYPE_F32;
} else if (std::is_same<ggml_fp16_t, X_TYPE>()) {
src0_type = GGML_TYPE_F16;
} else {
GGML_ABORT("fatal error");
}
if (std::is_same<float, Y_TYPE>()) {
src1_type = GGML_TYPE_F32;
} else if (std::is_same<ggml_fp16_t, Y_TYPE>()) {
src1_type = GGML_TYPE_F16;
} else {
GGML_ABORT("fatal error");
}
ggml_tensor * src0_ggml = ggml_new_tensor_3d(ggml_ctx, src0_type, k, m, batch);
ggml_tensor * src1_ggml = ggml_new_tensor_3d(ggml_ctx, src1_type, k, n, batch);
ggml_tensor * tensor_ggml = ggml_mul_mat(ggml_ctx, src0_ggml, src1_ggml);
src0_ggml->data = x;
src1_ggml->data = y;
tensor_ggml->data = d_chk;
ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
ggml_build_forward_expand(cgraph, tensor_ggml);
ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 1);
ggml_free(ggml_ctx);
double avg_err = 0.0;
int first_err_n = -1;
int first_err_m = -1;
int first_err_b = -1;
for (size_t i = 0; i < m*n*batch; i++) {
double err = std::fabs(d[i] - d_chk[i]);
avg_err += err;
if ((err > 0.05f || std::isnan(err)) && first_err_n == -1) {
first_err_b = i / (m * n);
first_err_n = (i % (m * n)) / m;
first_err_m = (i % (m * n)) % m;
}
}
avg_err /= m * n;
double tflops = 2.0*m*n*k*batch*num_it / (time / 1000.0) / (1000.0*1000.0*1000.0*1000.0);
std::cerr << "TEST " << shname << " m=" << m << " n=" << n << " k=" << k << " batch=" << batch << " split_k=" << split_k << " matmul " << time / num_it << "ms " << tflops << " TFLOPS avg_err=" << avg_err << std::endl;
if (avg_err > 0.1 || std::isnan(avg_err)) {
std::cerr << "m = " << first_err_m << " n = " << first_err_n << " b = " << first_err_b << std::endl;
std::cerr << "Actual result: " << std::endl << std::endl;
ggml_vk_print_matrix_area(d, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
std::cerr << "Expected result: " << std::endl << std::endl;
ggml_vk_print_matrix_area(d_chk, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
if (split_k > 1) {
float * split_k_buf = (float *) malloc(sizeof(float) * d_ne * split_k);
ggml_vk_buffer_read(ctx->prealloc_split_k, 0, split_k_buf, sizeof(float) * d_ne * split_k);
std::cerr << "d_buf0: " << std::endl << std::endl;
ggml_vk_print_matrix_area(split_k_buf, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
std::cerr << "d_buf1: " << std::endl << std::endl;
ggml_vk_print_matrix_area(split_k_buf + d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
std::cerr << "d_buf2: " << std::endl << std::endl;
ggml_vk_print_matrix_area(split_k_buf + 2 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
std::cerr << "d_buf3: " << std::endl << std::endl;
ggml_vk_print_matrix_area(split_k_buf + 3 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
free(split_k_buf);
}
}
free(d_chk);
ggml_vk_queue_cleanup(ctx->device, ctx->device->transfer_queue);
ggml_vk_queue_cleanup(ctx->device, ctx->device->compute_queue);
ggml_vk_destroy_buffer(d_X);
ggml_vk_destroy_buffer(d_Y);
ggml_vk_destroy_buffer(d_D);
ggml_pipeline_cleanup(p);
ggml_pipeline_cleanup(ctx->device->pipeline_matmul_split_k_reduce);
free(x);
free(y);
free(d);
}
static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
return;
}
i0 = std::max(i0, 5);
i1 = std::max(i1, 5);
i2 = std::max(i2, 0);
i3 = std::max(i3, 0);
fprintf(stderr, " ");
for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
fprintf(stderr, "%7d ", idx1);
}
fprintf(stderr, "\n");
for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
fprintf(stderr, "%7d: ", idx0);
for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) {
float val;
if (tensor->type == GGML_TYPE_F32) {
val = *(float *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
} else if (tensor->type == GGML_TYPE_F16) {
val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
} else {
GGML_ABORT("fatal error");
}
fprintf(stderr, "% 7.2f ", val);
} else {
fprintf(stderr, " ");
}
}
fprintf(stderr, "\n");
}
}
static void ggml_vk_quantize_data(const float * from, void * to, size_t ne, ggml_type quant) {
ggml_quantize_chunk(quant, from, to, 0, 1, ne, nullptr);
}
static void ggml_vk_dequantize_data(const void * from, float * to, size_t ne, ggml_type quant) {
if (quant == GGML_TYPE_F32) {
memcpy(to, from, sizeof(float) * ne);
return;
}
const auto * tt = ggml_get_type_traits(quant);
ggml_to_float_t dequant_fn = tt->to_float;
dequant_fn(from, to, ne);
}
static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_type quant) {
VK_LOG_DEBUG("ggml_vk_test_dequant(" << ne << ")");
const size_t x_sz = sizeof(float) * ne;
const size_t x_sz_f16 = sizeof(ggml_fp16_t) * ne;
const size_t qx_sz = ne * ggml_type_size(quant)/ggml_blck_size(quant);
float * x = (float *) malloc(x_sz);
void * qx = malloc(qx_sz);
vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz_f16, vk::MemoryPropertyFlagBits::eDeviceLocal);
float * x_ref = (float *) malloc(x_sz);
ggml_fp16_t * x_chk = (ggml_fp16_t *) malloc(x_sz_f16);
for (size_t i = 0; i < ne; i++) {
x[i] = rand() / (float)RAND_MAX;
}
vk_pipeline p = ggml_vk_get_to_fp16(ctx, quant);
ggml_vk_quantize_data(x, qx, ne, quant);
ggml_vk_dequantize_data(qx, x_ref, ne, quant);
ggml_pipeline_request_descriptor_sets(ctx->device, p, 1);
if (ctx->device->need_compiles) {
ggml_vk_load_shaders(ctx->device);
}
ggml_pipeline_allocate_descriptor_sets(ctx->device);
ggml_vk_buffer_write(qx_buf, 0, qx, qx_sz);
vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue);
ggml_vk_ctx_begin(ctx->device, subctx);
const std::vector<uint32_t> pc = { 1, (uint32_t)ne, (uint32_t)ne, (uint32_t)ne, (uint32_t)ne };
ggml_vk_dispatch_pipeline(ctx, subctx, p, { vk_subbuffer{ qx_buf, 0, qx_sz }, vk_subbuffer{ x_buf, 0, x_sz_f16 } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)ne, 1, 1});
ggml_vk_ctx_end(subctx);
auto begin = std::chrono::high_resolution_clock::now();
ggml_vk_submit(subctx, ctx->fence);
VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_dequant waitForFences");
ctx->device->device.resetFences({ ctx->fence });
auto end = std::chrono::high_resolution_clock::now();
double ms_dequant = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
ggml_vk_buffer_read(x_buf, 0, x_chk, x_sz_f16);
int first_err = -1;
double avg_err = 0.0;
for (size_t i = 0; i < ne; i++) {
double error = std::fabs(x_ref[i] - ggml_fp16_to_fp32(x_chk[i]));
avg_err += error;
if (first_err < 0 && error > 0.05) {
first_err = i;
}
}
avg_err /= ne;
std::cerr << "TEST DEQUANT " << ggml_type_name(quant) << " time=" << ms_dequant << "ms avg_err=" << avg_err << std::endl;
if (avg_err > 0.1) {
std::cerr << "first_error = " << first_err << std::endl;
std::cerr << "Actual result: " << std::endl << std::endl;
for (int i = std::max(0, first_err - 5); i < std::min((int)ne, first_err + 5); i++) {
std::cerr << ggml_fp16_to_fp32(x_chk[i]) << ", ";
}
std::cerr << std::endl << "Expected result: " << std::endl << std::endl;
for (int i = std::max(0, first_err - 5); i < std::min((int)ne, first_err + 5); i++) {
std::cerr << x_ref[i] << ", ";
}
std::cerr << std::endl;
}
ggml_vk_destroy_buffer(x_buf);
ggml_vk_destroy_buffer(qx_buf);
free(x);
free(qx);
free(x_ref);
free(x_chk);
}
// This does not work without ggml q8_1 quantization support
//
// typedef uint16_t ggml_half;
// typedef uint32_t ggml_half2;
//
// #define QK8_1 32
// typedef struct {
// union {
// struct {
// ggml_half d; // delta
// ggml_half s; // d * sum(qs[i])
// } GGML_COMMON_AGGR_S;
// ggml_half2 ds;
// } GGML_COMMON_AGGR_U;
// int8_t qs[QK8_1]; // quants
// } block_q8_1;
//
// static void ggml_vk_test_quantize(ggml_backend_vk_context * ctx, size_t ne, ggml_type quant) {
// VK_LOG_DEBUG("ggml_vk_test_quantize(" << ne << ")");
// GGML_ASSERT(quant == GGML_TYPE_Q8_1);
//
// const size_t x_sz = sizeof(float) * ne;
// const size_t qx_sz = ne * ggml_type_size(quant)/ggml_blck_size(quant);
// float * x = (float *) malloc(x_sz);
// block_q8_1 * qx = (block_q8_1 *)malloc(qx_sz);
// block_q8_1 * qx_res = (block_q8_1 *)malloc(qx_sz);
// vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
// vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
//
// for (size_t i = 0; i < ne; i++) {
// x[i] = rand() / (float)RAND_MAX;
// }
//
// vk_pipeline p = ggml_vk_get_quantize_pipeline(ctx, quant);
//
// ggml_pipeline_request_descriptor_sets(ctx->device, p, 1);
//
// if (ctx->device->need_compiles) {
// ggml_vk_load_shaders(ctx->device);
// }
//
// ggml_pipeline_allocate_descriptor_sets(ctx->device);
//
// ggml_vk_buffer_write(x_buf, 0, x, x_sz);
//
// vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue);
// ggml_vk_ctx_begin(ctx->device, subctx);
// ggml_vk_quantize_q8_1(ctx, subctx, ggml_vk_subbuffer(x_buf), ggml_vk_subbuffer(qx_buf), ne);
// ggml_vk_ctx_end(subctx);
//
// auto begin = std::chrono::high_resolution_clock::now();
//
// ggml_vk_submit(subctx, ctx->fence);
// VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_quantize waitForFences");
// ctx->device->device.resetFences({ ctx->fence });
//
// auto end = std::chrono::high_resolution_clock::now();
//
// double ms_quant = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
// ggml_vk_buffer_read(qx_buf, 0, qx, qx_sz);
//
// ggml_vk_quantize_data(x, qx_res, ne, quant);
//
// int first_err = -1;
//
// for (size_t i = 0; i < ne / 32; i++) {
// double error = std::fabs(ggml_fp16_to_fp32(qx_res[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d) - ggml_fp16_to_fp32(qx[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d));
//
// if (first_err < 0 && error > 0.1) {
// first_err = i;
// }
//
// error = std::fabs(ggml_fp16_to_fp32(qx_res[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.s) - ggml_fp16_to_fp32(qx[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.s));
//
// if (first_err < 0 && error > 0.1) {
// first_err = i;
// }
//
// for (size_t j = 0; j < 32; j++) {
// uint64_t error = std::abs(qx_res[i].qs[j] - qx[i].qs[j]);
//
// if (first_err < 0 && error > 1) {
// first_err = i;
// }
// }
// }
//
// std::cerr << "TEST QUANTIZE " << ggml_type_name(quant) << " time=" << ms_quant << "ms " << (first_err == -1 ? "CORRECT" : "INCORRECT") << std::endl;
//
// if (first_err != -1) {
// std::cerr << "first_error = " << first_err << std::endl;
// std::cerr << "Actual result: " << std::endl << std::endl;
// std::cout << "d=" << ggml_fp16_to_fp32(qx[first_err].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d) << " s=" << ggml_fp16_to_fp32(qx[first_err].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.s) << " ";
// for (size_t j = 0; j < 32; j++) {
// std::cout << " qs" << j << "=" << (uint32_t)qx[first_err].qs[j] << " ";
// }
// std::cerr << std::endl << std::endl << "Expected result: " << std::endl << std::endl;
// std::cout << "d=" << ggml_fp16_to_fp32(qx_res[first_err].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d) << " s=" << ggml_fp16_to_fp32(qx_res[first_err].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.s) << " ";
// for (size_t j = 0; j < 32; j++) {
// std::cout << " qs" << j << "=" << (uint32_t)qx_res[first_err].qs[j] << " ";
// }
// std::cerr << std::endl;
// }
//
// ggml_vk_destroy_buffer(x_buf);
// ggml_vk_destroy_buffer(qx_buf);
//
// free(x);
// free(qx);
// free(qx_res);
// }
static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m, size_t n, size_t k, size_t batch, size_t num_it, size_t split_k, size_t shader_size, ggml_type quant, bool mmq = false) {
VK_LOG_DEBUG("ggml_vk_test_dequant_matmul(" << m << ", " << n << ", " << k << ", " << batch << ", " << num_it << ", " << split_k << ", " << ggml_type_name(quant) << ")");
const size_t x_ne = m * k * batch;
const size_t y_ne = k * n * batch;
const size_t d_ne = m * n * batch;
vk_matmul_pipeline2 * pipelines;
if (mmq) {
pipelines = ctx->device->pipeline_dequant_mul_mat_mat_q8_1;
} else {
pipelines = ctx->device->pipeline_dequant_mul_mat_mat;
}
const bool fp16acc = ctx->device->fp16;
vk_pipeline p;
std::string shname;
if (shader_size == 0) {
p = fp16acc ? pipelines[quant].f16acc->a_s : pipelines[quant].f32acc->a_s;
shname = std::string(ggml_type_name(quant)) + "_ALIGNED_S";
} else if (shader_size == 1) {
p = fp16acc ? pipelines[quant].f16acc->a_m : pipelines[quant].f32acc->a_m;
shname = std::string(ggml_type_name(quant)) + "_ALIGNED_M";
} else if (shader_size == 2) {
p = fp16acc ? pipelines[quant].f16acc->a_l : pipelines[quant].f32acc->a_l;
shname = std::string(ggml_type_name(quant)) + "_ALIGNED_L";
} else {
GGML_ASSERT(0);
}
const size_t kpad = mmq ? 0 : ggml_vk_align_size(k, p->align);
if (mmq || k != kpad) {
if (shader_size == 0) {
p = fp16acc ? pipelines[quant].f16acc->s : pipelines[quant].f32acc->s;
shname = std::string(ggml_type_name(quant)) + "_S";
} else if (shader_size == 1) {
p = fp16acc ? pipelines[quant].f16acc->m : pipelines[quant].f32acc->m;
shname = std::string(ggml_type_name(quant)) + "_M";
} else if (shader_size == 2) {
p = fp16acc ? pipelines[quant].f16acc->l : pipelines[quant].f32acc->l;
shname = std::string(ggml_type_name(quant)) + "_L";
} else {
GGML_ASSERT(0);
}
}
if (p == nullptr) {
std::cerr << "error: no pipeline for ggml_vk_test_dequant_matmul " << ggml_type_name(quant) << std::endl;
return;
}
const size_t x_sz = sizeof(float) * x_ne;
const size_t y_sz = sizeof(float) * y_ne;
const size_t qx_sz = x_ne * ggml_type_size(quant)/ggml_blck_size(quant);
const size_t qy_sz = mmq ? y_ne * ggml_type_size(GGML_TYPE_Q8_1)/ggml_blck_size(GGML_TYPE_Q8_1) : y_sz;
const size_t d_sz = sizeof(float) * d_ne;
float * x = (float *) malloc(x_sz);
float * y = (float *) malloc(y_sz);
void * qx = malloc(qx_sz);
vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer y_buf = ggml_vk_create_buffer_check(ctx->device, y_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer qy_buf = ggml_vk_create_buffer_check(ctx->device, qy_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer d_buf = ggml_vk_create_buffer_check(ctx->device, d_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
float * d = (float *) malloc(d_sz);
float * d_chk = (float *) malloc(d_sz);
for (size_t i = 0; i < x_ne; i++) {
x[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
// x[i] = (i % k == i / k) ? 1.0f : 0.0f;
// x[i] = i % k;
}
ggml_vk_quantize_data(x, qx, x_ne, quant);
for (size_t i = 0; i < y_ne; i++) {
y[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
// y[i] = (i % k == i / k) ? 1.0f : 0.0f;
// y[i] = i % k;
}
ggml_pipeline_request_descriptor_sets(ctx->device, p, num_it);
if (split_k > 1) {
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, num_it);
if (ctx->prealloc_split_k == nullptr || ctx->prealloc_split_k->size < sizeof(float) * d_ne * split_k) {
// Resize buffer
if (ctx->prealloc_split_k != nullptr) {
ggml_vk_destroy_buffer(ctx->prealloc_split_k);
}
ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
}
}
if (mmq) {
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_quantize_q8_1, num_it);
}
if (ctx->device->need_compiles) {
ggml_vk_load_shaders(ctx->device);
}
ggml_pipeline_allocate_descriptor_sets(ctx->device);
ggml_vk_buffer_write(qx_buf, 0, qx, qx_sz);
ggml_vk_buffer_write(y_buf, 0, y, y_sz);
vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue);
ggml_vk_ctx_begin(ctx->device, subctx);
if (mmq) {
for (size_t i = 0; i < num_it; i++) {
ggml_vk_quantize_q8_1(ctx, subctx, { y_buf, 0, y_sz }, { qy_buf, 0, qy_sz }, y_ne);
ggml_vk_matmul(
ctx, subctx, p, { qx_buf, 0, qx_sz }, { qy_buf, 0, qy_sz }, { d_buf, 0, d_sz }, { ctx->prealloc_split_k, 0, ctx->prealloc_size_split_k },
m, n, k,
k, k, m, k*m, k*n, m*n,
split_k, batch, batch, batch, 1, 1, n
);
}
} else {
for (size_t i = 0; i < num_it; i++) {
ggml_vk_matmul(
ctx, subctx, p, { qx_buf, 0, qx_sz }, { y_buf, 0, y_sz }, { d_buf, 0, d_sz }, { ctx->prealloc_split_k, 0, ctx->prealloc_size_split_k },
m, n, k,
k, k, m, k*m, k*n, m*n,
split_k, batch, batch, batch, 1, 1, n
);
}
}
ggml_vk_ctx_end(subctx);
auto begin = std::chrono::high_resolution_clock::now();
ggml_vk_submit(subctx, ctx->fence);
VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_dequant waitForFences");
ctx->device->device.resetFences({ ctx->fence });
auto end = std::chrono::high_resolution_clock::now();
double time_ms = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
ggml_vk_buffer_read(d_buf, 0, d, d_sz);
ggml_init_params iparams = {
/*.mem_size =*/ 1024*1024*1024,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ggml_ctx = ggml_init(iparams);
ggml_tensor * src0_ggml = ggml_new_tensor_3d(ggml_ctx, quant, k, m, batch);
ggml_tensor * src1_ggml = ggml_new_tensor_3d(ggml_ctx, GGML_TYPE_F32, k, n, batch);
ggml_tensor * tensor_ggml = ggml_mul_mat(ggml_ctx, src0_ggml, src1_ggml);
src0_ggml->data = qx;
src1_ggml->data = y;
tensor_ggml->data = d_chk;
ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
ggml_build_forward_expand(cgraph, tensor_ggml);
ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 1);
ggml_free(ggml_ctx);
double avg_err = 0.0;
int first_err_n = -1;
int first_err_m = -1;
int first_err_b = -1;
for (size_t i = 0; i < m*n*batch; i++) {
double err = std::fabs(d[i] - d_chk[i]);
avg_err += err;
if ((err > 0.05f || std::isnan(err)) && first_err_n == -1) {
first_err_b = i / (m * n);
first_err_n = (i % (m * n)) / m;
first_err_m = (i % (m * n)) % m;
}
}
avg_err /= m * n;
double tflops = 2.0*m*n*k*batch*num_it / (time_ms / 1000.0) / (1000.0*1000.0*1000.0*1000.0);
std::cerr << "TEST dequant matmul " << shname;
if (mmq) {
std::cerr << " mmq";
}
std::cerr << " m=" << m << " n=" << n << " k=" << k << " batch=" << batch << " split_k=" << split_k << " matmul " << time_ms / num_it << "ms " << tflops << " TFLOPS avg_err=" << avg_err << std::endl;
if (avg_err > 0.01 || std::isnan(avg_err)) {
std::cerr << "m = " << first_err_m << " n = " << first_err_n << " b = " << first_err_b << std::endl;
std::cerr << "Actual result: " << std::endl << std::endl;
ggml_vk_print_matrix_area(d, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
std::cerr << std::endl;
std::cerr << "Expected result: " << std::endl << std::endl;
ggml_vk_print_matrix_area(d_chk, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
std::cerr << "src0: " << std::endl << std::endl;
ggml_vk_print_matrix_area(x, GGML_TYPE_F32, k, m, first_err_m, first_err_n, first_err_b);
std::cerr << std::endl;
std::cerr << "src1: " << std::endl << std::endl;
ggml_vk_print_matrix_area(y, GGML_TYPE_F32, k, n, first_err_m, first_err_n, first_err_b);
if (split_k > 1) {
float * split_k_buf = (float *) malloc(sizeof(float) * d_ne * split_k);
ggml_vk_buffer_read(ctx->prealloc_split_k, 0, split_k_buf, sizeof(float) * d_ne * split_k);
std::cerr << "d_buf0: " << std::endl << std::endl;
ggml_vk_print_matrix_area(split_k_buf, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
std::cerr << "d_buf1: " << std::endl << std::endl;
ggml_vk_print_matrix_area(split_k_buf + d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
std::cerr << "d_buf2: " << std::endl << std::endl;
ggml_vk_print_matrix_area(split_k_buf + 2 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
std::cerr << "d_buf3: " << std::endl << std::endl;
ggml_vk_print_matrix_area(split_k_buf + 3 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
free(split_k_buf);
}
}
ggml_vk_destroy_buffer(qx_buf);
ggml_vk_destroy_buffer(y_buf);
ggml_vk_destroy_buffer(qy_buf);
ggml_vk_destroy_buffer(d_buf);
free(x);
free(qx);
free(y);
free(d);
free(d_chk);
}
#endif
static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) {
#if defined(GGML_VULKAN_RUN_TESTS)
const std::vector<size_t> vals {
512, 512, 128,
128, 512, 512,
4096, 512, 4096,
11008, 512, 4096,
4096, 512, 11008,
32000, 512, 4096,
8, 8, 8,
100, 46, 576,
623, 111, 128,
100, 46, 558,
512, 1, 256,
128, 110, 622,
511, 511, 127,
511, 511, 7,
511, 511, 17,
49, 49, 128,
128, 49, 49,
4096, 49, 4096,
};
const size_t num_it = 100;
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 0, GGML_TYPE_Q4_0);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 1, GGML_TYPE_Q4_0);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 2, GGML_TYPE_Q4_0);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 0, GGML_TYPE_Q4_0, true);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 1, GGML_TYPE_Q4_0, true);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 2, GGML_TYPE_Q4_0, true);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 0, GGML_TYPE_Q8_0);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 1, GGML_TYPE_Q8_0);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 2, GGML_TYPE_Q8_0);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 0, GGML_TYPE_Q8_0, true);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 1, GGML_TYPE_Q8_0, true);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 2, GGML_TYPE_Q8_0, true);
abort();
for (size_t i = 0; i < vals.size(); i += 3) {
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0);
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 1);
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 2);
std::cerr << '\n';
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 0);
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 1);
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 2);
std::cerr << '\n';
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 0);
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 1);
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 2);
std::cerr << '\n' << std::endl;
if (vals[i + 2] % 32 == 0) {
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0, GGML_TYPE_Q4_0);
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 1, GGML_TYPE_Q4_0);
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 2, GGML_TYPE_Q4_0);
std::cerr << '\n';
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 0, GGML_TYPE_Q4_0);
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 1, GGML_TYPE_Q4_0);
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 2, GGML_TYPE_Q4_0);
std::cerr << '\n';
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 0, GGML_TYPE_Q4_0);
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 1, GGML_TYPE_Q4_0);
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 2, GGML_TYPE_Q4_0);
std::cerr << '\n' << std::endl;
}
if (vals[i + 2] % 256 == 0) {
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0, GGML_TYPE_Q4_K);
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 1, GGML_TYPE_Q4_K);
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 2, GGML_TYPE_Q4_K);
std::cerr << '\n';
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 0, GGML_TYPE_Q4_K);
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 1, GGML_TYPE_Q4_K);
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 2, GGML_TYPE_Q4_K);
std::cerr << '\n';
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 0, GGML_TYPE_Q4_K);
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 1, GGML_TYPE_Q4_K);
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 2, GGML_TYPE_Q4_K);
std::cerr << '\n' << std::endl;
}
}
GGML_ABORT("fatal error");
#endif
if (ctx->prealloc_x == nullptr || (ctx->prealloc_size_x > 0 && ctx->prealloc_x->size < ctx->prealloc_size_x)) {
VK_LOG_MEMORY("ggml_vk_preallocate_buffers(x_size: " << ctx->prealloc_size_x << ")");
// Resize buffer
if (ctx->prealloc_x != nullptr) {
ggml_vk_destroy_buffer(ctx->prealloc_x);
}
ctx->prealloc_x = ggml_vk_create_buffer_device(ctx->device, ctx->prealloc_size_x);
}
if (ctx->prealloc_y == nullptr || (ctx->prealloc_size_y > 0 && ctx->prealloc_y->size < ctx->prealloc_size_y)) {
VK_LOG_MEMORY("ggml_vk_preallocate_buffers(y_size: " << ctx->prealloc_size_y << ")");
// Resize buffer
if (ctx->prealloc_y != nullptr) {
ggml_vk_destroy_buffer(ctx->prealloc_y);
}
ctx->prealloc_y = ggml_vk_create_buffer_device(ctx->device, ctx->prealloc_size_y);
}
if (ctx->prealloc_split_k == nullptr || (ctx->prealloc_size_split_k > 0 && ctx->prealloc_split_k->size < ctx->prealloc_size_split_k)) {
VK_LOG_MEMORY("ggml_vk_preallocate_buffers(split_k_size: " << ctx->prealloc_size_split_k << ")");
// Resize buffer
if (ctx->prealloc_split_k != nullptr) {
ggml_vk_destroy_buffer(ctx->prealloc_split_k);
}
ctx->prealloc_split_k = ggml_vk_create_buffer_device(ctx->device, ctx->prealloc_size_split_k);
}
}
static bool ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_tensor* tensor, int tensor_idx, bool use_fence, bool almost_ready);
// Returns true if node has enqueued work into the queue, false otherwise
// If submit is true the current all operations queued so far are being submitted to Vulkan to overlap cmdlist creation and GPU execution.
static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, int node_idx, ggml_tensor *node_begin, int node_idx_begin, bool dryrun, bool last_node, bool almost_ready, bool submit){
if (ggml_is_empty(node) || !node->buffer) {
return false;
}
VK_LOG_DEBUG("ggml_vk_build_graph(" << node << ", " << ggml_op_name(node->op) << ")");
ctx->semaphore_idx = 0;
const ggml_tensor * src0 = node->src[0];
const ggml_tensor * src1 = node->src[1];
const ggml_tensor * src2 = node->src[2];
const ggml_tensor * src3 = node->src[3];
switch (node->op) {
// Return on empty ops to avoid generating a compute_ctx and setting exit_tensor
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_NONE:
return false;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(node)) {
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_SIGMOID:
break;
default:
return false;
}
break;
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
case GGML_OP_GET_ROWS:
case GGML_OP_ADD:
case GGML_OP_ACC:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SIN:
case GGML_OP_COS:
case GGML_OP_CLAMP:
case GGML_OP_PAD:
case GGML_OP_CPY:
case GGML_OP_CONT:
case GGML_OP_DUP:
case GGML_OP_SILU_BACK:
case GGML_OP_NORM:
case GGML_OP_GROUP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_L2_NORM:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
case GGML_OP_ARGSORT:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGMAX:
case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_POOL_2D:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
case GGML_OP_LEAKY_RELU:
case GGML_OP_FLASH_ATTN_EXT:
case GGML_OP_OPT_STEP_ADAMW:
break;
default:
std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl;
GGML_ABORT("fatal error");
return false;
}
vk_context compute_ctx;
if (!dryrun) {
if (ctx->compute_ctx.expired()) {
compute_ctx = ggml_vk_create_context(ctx, ctx->device->compute_queue);
ctx->compute_ctx = compute_ctx;
ggml_vk_ctx_begin(ctx->device, compute_ctx);
} else {
compute_ctx = ctx->compute_ctx.lock();
}
} else {
switch (node->op) {
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
case GGML_OP_ACC:
case GGML_OP_GET_ROWS:
case GGML_OP_ADD:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SIN:
case GGML_OP_COS:
case GGML_OP_CLAMP:
case GGML_OP_PAD:
case GGML_OP_CPY:
case GGML_OP_CONT:
case GGML_OP_DUP:
case GGML_OP_SILU_BACK:
case GGML_OP_NORM:
case GGML_OP_GROUP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_L2_NORM:
case GGML_OP_UNARY:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
case GGML_OP_ARGSORT:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGMAX:
case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_POOL_2D:
case GGML_OP_LEAKY_RELU:
{
// These operations all go through ggml_vk_op_f32, so short-circuit and
// do the only thing needed for the dryrun.
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, node, node->op);
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
return false;
}
default:
break;
}
}
switch (node->op) {
case GGML_OP_REPEAT:
ggml_vk_repeat(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_REPEAT_BACK:
ggml_vk_repeat_back(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_ACC:
ggml_vk_acc(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_GET_ROWS:
ggml_vk_get_rows(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_ADD:
ggml_vk_add(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_SUB:
ggml_vk_sub(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_MUL:
ggml_vk_mul(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_DIV:
ggml_vk_div(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_CONCAT:
ggml_vk_concat(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_UPSCALE:
ggml_vk_upscale(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_SCALE:
ggml_vk_scale(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_SQR:
ggml_vk_sqr(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_SIN:
ggml_vk_sin(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_COS:
ggml_vk_cos(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_CLAMP:
ggml_vk_clamp(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_PAD:
ggml_vk_pad(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_CPY:
case GGML_OP_CONT:
case GGML_OP_DUP:
ggml_vk_cpy(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_SILU_BACK:
ggml_vk_silu_back(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_NORM:
ggml_vk_norm(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_GROUP_NORM:
ggml_vk_group_norm(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_RMS_NORM:
ggml_vk_rms_norm(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_RMS_NORM_BACK:
ggml_vk_rms_norm_back(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_L2_NORM:
ggml_vk_l2_norm(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(node)) {
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_SIGMOID:
ggml_vk_unary(ctx, compute_ctx, src0, node, dryrun);
break;
default:
return false;
}
break;
case GGML_OP_DIAG_MASK_INF:
ggml_vk_diag_mask_inf(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_SOFT_MAX:
ggml_vk_soft_max(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_SOFT_MAX_BACK:
ggml_vk_soft_max_back(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_ROPE:
ggml_vk_rope(ctx, compute_ctx, src0, src1, src2, node, false, dryrun);
break;
case GGML_OP_ROPE_BACK:
ggml_vk_rope(ctx, compute_ctx, src0, src1, src2, node, true, dryrun);
break;
case GGML_OP_ARGSORT:
ggml_vk_argsort(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_SUM:
ggml_vk_sum(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_SUM_ROWS:
ggml_vk_sum_rows(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_ARGMAX:
ggml_vk_argmax(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_COUNT_EQUAL:
ggml_vk_count_equal(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_IM2COL:
ggml_vk_im2col(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_TIMESTEP_EMBEDDING:
ggml_vk_timestep_embedding(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_POOL_2D:
ggml_vk_pool_2d(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_LEAKY_RELU:
ggml_vk_leaky_relu(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_MUL_MAT:
ggml_vk_mul_mat(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_MUL_MAT_ID:
ggml_vk_mul_mat_id(ctx, compute_ctx, src0, src1, src2, node, dryrun);
break;
case GGML_OP_FLASH_ATTN_EXT:
ggml_vk_flash_attn(ctx, compute_ctx, src0, src1, src2, src3, node, dryrun);
break;
case GGML_OP_RWKV_WKV6:
ggml_vk_rwkv_wkv6(ctx, compute_ctx, node, dryrun);
break;
case GGML_OP_RWKV_WKV7:
ggml_vk_rwkv_wkv7(ctx, compute_ctx, node, dryrun);
break;
case GGML_OP_OPT_STEP_ADAMW:
ggml_vk_opt_step_adamw(ctx, compute_ctx, node, dryrun);
break;
default:
return false;
}
if (dryrun) {
return false;
}
ctx->tensor_ctxs[node_idx] = compute_ctx;
#if defined(GGML_VULKAN_CHECK_RESULTS) || defined(GGML_VULKAN_PERF)
// Force context reset on each node so that each tensor ends up in its own context
// and can be run and compared to its CPU equivalent separately
last_node = true;
#endif
if (submit || last_node) {
ggml_vk_ctx_end(compute_ctx);
// TODO probably it'd be better to pass a exit_node flag to ggml_vk_compute_forward
if (last_node) {
compute_ctx->exit_tensor_idx = node_idx_begin;
}
else {
compute_ctx->exit_tensor_idx = -1;
}
ctx->compute_ctx.reset();
bool ok = ggml_vk_compute_forward(ctx, node_begin, node_idx_begin, false, almost_ready);
if (!ok) {
if (node->op == GGML_OP_UNARY) {
std::cerr << __func__ << ": error: op not supported UNARY " << node->name << " (" << ggml_unary_op_name(static_cast<ggml_unary_op>(node->op_params[0])) << ")" << std::endl;
}
else {
std::cerr << __func__ << ": error: op not supported " << node->name << " (" << ggml_op_name(node->op) << ")" << std::endl;
}
}
}
return true;
}
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * tensor, int tensor_idx, bool use_fence = true, bool almost_ready = false) {
ggml_backend_buffer * buf = nullptr;
switch (tensor->op) {
case GGML_OP_ADD:
case GGML_OP_ACC:
case GGML_OP_GET_ROWS:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SIN:
case GGML_OP_COS:
case GGML_OP_CLAMP:
case GGML_OP_PAD:
case GGML_OP_CPY:
case GGML_OP_CONT:
case GGML_OP_DUP:
case GGML_OP_SILU_BACK:
case GGML_OP_NORM:
case GGML_OP_GROUP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_L2_NORM:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_NONE:
case GGML_OP_ARGSORT:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGMAX:
case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_POOL_2D:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
case GGML_OP_LEAKY_RELU:
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
case GGML_OP_OPT_STEP_ADAMW:
buf = tensor->buffer;
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_SIGMOID:
buf = tensor->buffer;
break;
default:
return false;
}
break;
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
case GGML_OP_FLASH_ATTN_EXT:
buf = tensor->buffer;
break;
default:
return false;
}
if (buf == nullptr) {
return false;
}
VK_LOG_DEBUG("ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")");
vk_context subctx = ctx->tensor_ctxs[tensor_idx].lock();
// always wait for the GPU work to be done for the last submit
if (tensor_idx == subctx->exit_tensor_idx) {
use_fence = true;
}
// Only run if ctx hasn't been submitted yet
if (!subctx->seqs.empty()) {
#ifdef GGML_VULKAN_CHECK_RESULTS
ggml_vk_check_results_0(tensor);
use_fence = true;
#endif
// Do staging buffer copies
for (auto& cpy : subctx->in_memcpys) {
memcpy(cpy.dst, cpy.src, cpy.n);
}
if (almost_ready && !ctx->almost_ready_fence_pending && !use_fence) {
ggml_vk_submit(subctx, ctx->almost_ready_fence);
ctx->almost_ready_fence_pending = true;
} else {
ggml_vk_submit(subctx, use_fence ? ctx->fence : vk::Fence{});
}
if (use_fence) {
ggml_vk_wait_for_fence(ctx);
}
#ifdef GGML_VULKAN_CHECK_RESULTS
ggml_vk_check_results_1(tensor);
#endif
}
if (tensor_idx == subctx->exit_tensor_idx) {
// Do staging buffer copies
for (auto& cpy : subctx->out_memcpys) {
memcpy(cpy.dst, cpy.src, cpy.n);
}
subctx->in_memcpys.clear();
subctx->out_memcpys.clear();
}
return true;
}
// Clean up after graph processing is done
static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) {
VK_LOG_DEBUG("ggml_vk_graph_cleanup()");
for (auto& buffer : ctx->gc.temp_buffers) {
ggml_vk_pool_free(ctx, buffer);
}
ctx->gc.temp_buffers.clear();
for (auto& dsr : ctx->device->pipeline_descriptor_set_requirements) {
vk_pipeline_ref plr = ctx->device->pipelines[dsr.first];
if (plr.expired()) {
continue;
}
vk_pipeline pl = plr.lock();
ggml_pipeline_cleanup(pl);
}
ggml_vk_queue_cleanup(ctx->device, ctx->device->compute_queue);
ggml_vk_queue_cleanup(ctx->device, ctx->device->transfer_queue);
for (size_t i = 0; i < ctx->gc.semaphores.size(); i++) {
ctx->device->device.destroySemaphore({ ctx->gc.semaphores[i].s });
}
ctx->gc.semaphores.clear();
for (size_t i = 0; i < ctx->gc.tl_semaphores.size(); i++) {
ctx->device->device.destroySemaphore({ ctx->gc.tl_semaphores[i].s });
}
ctx->gc.tl_semaphores.clear();
ctx->semaphore_idx = 0;
ctx->event_idx = 0;
for (auto& event : ctx->gc.events) {
ctx->device->device.resetEvent(event);
}
ctx->tensor_ctxs.clear();
ctx->gc.contexts.clear();
ctx->device->pipeline_descriptor_set_requirements.clear();
}
// Clean up on backend free
static void ggml_vk_cleanup(ggml_backend_vk_context * ctx) {
VK_LOG_DEBUG("ggml_vk_cleanup(" << ctx->name << ")");
ggml_vk_graph_cleanup(ctx);
ggml_vk_destroy_buffer(ctx->prealloc_x);
ggml_vk_destroy_buffer(ctx->prealloc_y);
ggml_vk_destroy_buffer(ctx->prealloc_split_k);
for (auto& buffer : ctx->buffer_pool) {
ggml_vk_destroy_buffer(buffer);
}
ctx->prealloc_size_x = 0;
ctx->prealloc_size_y = 0;
ctx->prealloc_size_split_k = 0;
for (auto& event : ctx->gc.events) {
ctx->device->device.destroyEvent(event);
}
ctx->gc.events.clear();
ctx->device->device.destroyFence(ctx->fence);
ctx->device->device.destroyFence(ctx->almost_ready_fence);
}
static int ggml_vk_get_device_count() {
ggml_vk_instance_init();
return vk_instance.device_indices.size();
}
static void ggml_vk_get_device_description(int device, char * description, size_t description_size) {
ggml_vk_instance_init();
std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices();
vk::PhysicalDeviceProperties props;
devices[device].getProperties(&props);
snprintf(description, description_size, "%s", props.deviceName.data());
}
// backend interface
#define UNUSED GGML_UNUSED
// device backend
static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) {
return buffer->buft->iface.get_name == ggml_backend_vk_buffer_type_name;
}
static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
VK_LOG_MEMORY("ggml_backend_vk_buffer_free_buffer()");
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
ggml_vk_destroy_buffer(ctx->dev_buffer);
delete ctx;
}
static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
return vk_ptr_base;
UNUSED(buffer);
}
static enum ggml_status ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
VK_LOG_DEBUG("ggml_backend_vk_buffer_init_tensor(" << buffer << " (" << buffer->context << "), " << tensor << ")");
if (tensor->view_src != nullptr) {
GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
}
return GGML_STATUS_SUCCESS;
}
static void ggml_backend_vk_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
VK_LOG_DEBUG("ggml_backend_vk_buffer_memset_tensor(" << buffer << ", " << tensor << ", " << value << ", " << offset << ", " << size << ")");
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)buffer->context;
vk_buffer buf = buf_ctx->dev_buffer;
uint32_t val32 = (uint32_t)value * 0x01010101;
ggml_vk_buffer_memset(buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, val32, size);
}
static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
VK_LOG_DEBUG("ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)buffer->context;
vk_buffer buf = buf_ctx->dev_buffer;
ggml_vk_buffer_write(buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
}
static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
VK_LOG_DEBUG("ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)buffer->context;
vk_buffer buf = buf_ctx->dev_buffer;
ggml_vk_buffer_read(buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
}
static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
if (ggml_backend_buffer_is_vk(src->buffer)) {
ggml_backend_vk_buffer_context * src_buf_ctx = (ggml_backend_vk_buffer_context *)src->buffer->context;
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
vk_buffer src_buf = src_buf_ctx->dev_buffer;
vk_buffer dst_buf = dst_buf_ctx->dev_buffer;
ggml_vk_buffer_copy(dst_buf, vk_tensor_offset(dst) + dst->view_offs, src_buf, vk_tensor_offset(src) + src->view_offs, ggml_nbytes(src));
return true;
}
return false;
UNUSED(buffer);
}
static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
ggml_vk_buffer_memset(ctx->dev_buffer, 0, value, buffer->size);
}
static ggml_backend_buffer_i ggml_backend_vk_buffer_interface = {
/* .free_buffer = */ ggml_backend_vk_buffer_free_buffer,
/* .get_base = */ ggml_backend_vk_buffer_get_base,
/* .init_tensor = */ ggml_backend_vk_buffer_init_tensor,
/* .memset_tensor = */ ggml_backend_vk_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_vk_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_vk_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_vk_buffer_cpy_tensor,
/* .clear = */ ggml_backend_vk_buffer_clear,
/* .reset = */ NULL,
};
// vk buffer type
static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft) {
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *)buft->context;
return ctx->name.c_str();
}
static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
VK_LOG_MEMORY("ggml_backend_vk_buffer_type_alloc_buffer(" << size << ")");
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
vk_buffer dev_buffer = nullptr;
try {
dev_buffer = ggml_vk_create_buffer_device(ctx->device, size);
} catch (const vk::SystemError& e) {
return nullptr;
}
ggml_backend_vk_buffer_context * bufctx = new ggml_backend_vk_buffer_context(ctx->device, std::move(dev_buffer), ctx->name);
return ggml_backend_buffer_init(buft, ggml_backend_vk_buffer_interface, bufctx, size);
}
static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
return ctx->device->properties.limits.minStorageBufferOffsetAlignment;
}
static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
return ctx->device->suballocation_block_size;
}
static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
return ggml_nbytes(tensor);
UNUSED(buft);
}
ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) {
ggml_vk_instance_init();
VK_LOG_DEBUG("ggml_backend_vk_buffer_type(" << dev_num << ")");
vk_device dev = ggml_vk_get_device(dev_num);
return &dev->buffer_type;
}
// host buffer type
static const char * ggml_backend_vk_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
return GGML_VK_NAME "_Host";
UNUSED(buft);
}
static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffer) {
return GGML_VK_NAME "_Host";
UNUSED(buffer);
}
static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_free_buffer()");
ggml_vk_host_free(vk_instance.devices[0], buffer->context);
}
static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_type_alloc_buffer(" << size << ")");
size += 32; // Behave like the CPU buffer type
void * ptr = nullptr;
try {
ptr = ggml_vk_host_malloc(vk_instance.devices[0], size);
} catch (vk::SystemError& e) {
std::cerr << "ggml_vulkan: Failed to allocate pinned memory." << std::endl;
std::cerr << "ggml_vulkan: " << e.what() << std::endl;
// fallback to cpu buffer
return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
}
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
buffer->buft = buft;
buffer->iface.free_buffer = ggml_backend_vk_host_buffer_free_buffer;
return buffer;
UNUSED(buft);
}
static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return vk_instance.devices[0]->properties.limits.minMemoryMapAlignment;
UNUSED(buft);
}
// Should be changed to return device-specific host buffer type
// but that probably requires changes in llama.cpp
ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_vk_buffer_type_host = {
/* .iface = */ {
/* .get_name = */ ggml_backend_vk_host_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_vk_host_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_vk_host_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
},
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_vk_reg(), 0),
/* .context = */ nullptr,
};
// Make sure device 0 is initialized
ggml_vk_instance_init();
ggml_vk_get_device(0);
return &ggml_backend_vk_buffer_type_host;
}
// backend
static const char * ggml_backend_vk_name(ggml_backend_t backend) {
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
return ctx->name.c_str();
}
static void ggml_backend_vk_free(ggml_backend_t backend) {
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
VK_LOG_DEBUG("ggml_backend_vk_free(" << ctx->name << ")");
ggml_vk_cleanup(ctx);
delete ctx;
delete backend;
}
static ggml_backend_buffer_type_t ggml_backend_vk_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
return &ctx->device->buffer_type;
}
static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
VK_LOG_DEBUG("ggml_backend_vk_set_tensor_async(" << size << ")");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
vk_context transfer_ctx;
if (ctx->transfer_ctx.expired()) {
// Initialize new transfer context
transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue);
ctx->transfer_ctx = transfer_ctx;
ggml_vk_ctx_begin(ctx->device, transfer_ctx);
} else {
transfer_ctx = ctx->transfer_ctx.lock();
}
vk_buffer buf = buf_ctx->dev_buffer;
ggml_vk_buffer_write_async(transfer_ctx, buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
}
static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
VK_LOG_DEBUG("ggml_backend_vk_get_tensor_async(" << size << ")");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
vk_context transfer_ctx;
if (ctx->transfer_ctx.expired()) {
// Initialize new transfer context
transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue);
ctx->transfer_ctx = transfer_ctx;
ggml_vk_ctx_begin(ctx->device, transfer_ctx);
} else {
transfer_ctx = ctx->transfer_ctx.lock();
}
vk_buffer buf = buf_ctx->dev_buffer;
ggml_vk_buffer_read_async(transfer_ctx, buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
}
static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
VK_LOG_DEBUG("ggml_backend_vk_cpy_tensor_async()");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
if ((dst->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || dst->buffer->buft == ggml_backend_vk_host_buffer_type()) && ggml_backend_buffer_is_vk(src->buffer)) {
ggml_backend_vk_buffer_context * src_buf_ctx = (ggml_backend_vk_buffer_context *)src->buffer->context;
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
vk_context transfer_ctx;
if (ctx->transfer_ctx.expired()) {
// Initialize new transfer context
transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue);
ctx->transfer_ctx = transfer_ctx;
ggml_vk_ctx_begin(ctx->device, transfer_ctx);
} else {
transfer_ctx = ctx->transfer_ctx.lock();
}
vk_buffer src_buf = src_buf_ctx->dev_buffer;
vk_buffer dst_buf = dst_buf_ctx->dev_buffer;
ggml_vk_buffer_copy_async(transfer_ctx, dst_buf, vk_tensor_offset(dst) + dst->view_offs, src_buf, vk_tensor_offset(src) + src->view_offs, ggml_nbytes(src));
return true;
}
return false;
}
static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
VK_LOG_DEBUG("ggml_backend_vk_synchronize()");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
if(ctx->transfer_ctx.expired()) {
return;
}
vk_context transfer_ctx = ctx->transfer_ctx.lock();
ggml_vk_ctx_end(transfer_ctx);
for (auto& cpy : transfer_ctx->in_memcpys) {
memcpy(cpy.dst, cpy.src, cpy.n);
}
ggml_vk_submit(transfer_ctx, ctx->fence);
ggml_vk_wait_for_fence(ctx);
for (auto& cpy : transfer_ctx->out_memcpys) {
memcpy(cpy.dst, cpy.src, cpy.n);
}
ctx->transfer_ctx.reset();
}
static bool ggml_vk_is_empty(ggml_tensor * node) {
return ggml_is_empty(node) || node->op == GGML_OP_NONE || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE;
}
static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
VK_LOG_DEBUG("ggml_backend_vk_graph_compute(" << cgraph->n_nodes << " nodes)");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
uint64_t total_mat_mul_bytes = 0;
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_vk_build_graph(ctx, cgraph->nodes[i], i, nullptr, 0, true, false, false, false);
if (cgraph->nodes[i]->op == GGML_OP_MUL_MAT || cgraph->nodes[i]->op == GGML_OP_MUL_MAT_ID) {
total_mat_mul_bytes += ggml_nbytes(cgraph->nodes[i]->src[0]);
}
}
if (ctx->device->need_compiles) {
ggml_vk_load_shaders(ctx->device);
}
ggml_vk_preallocate_buffers(ctx);
ggml_pipeline_allocate_descriptor_sets(ctx->device);
int last_node = cgraph->n_nodes - 1;
// If the last op in the cgraph isn't backend GPU, the command buffer doesn't get closed properly
while (last_node > 0 && ggml_vk_is_empty(cgraph->nodes[last_node])) {
last_node -= 1;
}
// Reserve tensor context space for all nodes
ctx->tensor_ctxs.resize(cgraph->n_nodes);
bool first_node_in_batch = true; // true if next node will be first node in a batch
int submit_node_idx = 0; // index to first node in a batch
// Submit after enough work has accumulated, to overlap CPU cmdbuffer generation with GPU execution.
// Estimate the amount of matmul work by looking at the weight matrix size, and submit every 100MB
// (and scaled down based on model size, so smaller models submit earlier).
// Also submit at least every 100 nodes, in case there are workloads without as much matmul.
int nodes_per_submit = 100;
int submitted_nodes = 0;
int submit_count = 0;
uint64_t mul_mat_bytes = 0;
uint64_t mul_mat_bytes_per_submit = std::min(uint64_t(100*1000*1000), total_mat_mul_bytes / 40u);
for (int i = 0; i < cgraph->n_nodes; i++) {
if (first_node_in_batch) {
submit_node_idx = i;
}
if (cgraph->nodes[i]->op == GGML_OP_MUL_MAT || cgraph->nodes[i]->op == GGML_OP_MUL_MAT_ID) {
mul_mat_bytes += ggml_nbytes(cgraph->nodes[i]->src[0]);
}
// Signal the almost_ready fence when the graph is mostly complete (< 20% remaining)
bool almost_ready = (cgraph->n_nodes - i) < cgraph->n_nodes / 5;
bool submit = (submitted_nodes >= nodes_per_submit) ||
(mul_mat_bytes >= mul_mat_bytes_per_submit) ||
(i == last_node) ||
(almost_ready && !ctx->almost_ready_fence_pending);
bool enqueued = ggml_vk_build_graph(ctx, cgraph->nodes[i], i, cgraph->nodes[submit_node_idx], submit_node_idx, false, i == last_node, almost_ready, submit);
if (enqueued) {
++submitted_nodes;
#ifndef GGML_VULKAN_CHECK_RESULTS
if (first_node_in_batch) {
first_node_in_batch = false;
}
#endif
}
if (submit && enqueued) {
first_node_in_batch = true;
submitted_nodes = 0;
mul_mat_bytes = 0;
if (submit_count < 3) {
mul_mat_bytes_per_submit *= 2;
}
submit_count++;
}
}
#ifdef GGML_VULKAN_PERF
ctx->device->perf_logger->print_timings();
#endif
ggml_vk_graph_cleanup(ctx);
return GGML_STATUS_SUCCESS;
UNUSED(backend);
}
// TODO: enable async and synchronize
static ggml_backend_i ggml_backend_vk_interface = {
/* .get_name = */ ggml_backend_vk_name,
/* .free = */ ggml_backend_vk_free,
/* .set_tensor_async = */ NULL, // ggml_backend_vk_set_tensor_async,
/* .get_tensor_async = */ NULL, // ggml_backend_vk_get_tensor_async,
/* .cpy_tensor_async = */ NULL, // ggml_backend_vk_cpy_tensor_async,
/* .synchronize = */ NULL, // ggml_backend_vk_synchronize,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_vk_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
static ggml_guid_t ggml_backend_vk_guid() {
static ggml_guid guid = { 0xb8, 0xf7, 0x4f, 0x86, 0x40, 0x3c, 0xe1, 0x02, 0x91, 0xc8, 0xdd, 0xe9, 0x02, 0x3f, 0xc0, 0x2b };
return &guid;
}
ggml_backend_t ggml_backend_vk_init(size_t dev_num) {
VK_LOG_DEBUG("ggml_backend_vk_init(" << dev_num << ")");
ggml_backend_vk_context * ctx = new ggml_backend_vk_context;
ggml_vk_init(ctx, dev_num);
ggml_backend_t vk_backend = new ggml_backend {
/* .guid = */ ggml_backend_vk_guid(),
/* .interface = */ ggml_backend_vk_interface,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_vk_reg(), dev_num),
/* .context = */ ctx,
};
return vk_backend;
}
bool ggml_backend_is_vk(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_vk_guid());
}
int ggml_backend_vk_get_device_count() {
return ggml_vk_get_device_count();
}
void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size) {
GGML_ASSERT(device < (int) vk_instance.device_indices.size());
int dev_idx = vk_instance.device_indices[device];
ggml_vk_get_device_description(dev_idx, description, description_size);
}
void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total) {
GGML_ASSERT(device < (int) vk_instance.device_indices.size());
vk::PhysicalDevice vkdev = vk_instance.instance.enumeratePhysicalDevices()[vk_instance.device_indices[device]];
vk::PhysicalDeviceMemoryProperties memprops = vkdev.getMemoryProperties();
for (const vk::MemoryHeap& heap : memprops.memoryHeaps) {
if (heap.flags & vk::MemoryHeapFlagBits::eDeviceLocal) {
*total = heap.size;
*free = heap.size;
break;
}
}
}
//////////////////////////
struct ggml_backend_vk_device_context {
size_t device;
std::string name;
std::string description;
};
static const char * ggml_backend_vk_device_get_name(ggml_backend_dev_t dev) {
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
return ctx->name.c_str();
}
static const char * ggml_backend_vk_device_get_description(ggml_backend_dev_t dev) {
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
return ctx->description.c_str();
}
static void ggml_backend_vk_device_get_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)device->context;
ggml_backend_vk_get_device_memory(ctx->device, free, total);
}
static ggml_backend_buffer_type_t ggml_backend_vk_device_get_buffer_type(ggml_backend_dev_t dev) {
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
return ggml_backend_vk_buffer_type(ctx->device);
}
static ggml_backend_buffer_type_t ggml_backend_vk_device_get_host_buffer_type(ggml_backend_dev_t dev) {
UNUSED(dev);
return ggml_backend_vk_host_buffer_type();
}
static enum ggml_backend_dev_type ggml_backend_vk_device_get_type(ggml_backend_dev_t dev) {
UNUSED(dev);
return GGML_BACKEND_DEVICE_TYPE_GPU;
}
static void ggml_backend_vk_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
props->name = ggml_backend_vk_device_get_name(dev);
props->description = ggml_backend_vk_device_get_description(dev);
props->type = ggml_backend_vk_device_get_type(dev);
ggml_backend_vk_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = {
/* .async = */ false,
/* .host_buffer = */ true,
/* .buffer_from_host_ptr = */ false,
/* .events = */ false,
};
}
static ggml_backend_t ggml_backend_vk_device_init(ggml_backend_dev_t dev, const char * params) {
UNUSED(params);
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
return ggml_backend_vk_init(ctx->device);
}
static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
switch (op->op) {
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_SIGMOID:
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
default:
return false;
}
break;
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
{
ggml_type src0_type = op->src[0]->type;
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
const vk_device& device = ggml_vk_get_device(ctx->device);
if (op->op == GGML_OP_MUL_MAT_ID && !device->mul_mat_id_s[src0_type] && !device->mul_mat_id_m[src0_type] && !device->mul_mat_id_l[src0_type]) {
// If there's not enough shared memory for row_ids and the result tile, fallback to CPU
return false;
}
switch (src0_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
break;
default:
return false;
}
struct ggml_tensor * a;
struct ggml_tensor * b;
if (op->op == GGML_OP_MUL_MAT) {
a = op->src[0];
b = op->src[1];
} else {
a = op->src[2];
b = op->src[1];
}
if (a->ne[3] != b->ne[3]) {
return false;
}
if (!(ggml_vk_dim01_contiguous(op->src[0]) || op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) ||
!(ggml_vk_dim01_contiguous(op->src[1]) || op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F16)) {
return false;
}
return true;
} break;
case GGML_OP_FLASH_ATTN_EXT:
{
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
if (!ggml_vk_get_device(ctx->device)->coopmat2) {
return false;
}
switch (op->src[0]->ne[0]) {
case 64:
case 80:
case 96:
case 112:
case 128:
case 256:
break;
default:
return false;
}
if (op->src[1]->ne[0] != op->src[2]->ne[0]) {
// different head sizes of K and V are not supported yet
return false;
}
if (op->src[0]->type != GGML_TYPE_F32) {
return false;
}
if (op->type != GGML_TYPE_F32) {
return false;
}
if (op->src[3] && op->src[3]->type != GGML_TYPE_F16) {
return false;
}
// It's straightforward to support different K/V dequant, but would
// significantly increase the number of pipelines
if (op->src[1]->type != op->src[2]->type) {
return false;
}
switch (op->src[1]->type) {
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
// K dequants currently disabled because D dimension is rounded up to 256 and runs inefficiently
//case GGML_TYPE_Q2_K:
//case GGML_TYPE_Q3_K:
//case GGML_TYPE_Q4_K:
//case GGML_TYPE_Q5_K:
//case GGML_TYPE_Q6_K:
//case GGML_TYPE_IQ1_S:
//case GGML_TYPE_IQ1_M:
//case GGML_TYPE_IQ2_XXS:
//case GGML_TYPE_IQ2_XS:
//case GGML_TYPE_IQ2_S:
//case GGML_TYPE_IQ3_XXS:
//case GGML_TYPE_IQ3_S:
//case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
break;
default:
return false;
}
return true;
}
case GGML_OP_GET_ROWS:
{
switch (op->src[0]->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
return true;
default:
return false;
}
} break;
case GGML_OP_CONT:
case GGML_OP_CPY:
case GGML_OP_DUP:
{
ggml_type src0_type = op->src[0]->type;
ggml_type src1_type = op->src[1] != nullptr ? op->src[1]->type : src0_type;
if (src0_type == GGML_TYPE_F32) {
switch (src1_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_IQ4_NL:
return true;
default:
break;
}
}
if (src1_type == GGML_TYPE_F32) {
switch (src0_type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_IQ4_NL:
return true;
default:
break;
}
}
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
return true;
}
return false;
} break;
case GGML_OP_REPEAT:
return ggml_type_size(op->type) == sizeof(float) && ggml_type_size(op->src[0]->type) == sizeof(float);
case GGML_OP_REPEAT_BACK:
return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
return true;
case GGML_OP_NORM:
case GGML_OP_GROUP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_L2_NORM:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_ADD:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_SILU_BACK:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_SQR:
case GGML_OP_SIN:
case GGML_OP_COS:
case GGML_OP_CLAMP:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_ACC:
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_SCALE:
case GGML_OP_PAD:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ARGSORT:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGMAX:
case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_POOL_2D:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
case GGML_OP_LEAKY_RELU:
case GGML_OP_OPT_STEP_ADAMW:
return true;
default:
return false;
}
UNUSED(dev);
}
static bool ggml_backend_vk_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
if (buft->iface.get_name != ggml_backend_vk_buffer_type_name) {
return false;
}
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
ggml_backend_vk_buffer_type_context * buft_ctx = (ggml_backend_vk_buffer_type_context *)buft->context;
return buft_ctx->device->idx == ctx->device;
}
static bool ggml_backend_vk_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
const int min_batch_size = 32;
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
UNUSED(dev);
}
static const struct ggml_backend_device_i ggml_backend_vk_device_i = {
/* .get_name = */ ggml_backend_vk_device_get_name,
/* .get_description = */ ggml_backend_vk_device_get_description,
/* .get_memory = */ ggml_backend_vk_device_get_memory,
/* .get_type = */ ggml_backend_vk_device_get_type,
/* .get_props = */ ggml_backend_vk_device_get_props,
/* .init_backend = */ ggml_backend_vk_device_init,
/* .get_buffer_type = */ ggml_backend_vk_device_get_buffer_type,
/* .get_host_buffer_type = */ ggml_backend_vk_device_get_host_buffer_type,
/* .buffer_from_host_ptr = */ NULL,
/* .supports_op = */ ggml_backend_vk_device_supports_op,
/* .supports_buft = */ ggml_backend_vk_device_supports_buft,
/* .offload_op = */ ggml_backend_vk_device_offload_op,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
};
static const char * ggml_backend_vk_reg_get_name(ggml_backend_reg_t reg) {
UNUSED(reg);
return GGML_VK_NAME;
}
static size_t ggml_backend_vk_reg_get_device_count(ggml_backend_reg_t reg) {
UNUSED(reg);
return ggml_backend_vk_get_device_count();
}
static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg, size_t device) {
static std::vector<ggml_backend_dev_t> devices;
static bool initialized = false;
{
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
for (int i = 0; i < ggml_backend_vk_get_device_count(); i++) {
ggml_backend_vk_device_context * ctx = new ggml_backend_vk_device_context;
char desc[256];
ggml_backend_vk_get_device_description(i, desc, sizeof(desc));
ctx->device = i;
ctx->name = GGML_VK_NAME + std::to_string(i);
ctx->description = desc;
devices.push_back(new ggml_backend_device {
/* .iface = */ ggml_backend_vk_device_i,
/* .reg = */ reg,
/* .context = */ ctx,
});
}
initialized = true;
}
}
GGML_ASSERT(device < devices.size());
return devices[device];
}
static const struct ggml_backend_reg_i ggml_backend_vk_reg_i = {
/* .get_name = */ ggml_backend_vk_reg_get_name,
/* .get_device_count = */ ggml_backend_vk_reg_get_device_count,
/* .get_device = */ ggml_backend_vk_reg_get_device,
/* .get_proc_address = */ NULL,
};
ggml_backend_reg_t ggml_backend_vk_reg() {
static ggml_backend_reg reg = {
/* .api_version = */ GGML_BACKEND_API_VERSION,
/* .iface = */ ggml_backend_vk_reg_i,
/* .context = */ nullptr,
};
try {
ggml_vk_instance_init();
return &reg;
} catch (const vk::SystemError& e) {
VK_LOG_DEBUG("ggml_backend_vk_reg() -> Error: System error: " << e.what());
return nullptr;
}
}
// Extension availability
static bool ggml_vk_instance_validation_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions) {
#ifdef GGML_VULKAN_VALIDATE
bool portability_enumeration_ext = false;
// Check for portability enumeration extension for MoltenVK support
for (const auto& properties : instance_extensions) {
if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) {
return true;
}
}
if (!portability_enumeration_ext) {
std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl;
}
#endif
return false;
UNUSED(instance_extensions);
}
static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions) {
#ifdef __APPLE__
bool portability_enumeration_ext = false;
// Check for portability enumeration extension for MoltenVK support
for (const auto& properties : instance_extensions) {
if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) {
return true;
}
}
if (!portability_enumeration_ext) {
std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl;
}
#endif
return false;
UNUSED(instance_extensions);
}
static bool ggml_vk_khr_cooperative_matrix_support(const vk::PhysicalDeviceProperties& props, const vk::PhysicalDeviceDriverProperties& driver_props, vk_device_architecture arch) {
switch (props.vendorID) {
case VK_VENDOR_ID_INTEL:
// Intel drivers don't support coopmat properly yet
return false;
case VK_VENDOR_ID_AMD:
if (driver_props.driverID == vk::DriverId::eAmdProprietary || driver_props.driverID == vk::DriverId::eAmdOpenSource) {
// Workaround for AMD proprietary driver reporting support on all GPUs
return arch == vk_device_architecture::AMD_RDNA3;
}
return true;
default:
return true;
}
}
// checks
#ifdef GGML_VULKAN_CHECK_RESULTS
static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<const ggml_tensor *>& done, int level = 0) {
if (std::find(done.begin(), done.end(), tensor) != done.end() || level > 10) {
return;
}
for (int j = 0; j < level; j++) {
std::cerr << " ";
}
std::cerr << ggml_op_name(tensor->op) << " gpu=" << (tensor->extra != nullptr) << std::endl;
done.push_back(tensor);
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (tensor->src[i] != nullptr) {
ggml_vk_print_graph_origin(tensor->src[i], done, level + 1);
}
}
}
static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, int i0, int i1, int i2, int i3) {
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16 && tensor->type != GGML_TYPE_I32) {
return;
}
i0 = std::max(i0, 5);
i1 = std::max(i1, 5);
i2 = std::max(i2, 0);
i3 = std::max(i3, 0);
fprintf(stderr, " ");
for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
fprintf(stderr, "%7d ", idx1);
}
fprintf(stderr, "\n");
for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
fprintf(stderr, "%7d: ", idx0);
for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) {
float val;
if (tensor->type == GGML_TYPE_F32) {
val = *(const float *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
} else if (tensor->type == GGML_TYPE_F16) {
val = ggml_fp16_to_fp32(*(const ggml_fp16_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
} else if (tensor->type == GGML_TYPE_I32) {
val = *(const int32_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
} else {
GGML_ABORT("fatal error");
}
fprintf(stderr, "% 7.2f ", val);
} else {
fprintf(stderr, " ");
}
}
fprintf(stderr, "\n");
}
}
static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name) {
void * tensor_data = tensor->data;
const bool is_gpu = tensor->buffer != nullptr && ggml_backend_buffer_is_vk(tensor->buffer);
if (is_gpu) {
const size_t tensor_size = ggml_nbytes(tensor);
tensor_data = malloc(tensor_size);
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
vk_buffer buffer_gpu = buf_ctx->dev_buffer;
ggml_vk_buffer_read(buffer_gpu, vk_tensor_offset(tensor) + tensor->view_offs, tensor_data, tensor_size);
}
std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
std::cerr << "tensor=" << tensor << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
if (tensor->src[0] != nullptr) {
std::cerr << "tensor->src[0]=" << tensor->src[0] << " name=" << tensor->src[0]->name << " op=" << ggml_op_name(tensor->src[0]->op) << " type=" << ggml_type_name(tensor->src[0]->type) << " ne0=" << tensor->src[0]->ne[0] << " nb0=" << tensor->src[0]->nb[0] << " ne1=" << tensor->src[0]->ne[1] << " nb1=" << tensor->src[0]->nb[1] << " ne2=" << tensor->src[0]->ne[2] << " nb2=" << tensor->src[0]->nb[2] << " ne3=" << tensor->src[0]->ne[3] << " nb3=" << tensor->src[0]->nb[3] << std::endl;
}
if (tensor->src[1] != nullptr) {
std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl;
}
std::cerr << std::endl << "Result:" << std::endl;
ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
std::cerr << std::endl;
std::vector<const ggml_tensor *> done;
ggml_vk_print_graph_origin(tensor, done);
if (is_gpu) {
free(tensor_data);
}
}
void * comp_result;
size_t comp_size;
size_t comp_nb[GGML_MAX_DIMS];
size_t check_counter = 0;
static void ggml_vk_check_results_0(ggml_tensor * tensor) {
if (tensor->op == GGML_OP_TRANSPOSE) {
return;
}
check_counter++;
if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
return;
}
VK_LOG_DEBUG("ggml_vk_check_results_0(" << tensor->name << ")");
ggml_tensor * src0 = tensor->src[0];
ggml_tensor * src1 = tensor->src[1];
struct ggml_init_params iparams = {
/*.mem_size =*/ 2ul*1024ul*1024ul*1024ul,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ false,
};
struct ggml_context * ggml_ctx = ggml_init(iparams);
std::array<struct ggml_tensor *, 6> src_clone = {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr};
std::array<size_t, 6> src_size = {0, 0, 0, 0, 0, 0};
std::array<void *, 6> src_buffer = {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr};
const char * srci_name[6] = {"src0", "src1", "src2", "src3", "src4", "src5"};
struct ggml_tensor * tensor_clone = nullptr;
for (int i = 0; i < 6; i++) {
ggml_tensor * srci = tensor->src[i];
if (srci == nullptr) {
continue;
}
ggml_tensor * srci_clone = ggml_dup_tensor(ggml_ctx, srci);
size_t srci_size = ggml_nbytes(srci);
src_clone[i] = srci_clone;
src_size[i] = ggml_nbytes(srci);
src_buffer[i] = malloc(srci_size);
srci_clone->data = src_buffer[i];
if (ggml_backend_buffer_is_host(srci->buffer)) {
memcpy(srci_clone->data, srci->data, srci_size);
memcpy(srci_clone->nb, srci->nb, sizeof(size_t) * GGML_MAX_DIMS);
} else if (ggml_backend_buffer_is_vk(srci->buffer)) {
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)srci->buffer->context;
vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
uint64_t offset = vk_tensor_offset(srci) + srci->view_offs;
if (!ggml_is_contiguous(srci) && ggml_vk_dim01_contiguous(srci)) {
for (int i3 = 0; i3 < srci->ne[3]; i3++) {
for (int i2 = 0; i2 < srci->ne[2]; i2++) {
const int idx = i3*srci->ne[2] + i2;
ggml_vk_buffer_read(buffer_gpu, offset + idx * srci->nb[2], ((char *)srci_clone->data + idx * srci_clone->nb[2]), srci->ne[1] * srci->nb[1]);
}
}
srci_clone->nb[0] = srci->nb[0];
srci_clone->nb[1] = srci->nb[1];
for (int i = 2; i < GGML_MAX_DIMS; i++) {
srci_clone->nb[i] = srci_clone->nb[i - 1]*srci_clone->ne[i - 1];
}
} else {
if (offset + srci_size >= buffer_gpu->size) {
srci_size = buffer_gpu->size - offset;
}
ggml_vk_buffer_read(buffer_gpu, offset, srci_clone->data, srci_size);
memcpy(srci_clone->nb, srci->nb, sizeof(size_t) * GGML_MAX_DIMS);
}
} else {
GGML_ABORT("fatal error");
}
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
ggml_vk_print_tensor(srci, srci_name[i]);
}
}
if (tensor->op == GGML_OP_FLASH_ATTN_EXT) {
const float * params = (const float *)tensor->op_params;
tensor_clone = ggml_flash_attn_ext(ggml_ctx, src_clone[0], src_clone[1], src_clone[2], src_clone[3], params[0], params[1], params[2]);
} else if (tensor->op == GGML_OP_MUL_MAT) {
tensor_clone = ggml_mul_mat(ggml_ctx, src_clone[0], src_clone[1]);
} else if (tensor->op == GGML_OP_MUL_MAT_ID) {
tensor_clone = ggml_mul_mat_id(ggml_ctx, src_clone[0], src_clone[1], src_clone[2]);
} else if (tensor->op == GGML_OP_SUB) {
tensor_clone = ggml_sub(ggml_ctx, src_clone[0], src_clone[1]);
} else if (tensor->op == GGML_OP_MUL) {
tensor_clone = ggml_mul(ggml_ctx, src_clone[0], src_clone[1]);
} else if (tensor->op == GGML_OP_DIV) {
tensor_clone = ggml_div(ggml_ctx, src_clone[0], src_clone[1]);
} else if (tensor->op == GGML_OP_CONCAT) {
tensor_clone = ggml_concat(ggml_ctx, src_clone[0], src_clone[1], *(int *)tensor->op_params);
} else if (tensor->op == GGML_OP_UPSCALE) {
tensor_clone = ggml_upscale_ext(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
} else if (tensor->op == GGML_OP_SCALE) {
const float * params = (const float *)tensor->op_params;
tensor_clone = ggml_scale(ggml_ctx, src_clone[0], params[0]);
} else if (tensor->op == GGML_OP_SQR) {
tensor_clone = ggml_sqr(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_SIN) {
tensor_clone = ggml_sin(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_COS) {
tensor_clone = ggml_cos(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_CLAMP) {
const float * params = (const float *)tensor->op_params;
tensor_clone = ggml_clamp(ggml_ctx, src_clone[0], params[0], params[1]);
} else if (tensor->op == GGML_OP_PAD) {
tensor_clone = ggml_pad(ggml_ctx, src_clone[0], tensor->ne[0] - src_clone[0]->ne[0], tensor->ne[1] - src_clone[0]->ne[1], tensor->ne[2] - src_clone[0]->ne[2], tensor->ne[3] - src_clone[0]->ne[3]);
} else if (tensor->op == GGML_OP_REPEAT) {
tensor_clone = ggml_repeat(ggml_ctx, src_clone[0], tensor);
} else if (tensor->op == GGML_OP_REPEAT_BACK) {
tensor_clone = ggml_repeat_back(ggml_ctx, src_clone[0], tensor);
} else if (tensor->op == GGML_OP_ADD) {
tensor_clone = ggml_add(ggml_ctx, src_clone[0], src_clone[1]);
} else if (tensor->op == GGML_OP_ACC) {
tensor_clone = ggml_acc(ggml_ctx, src_clone[0], src_clone[1], tensor->op_params[0], tensor->op_params[1], tensor->op_params[2], tensor->op_params[3]);
} else if (tensor->op == GGML_OP_NORM) {
tensor_clone = ggml_norm(ggml_ctx, src_clone[0], *(float *)tensor->op_params);
} else if (tensor->op == GGML_OP_GROUP_NORM) {
const float * float_params = (const float *)tensor->op_params;
tensor_clone = ggml_group_norm(ggml_ctx, src_clone[0], tensor->op_params[0], float_params[1]);
} else if (tensor->op == GGML_OP_RMS_NORM) {
tensor_clone = ggml_rms_norm(ggml_ctx, src_clone[0], *(float *)tensor->op_params);
} else if (tensor->op == GGML_OP_RMS_NORM_BACK) {
const float eps = ((float *) tensor->op_params)[0];
tensor_clone = ggml_rms_norm_back(ggml_ctx, src_clone[0], src_clone[1], eps);
} else if (tensor->op == GGML_OP_SILU_BACK) {
tensor_clone = ggml_silu_back(ggml_ctx, src_clone[0], src_clone[1]);
} else if (tensor->op == GGML_OP_L2_NORM) {
const float eps = ((float *) tensor->op_params)[0];
tensor_clone = ggml_l2_norm(ggml_ctx, src_clone[0], eps);
} else if (tensor->op == GGML_OP_SOFT_MAX) {
if (src1 != nullptr) {
const float * params = (const float *)tensor->op_params;
tensor_clone = ggml_soft_max_ext(ggml_ctx, src_clone[0], src_clone[1], params[0], params[1]);
} else {
tensor_clone = ggml_soft_max(ggml_ctx, src_clone[0]);
}
} else if (tensor->op == GGML_OP_SOFT_MAX_BACK) {
tensor_clone = ggml_soft_max_ext_back(ggml_ctx, src_clone[0], src_clone[1], ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]);
} else if (tensor->op == GGML_OP_DIAG_MASK_INF) {
tensor_clone = ggml_diag_mask_inf(ggml_ctx, src_clone[0], tensor->op_params[0]);
} else if (tensor->op == GGML_OP_ROPE || tensor->op == GGML_OP_ROPE_BACK) {
const int n_dims = ((int32_t *) tensor->op_params)[1];
const int mode = ((int32_t *) tensor->op_params)[2];
//const int n_ctx_ggml = ((int32_t *) tensor->op_params)[3];
const int n_ctx_orig_ggml = ((int32_t *) tensor->op_params)[4];
const float freq_base = ((float *) tensor->op_params)[5];
const float freq_scale = ((float *) tensor->op_params)[6];
const float ext_factor = ((float *) tensor->op_params)[7];
const float attn_factor = ((float *) tensor->op_params)[8];
const float beta_fast = ((float *) tensor->op_params)[9];
const float beta_slow = ((float *) tensor->op_params)[10];
if (mode & GGML_ROPE_TYPE_MROPE) {
int32_t *sections = ((int32_t *) tensor->op_params) + 11;
if (tensor->op == GGML_OP_ROPE) {
tensor_clone = ggml_rope_multi(ggml_ctx, src_clone[0], src_clone[1], src_clone[2], n_dims, sections, mode, n_ctx_orig_ggml, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
} else {
tensor_clone = ggml_rope_multi_back(ggml_ctx, src_clone[0], src_clone[1], src_clone[2], n_dims, sections, mode, n_ctx_orig_ggml, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
}
} else {
if (tensor->op == GGML_OP_ROPE) {
tensor_clone = ggml_rope_ext(ggml_ctx, src_clone[0], src_clone[1], src_clone[2], n_dims, mode, n_ctx_orig_ggml, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
} else {
tensor_clone = ggml_rope_ext_back(ggml_ctx, src_clone[0], src_clone[1], src_clone[2], n_dims, mode, n_ctx_orig_ggml, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
}
}
} else if (tensor->op == GGML_OP_UNARY) {
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_SILU:
tensor_clone = ggml_silu(ggml_ctx, src_clone[0]);
break;
case GGML_UNARY_OP_GELU:
tensor_clone = ggml_gelu(ggml_ctx, src_clone[0]);
break;
case GGML_UNARY_OP_GELU_QUICK:
tensor_clone = ggml_gelu_quick(ggml_ctx, src_clone[0]);
break;
case GGML_UNARY_OP_RELU:
tensor_clone = ggml_relu(ggml_ctx, src_clone[0]);
break;
case GGML_UNARY_OP_TANH:
tensor_clone = ggml_tanh(ggml_ctx, src_clone[0]);
break;
case GGML_UNARY_OP_SIGMOID:
tensor_clone = ggml_sigmoid(ggml_ctx, src_clone[0]);
break;
default:
std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl;
GGML_ABORT("fatal error");
}
} else if (tensor->op == GGML_OP_CPY || tensor->op == GGML_OP_DUP) {
if (src1 == nullptr) {
tensor_clone = ggml_dup(ggml_ctx, src_clone[0]);
tensor_clone->type = tensor->type;
} else {
tensor_clone = ggml_cpy(ggml_ctx, src_clone[0], src_clone[1]);
}
} else if (tensor->op == GGML_OP_CONT) {
tensor_clone = ggml_cont_4d(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
} else if (tensor->op == GGML_OP_RESHAPE) {
tensor_clone = ggml_reshape_4d(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
} else if (tensor->op == GGML_OP_VIEW) {
tensor_clone = ggml_view_4d(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], tensor->nb[1], tensor->nb[2], tensor->nb[3], ((int32_t *) tensor->op_params)[0]);
} else if (tensor->op == GGML_OP_PERMUTE) {
int32_t * params = (int32_t *)tensor->op_params;
tensor_clone = ggml_permute(ggml_ctx, src_clone[0], params[0], params[1], params[2], params[3]);
} else if (tensor->op == GGML_OP_TRANSPOSE) {
tensor_clone = ggml_transpose(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_GET_ROWS) {
tensor_clone = ggml_get_rows(ggml_ctx, src_clone[0], src_clone[1]);
} else if (tensor->op == GGML_OP_ARGSORT) {
tensor_clone = ggml_argsort(ggml_ctx, src_clone[0], (ggml_sort_order) *(int *)tensor->op_params);
} else if (tensor->op == GGML_OP_SUM) {
tensor_clone = ggml_sum(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_SUM_ROWS) {
tensor_clone = ggml_sum_rows(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_ARGMAX) {
tensor_clone = ggml_argmax(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_COUNT_EQUAL) {
tensor_clone = ggml_count_equal(ggml_ctx, src_clone[0], src_clone[1]);
} else if (tensor->op == GGML_OP_IM2COL) {
const int32_t s0 = tensor->op_params[0];
const int32_t s1 = tensor->op_params[1];
const int32_t p0 = tensor->op_params[2];
const int32_t p1 = tensor->op_params[3];
const int32_t d0 = tensor->op_params[4];
const int32_t d1 = tensor->op_params[5];
const bool is_2D = tensor->op_params[6] == 1;
tensor_clone = ggml_im2col(ggml_ctx, src_clone[0], src_clone[1], s0, s1, p0, p1, d0, d1, is_2D, tensor->type);
} else if (tensor->op == GGML_OP_TIMESTEP_EMBEDDING) {
const int32_t dim = tensor->op_params[0];
const int32_t max_period = tensor->op_params[1];
tensor_clone = ggml_timestep_embedding(ggml_ctx, src_clone[0], dim, max_period);
} else if (tensor->op == GGML_OP_POOL_2D) {
enum ggml_op_pool op = static_cast<ggml_op_pool>(tensor->op_params[0]);
const int32_t k0 = tensor->op_params[1];
const int32_t k1 = tensor->op_params[2];
const int32_t s0 = tensor->op_params[3];
const int32_t s1 = tensor->op_params[4];
const int32_t p0 = tensor->op_params[5];
const int32_t p1 = tensor->op_params[6];
tensor_clone = ggml_pool_2d(ggml_ctx, src_clone[0], op, k0, k1, s0, s1, p0, p1);
} else if (tensor->op == GGML_OP_LEAKY_RELU) {
const float * op_params = (const float *)tensor->op_params;
tensor_clone = ggml_leaky_relu(ggml_ctx, src_clone[0], op_params[0], false);
} else if (tensor->op == GGML_OP_RWKV_WKV6) {
tensor_clone = ggml_rwkv_wkv6(ggml_ctx, src_clone[0], src_clone[1],
src_clone[2], src_clone[3], src_clone[4], src_clone[5]);
} else if (tensor->op == GGML_OP_RWKV_WKV7) {
tensor_clone = ggml_rwkv_wkv7(ggml_ctx, src_clone[0], src_clone[1], src_clone[2], src_clone[3],
src_clone[4], src_clone[5], src_clone[6]);
} else if (tensor->op == GGML_OP_OPT_STEP_ADAMW) {
src_clone[0]->flags = src0->flags;
tensor_clone = ggml_opt_step_adamw(ggml_ctx, src_clone[0], src_clone[1],
src_clone[2], src_clone[3], src_clone[4]);
}
else {
std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl;
GGML_ABORT("fatal error");
}
ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
ggml_build_forward_expand(cgraph, tensor_clone);
ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 8);
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
ggml_vk_print_tensor(tensor_clone, "tensor_clone");
}
comp_size = ggml_nbytes(tensor_clone);
comp_result = malloc(comp_size);
memcpy(comp_result, tensor_clone->data, comp_size);
memcpy(comp_nb, tensor_clone->nb, sizeof(size_t) * GGML_MAX_DIMS);
for (int i = 0; i < 6; i++) {
if (src_buffer[i] != nullptr) {
free(src_buffer[i]);
}
}
ggml_free(ggml_ctx);
VK_LOG_DEBUG("END ggml_vk_check_results_0(" << tensor->name << ")");
}
static void ggml_vk_check_results_1(ggml_tensor * tensor) {
if (tensor->op == GGML_OP_TRANSPOSE) {
return;
}
if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
return;
}
VK_LOG_DEBUG("ggml_vk_check_results_1(" << tensor->name << ")");
ggml_tensor * src0 = tensor->src[0];
ggml_tensor * src1 = tensor->src[1];
ggml_tensor * src2 = tensor->src[2];
ggml_tensor * src3 = tensor->src[3];
void * tensor_data = tensor->data;
if (ggml_backend_buffer_is_vk(tensor->buffer)) {
size_t tensor_size = ggml_nbytes(tensor);
tensor_data = malloc(tensor_size);
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
uint64_t offset = vk_tensor_offset(tensor) + tensor->view_offs;
if (offset + tensor_size >= buffer_gpu->size) {
tensor_size = buffer_gpu->size - offset;
}
ggml_vk_buffer_read(buffer_gpu, offset, tensor_data, tensor_size);
}
float first_error_result = -1.0f;
float first_error_correct = -1.0f;
std::array<int, 4> first_error = { -1, -1, -1, -1 };
double avg_err = 0.0;
size_t counter = 0;
for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
const bool buffer_size_fit = i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0] < comp_size;
float correct = 0.0f;
float result = 0.0f;
if (buffer_size_fit) {
if (tensor->type == GGML_TYPE_F32) {
correct = *(float *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]);
result = *(float *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
} else if (tensor->type == GGML_TYPE_F16) {
correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]));
result = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
} else if (tensor->type == GGML_TYPE_I32) {
correct = *(int32_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]);
result = *(int32_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
} else if (tensor->type == GGML_TYPE_I64) {
correct = *(int64_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]);
result = *(int64_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
} else {
std::cerr << "Results check not implemented for type " << ggml_type_name(tensor->type) << std::endl;
}
} else {
std::cerr << "Missing debug code for type " << ggml_type_name(tensor->type) << std::endl;
GGML_ABORT("fatal error");
}
if ((std::isnan(correct) != std::isnan(result)) || (std::isinf(correct) != std::isinf(result)) || !buffer_size_fit) {
std::cerr << "ERROR: Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " result=" << result << " correct=" << correct << " avg_err=" << (avg_err / counter) << std::endl;
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
if (src0 != nullptr) {
std::cerr << "src0=" << src0 << " src0->name=" << src0->name << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
}
if (src1 != nullptr) {
std::cerr << "src1=" << src1 << " src1->name=" << src1->name << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
}
if (src2 != nullptr) {
std::cerr << "src2=" << src2 << " src2->name=" << src2->name << " op=" << ggml_op_name(src2->op) << " type=" << ggml_type_name(src2->type) << " ne0=" << src2->ne[0] << " nb0=" << src2->nb[0] << " ne1=" << src2->ne[1] << " nb1=" << src2->nb[1] << " ne2=" << src2->ne[2] << " nb2=" << src2->nb[2] << " ne3=" << src2->ne[3] << " nb3=" << src2->nb[3] << " offset=" << src2->view_offs << std::endl;
}
if (src3 != nullptr) {
std::cerr << "src3=" << src3 << " src3->name=" << src3->name << " op=" << ggml_op_name(src3->op) << " type=" << ggml_type_name(src3->type) << " ne0=" << src3->ne[0] << " nb0=" << src3->nb[0] << " ne1=" << src3->ne[1] << " nb1=" << src3->nb[1] << " ne2=" << src3->ne[2] << " nb2=" << src3->nb[2] << " ne3=" << src3->ne[3] << " nb3=" << src3->nb[3] << " offset=" << src3->view_offs << std::endl;
}
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
std::cerr << std::endl << "Result:" << std::endl;
ggml_vk_print_tensor_area(tensor, tensor_data, i0, i1, i2, i3);
std::cerr << std::endl << "Correct:" << std::endl;
ggml_vk_print_tensor_area(tensor, comp_result, i0, i1, i2, i3);
std::cerr << std::endl;
std::vector<const ggml_tensor *> done;
ggml_vk_print_graph_origin(tensor, done);
GGML_ABORT("fatal error");
}
if (first_error[0] == -1 && std::fabs(correct - result) > 0.1f) {
first_error[0] = i0;
first_error[1] = i1;
first_error[2] = i2;
first_error[3] = i3;
first_error_result = result;
first_error_correct = correct;
}
// Special case, value is infinite, avoid NaN result in avg_err
// NaN also appears in results, if both are nan error is 0
if (!std::isinf(correct) && !std::isinf(result) && !std::isnan(correct) && !std::isnan(result)) {
avg_err += std::fabs(correct - result);
}
counter++;
}
}
}
}
avg_err /= counter;
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
std::cerr << "TENSOR CHECK: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
if (src0 != nullptr) {
std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
}
if (src1 != nullptr) {
std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
}
if (src2 != nullptr) {
std::cerr << "src2=" << src2 << " op=" << ggml_op_name(src2->op) << " type=" << ggml_type_name(src2->type) << " ne0=" << src2->ne[0] << " nb0=" << src2->nb[0] << " ne1=" << src2->ne[1] << " nb1=" << src2->nb[1] << " ne2=" << src2->ne[2] << " nb2=" << src2->nb[2] << " ne3=" << src2->ne[3] << " nb3=" << src2->nb[3] << " offset=" << src2->view_offs << std::endl;
}
if (src3 != nullptr) {
std::cerr << "src3=" << src3 << " op=" << ggml_op_name(src3->op) << " type=" << ggml_type_name(src3->type) << " ne0=" << src3->ne[0] << " nb0=" << src3->nb[0] << " ne1=" << src3->ne[1] << " nb1=" << src3->nb[1] << " ne2=" << src3->ne[2] << " nb2=" << src3->nb[2] << " ne3=" << src3->ne[3] << " nb3=" << src3->nb[3] << " offset=" << src3->view_offs << std::endl;
}
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
std::cerr << std::endl << "Result:" << std::endl;
ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
std::cerr << std::endl << "Correct:" << std::endl;
ggml_vk_print_tensor_area(tensor, comp_result, 5, 5, 0, 0);
std::cerr << std::endl;
std::vector<const ggml_tensor *> done;
ggml_vk_print_graph_origin(tensor, done);
}
if (avg_err > 0.05 || std::isnan(avg_err)) {
std::cerr << "ERROR: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
if (src0 != nullptr) {
std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
}
if (src1 != nullptr) {
std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
}
if (src2 != nullptr) {
std::cerr << "src2=" << src2 << " op=" << ggml_op_name(src2->op) << " type=" << ggml_type_name(src2->type) << " ne0=" << src2->ne[0] << " nb0=" << src2->nb[0] << " ne1=" << src2->ne[1] << " nb1=" << src2->nb[1] << " ne2=" << src2->ne[2] << " nb2=" << src2->nb[2] << " ne3=" << src2->ne[3] << " nb3=" << src2->nb[3] << " offset=" << src2->view_offs << std::endl;
}
if (src3 != nullptr) {
std::cerr << "src3=" << src3 << " op=" << ggml_op_name(src3->op) << " type=" << ggml_type_name(src3->type) << " ne0=" << src3->ne[0] << " nb0=" << src3->nb[0] << " ne1=" << src3->ne[1] << " nb1=" << src3->nb[1] << " ne2=" << src3->ne[2] << " nb2=" << src3->nb[2] << " ne3=" << src3->ne[3] << " nb3=" << src3->nb[3] << " offset=" << src3->view_offs << std::endl;
}
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
std::cerr << std::endl << "Result:" << std::endl;
ggml_vk_print_tensor_area(tensor, tensor_data, first_error[0], first_error[1], first_error[2], first_error[3]);
std::cerr << std::endl << "Correct:" << std::endl;
ggml_vk_print_tensor_area(tensor, comp_result, first_error[0], first_error[1], first_error[2], first_error[3]);
std::cerr << std::endl;
std::vector<const ggml_tensor *> done;
ggml_vk_print_graph_origin(tensor, done);
GGML_ABORT("fatal error");
} else {
std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " avg_err=" << avg_err << std::endl;
}
free(comp_result);
comp_result = nullptr;
comp_size = 0;
if (ggml_backend_buffer_is_vk(tensor->buffer)) {
free(tensor_data);
}
VK_LOG_DEBUG("END ggml_vk_check_results_1(" << tensor->name << ")");
}
#endif
GGML_BACKEND_DL_IMPL(ggml_backend_vk_reg)