mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-08-14 20:29:41 -04:00
* oai moe * compat with new checkpoint * add attn sink impl * add rope scaling yarn * logits match with latest transformers code * wip chat template * rm trailing space * use ggml_scale_bias * rm redundant is_swa_all * convert interleaved gate_up * graph : fix activation function to match reference (#7) * vocab : handle o200k_harmony special tokens * ggml : add attention sinks support (#1) * llama : add attn sinks * ggml : add attn sinks * cuda : add attn sinks * vulkan : add support for sinks in softmax remove unnecessary return * ggml : add fused swiglu_oai op (#11) * ggml : add fused swiglu_oai op * Update ggml/src/ggml-cpu/ops.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update CUDA impl * cont : metal impl * add vulkan impl * test-backend-ops : more test cases, clean up * llama : remove unfused impl * remove extra lines --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: slaren <slarengh@gmail.com> * repack mxfp4 upon conversion * clean up a bit * enable thinking * add quick hack to render only some special tokens * fix bf16 conversion * remove vocab hack * webui ok * support chat parsing for gpt-oss * fix webui * direct mapping mxfp4, FINALLY * force using mxfp4 * properly use lazy tensor * ggml : add mxfp4 ggml : use e8m0 conversion instead of powf Co-authored-by: Diego Devesa <slarengh@gmail.com> change kvalues_mxfp4 table to match e2m1 (#6) metal : remove quantization for now (not used) cuda : fix disabled CUDA graphs due to ffn moe bias vulkan : add support for mxfp4 cont : add cm2 dequant * ggml : add ggml_add_id (#13) * ggml : add ggml_add_id * add cuda impl * llama : add weight support check for add_id * perf opt * add vulkan impl * rename cuda files * add metal impl * allow in-place ggml_add_id * llama : keep biases on CPU with --cpu-moe * llama : fix compile error ggml-ci * cuda : add fallback for __nv_cvt_e8m0_to_bf16raw ggml-ci * cleanup ggml-ci * sycl : fix supports_op for MXFP4 ggml-ci * fix Unknown reasoning format * ggml-cpu : fix AVX build ggml-ci * fix hip build ggml-ci * cuda : add mxfp4 dequantization support for cuBLAS ggml-ci * ggml-cpu : fix mxfp4 fallback definitions for some architectures ggml-ci * cuda : fix version required for __nv_cvt_e8m0_to_bf16raw --------- Co-authored-by: Xuan Son Nguyen <son@huggingface.co> Co-authored-by: slaren <slarengh@gmail.com>
228 lines
7.0 KiB
C++
228 lines
7.0 KiB
C++
#pragma once
|
|
|
|
#include "llama.h"
|
|
|
|
#include <array>
|
|
|
|
// bump if necessary
|
|
#define LLAMA_MAX_LAYERS 512
|
|
#define LLAMA_MAX_EXPERTS 384 // Kimi-K2
|
|
|
|
enum llama_expert_gating_func_type {
|
|
LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0,
|
|
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1,
|
|
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2,
|
|
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT = 3, // applied to the router weights instead of the logits
|
|
};
|
|
|
|
enum llama_swa_type {
|
|
LLAMA_SWA_TYPE_NONE = 0,
|
|
LLAMA_SWA_TYPE_STANDARD = 1,
|
|
LLAMA_SWA_TYPE_CHUNKED = 2,
|
|
};
|
|
|
|
struct llama_hparams_posnet {
|
|
uint32_t n_embd;
|
|
uint32_t n_layer;
|
|
};
|
|
|
|
struct llama_hparams_convnext {
|
|
uint32_t n_embd;
|
|
uint32_t n_layer;
|
|
};
|
|
|
|
struct llama_hparams {
|
|
bool vocab_only;
|
|
bool rope_finetuned;
|
|
bool use_par_res;
|
|
bool swin_norm;
|
|
|
|
uint32_t n_ctx_train; // context size the model was trained on
|
|
uint32_t n_embd;
|
|
uint32_t n_embd_features = 0;
|
|
uint32_t n_layer;
|
|
uint32_t n_rot;
|
|
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
|
|
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
|
uint32_t n_expert = 0;
|
|
uint32_t n_expert_used = 0;
|
|
uint32_t n_rel_attn_bkts = 0;
|
|
|
|
// note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
|
|
uint32_t n_embd_head_k_mla = 0;
|
|
uint32_t n_embd_head_v_mla = 0;
|
|
|
|
// for WavTokenizer
|
|
struct llama_hparams_posnet posnet;
|
|
struct llama_hparams_convnext convnext;
|
|
|
|
uint32_t n_shortconv_l_cache = 0;
|
|
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
|
|
|
uint32_t n_layer_dense_lead = 0;
|
|
uint32_t n_lora_q = 0;
|
|
uint32_t n_lora_kv = 0;
|
|
uint32_t n_ff_exp = 0;
|
|
uint32_t n_ff_shexp = 0;
|
|
uint32_t n_expert_shared = 0;
|
|
uint32_t n_norm_groups = 0;
|
|
|
|
float expert_weights_scale = 0.0;
|
|
bool expert_weights_norm = false;
|
|
uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
|
|
uint32_t moe_every_n_layers = 0;
|
|
uint32_t nextn_predict_layers = 0;
|
|
|
|
float f_norm_eps;
|
|
float f_norm_rms_eps;
|
|
float f_norm_group_eps;
|
|
|
|
float f_attn_logit_softcapping = 50.0f;
|
|
float f_final_logit_softcapping = 30.0f;
|
|
|
|
// for RWKV
|
|
uint32_t rescale_every_n_layers = 0;
|
|
uint32_t time_mix_extra_dim = 0;
|
|
uint32_t time_decay_extra_dim = 0;
|
|
uint32_t wkv_head_size = 0;
|
|
uint32_t token_shift_count = 2;
|
|
uint32_t n_lora_decay = 0;
|
|
uint32_t n_lora_iclr = 0;
|
|
uint32_t n_lora_value_res_mix = 0;
|
|
uint32_t n_lora_gate = 0;
|
|
|
|
float rope_attn_factor = 1.0f;
|
|
float rope_freq_base_train;
|
|
float rope_freq_base_train_swa;
|
|
float rope_freq_scale_train;
|
|
float rope_freq_scale_train_swa;
|
|
uint32_t n_ctx_orig_yarn;
|
|
float rope_yarn_log_mul = 0.0f;
|
|
|
|
std::array<int, 4> rope_sections;
|
|
|
|
// Sliding Window Attention (SWA)
|
|
llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
|
|
// the size of the sliding window (0 - no SWA)
|
|
uint32_t n_swa = 0;
|
|
// if swa_layers[il] == true, then layer il is SWA
|
|
// if swa_layers[il] == false, then layer il is dense (i.e. non-SWA)
|
|
// by default, all layers are dense
|
|
std::array<bool, LLAMA_MAX_LAYERS> swa_layers;
|
|
|
|
// for State Space Models
|
|
uint32_t ssm_d_conv = 0;
|
|
uint32_t ssm_d_inner = 0;
|
|
uint32_t ssm_d_state = 0;
|
|
uint32_t ssm_dt_rank = 0;
|
|
uint32_t ssm_n_group = 0;
|
|
|
|
// for hybrid state space models
|
|
std::array<bool, LLAMA_MAX_LAYERS> recurrent_layer_arr;
|
|
|
|
bool ssm_dt_b_c_rms = false;
|
|
|
|
float f_clamp_kqv = 0.0f;
|
|
float f_max_alibi_bias = 0.0f;
|
|
float f_logit_scale = 0.0f;
|
|
|
|
// Additional scale factors (Granite/Granite MoE)
|
|
float f_residual_scale = 0.0f;
|
|
float f_embedding_scale = 0.0f;
|
|
float f_attention_scale = 0.0f;
|
|
|
|
bool causal_attn = true;
|
|
bool use_alibi = false;
|
|
bool attn_soft_cap = false;
|
|
bool use_kq_norm = true;
|
|
|
|
// for Classifiers
|
|
uint32_t n_cls_out = 1;
|
|
|
|
// llama4 smallthinker
|
|
uint32_t n_moe_layer_step = 0;
|
|
uint32_t n_no_rope_layer_step = 4;
|
|
uint32_t n_attn_temp_floor_scale = 8192;
|
|
float f_attn_temp_scale = 0.1;
|
|
|
|
// gemma3n altup
|
|
uint32_t n_altup = 4; // altup_num_inputs
|
|
uint32_t i_altup_act = 0; // altup_active_idx
|
|
uint32_t laurel_rank = 64;
|
|
uint32_t n_embd_altup = 256;
|
|
|
|
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
|
|
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
|
|
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
|
|
|
|
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
|
|
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
|
|
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
|
|
|
|
// this value n_pattern means that every nth layer is dense (i.e. non-SWA)
|
|
// dense_first means whether the pattern is start with a dense layer
|
|
// note that if n_pattern == 0, all layers are SWA
|
|
// if n_pattern == 1, all layers are dense
|
|
// example 1: n_pattern = 3, dense_first = false
|
|
// il == 0: swa
|
|
// il == 1: swa
|
|
// il == 2: dense
|
|
// il == 3: swa
|
|
// il == 4: swa
|
|
// il == 5: dense
|
|
// il == 6: swa
|
|
// etc ...
|
|
// example 2: n_pattern = 2, dense_first = true
|
|
// il == 0: dense
|
|
// il == 1: swa
|
|
// il == 2: dense
|
|
// il == 3: swa
|
|
// etc ...
|
|
void set_swa_pattern(uint32_t n_pattern, bool dense_first = false);
|
|
|
|
// return true if one of the layers is SWA
|
|
bool is_swa_any() const;
|
|
|
|
uint32_t n_head(uint32_t il = 0) const;
|
|
|
|
uint32_t n_head_kv(uint32_t il = 0) const;
|
|
|
|
uint32_t n_ff(uint32_t il = 0) const;
|
|
|
|
uint32_t n_gqa(uint32_t il = 0) const;
|
|
|
|
// dimension of key embeddings across all k-v heads
|
|
uint32_t n_embd_k_gqa(uint32_t il = 0) const;
|
|
|
|
// dimension of value embeddings across all k-v heads
|
|
uint32_t n_embd_v_gqa(uint32_t il = 0) const;
|
|
|
|
// true if any layer has a different n_embd_k_gqa/n_embd_v_gqa
|
|
bool is_n_embd_k_gqa_variable() const;
|
|
bool is_n_embd_v_gqa_variable() const;
|
|
|
|
// return the maximum n_embd_k_gqa/n_embd_v_gqa across all layers
|
|
uint32_t n_embd_k_gqa_max() const;
|
|
uint32_t n_embd_v_gqa_max() const;
|
|
|
|
// dimension of the rolling state embeddings
|
|
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
|
|
uint32_t n_embd_r() const;
|
|
|
|
// dimension of the recurrent state embeddings
|
|
uint32_t n_embd_s() const;
|
|
|
|
// whether or not the given layer is recurrent (for hybrid models)
|
|
bool is_recurrent(uint32_t il) const;
|
|
|
|
uint32_t n_pos_per_embd() const;
|
|
|
|
bool is_swa(uint32_t il) const;
|
|
};
|
|
|
|
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
|
|