mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-07-22 02:38:03 +00:00
266 lines
11 KiB
Python
Executable File
266 lines
11 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import argparse
|
|
import json
|
|
import os
|
|
import random
|
|
import subprocess
|
|
from time import sleep, time
|
|
from typing import Optional, Union
|
|
|
|
import datasets
|
|
import logging
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import requests
|
|
from tqdm.contrib.concurrent import thread_map
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(message)s')
|
|
logger = logging.getLogger("server-bench")
|
|
|
|
|
|
def get_prompts_text(dataset_name: str, n_prompts: int) -> Optional[list[str]]:
|
|
ret = []
|
|
if dataset_name.lower() == "mmlu":
|
|
logger.info("Loading MMLU dataset...")
|
|
ret = datasets.load_dataset("cais/mmlu", "all")["test"]["question"] # type: ignore
|
|
else:
|
|
return None
|
|
if n_prompts >= 0:
|
|
ret = ret[:n_prompts]
|
|
return ret
|
|
|
|
|
|
def get_prompt_lengths_rng(n_prompts: int, prompt_length_min: int, prompt_length_max: int) -> list[int]:
|
|
assert n_prompts >= 0
|
|
ret: list[int] = []
|
|
for i in range(n_prompts):
|
|
random.seed(13 * i + 0)
|
|
ret.append(random.randint(prompt_length_min, prompt_length_max))
|
|
return ret
|
|
|
|
|
|
def get_prompts_rng(prompt_lengths: list[int]) -> list[list[int]]:
|
|
return [[random.randint(100, 10000) for _ in range(pl)] for pl in prompt_lengths]
|
|
|
|
|
|
def get_server(path_server: str, path_log: Optional[str]) -> dict:
|
|
logger.info("Starting the llama.cpp server...")
|
|
hostname: str = os.environ.get("LLAMA_ARG_HOST", "127.0.0.1")
|
|
port: str = os.environ.get("LLAMA_ARG_PORT", "8080")
|
|
address: str = f"http://{hostname}:{port}"
|
|
|
|
fout = open(path_log, "w") if path_log is not None else subprocess.DEVNULL
|
|
process = subprocess.Popen([path_server], stdout=fout, stderr=subprocess.STDOUT)
|
|
|
|
n_failures: int = 0
|
|
while True:
|
|
try:
|
|
sleep(1.0)
|
|
exit_code = process.poll()
|
|
if exit_code is not None:
|
|
raise RuntimeError(f"llama.cpp server exited unexpectedly with exit code {exit_code}, see {path_log}")
|
|
response = requests.get(f"{address}/health")
|
|
if response.status_code == 200:
|
|
break
|
|
except requests.ConnectionError:
|
|
n_failures += 1
|
|
if n_failures >= 10:
|
|
raise RuntimeError("llama.cpp server is not healthy after 10 seconds")
|
|
|
|
return {"process": process, "address": address, "fout": fout}
|
|
|
|
|
|
def get_prompt_length(data: dict) -> int:
|
|
session = data["session"]
|
|
server_address: str = data["server_address"]
|
|
|
|
response = session.post(
|
|
f"{server_address}/apply-template",
|
|
json={"messages": [{"role": "user", "content": data["prompt"], "stream": True}]}
|
|
)
|
|
if response.status_code != 200:
|
|
raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
|
|
prompt: str = json.loads(response.text)["prompt"]
|
|
response = session.post(
|
|
f"{server_address}/tokenize",
|
|
json={"content": prompt, "add_special": True}
|
|
)
|
|
if response.status_code != 200:
|
|
raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
|
|
tokens: list[str] = json.loads(response.text)["tokens"]
|
|
return len(tokens)
|
|
|
|
|
|
def send_prompt(data: dict) -> tuple[float, list[float]]:
|
|
session = data["session"]
|
|
server_address: str = data["server_address"]
|
|
|
|
t_submit = time()
|
|
if data["synthetic_prompt"]:
|
|
json_data: dict = {
|
|
"prompt": data["prompt"], "ignore_eos": True, "cache_prompt": False,
|
|
"seed": data["seed"], "n_predict": data["n_predict"], "stream": True}
|
|
response = session.post(f"{server_address}/completion", json=json_data, stream=True)
|
|
else:
|
|
response = session.post(
|
|
f"{server_address}/apply-template",
|
|
json={"messages": [{"role": "user", "content": data["prompt"], "stream": True}]}
|
|
)
|
|
if response.status_code != 200:
|
|
raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
|
|
prompt: str = json.loads(response.text)["prompt"]
|
|
|
|
json_data: dict = {"prompt": prompt, "seed": data["seed"], "n_predict": data["n_predict"], "stream": True}
|
|
response = session.post(f"{server_address}/completion", json=json_data, stream=True)
|
|
|
|
token_arrival_times: list[float] = []
|
|
for line in response.iter_lines(decode_unicode=False):
|
|
if not line.startswith(b"data: "):
|
|
continue
|
|
token_arrival_times.append(time())
|
|
token_arrival_times = token_arrival_times[:-1]
|
|
|
|
if response.status_code != 200:
|
|
raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
|
|
|
|
return (t_submit, token_arrival_times)
|
|
|
|
|
|
def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_prompts: int, n_predict: int, n_predict_min: int):
|
|
if os.environ.get("LLAMA_ARG_N_PARALLEL") is None:
|
|
logger.info("LLAMA_ARG_N_PARALLEL not explicitly set, using 32")
|
|
os.environ["LLAMA_ARG_N_PARALLEL"] = "32"
|
|
if os.environ.get("LLAMA_ARG_N_GPU_LAYERS") is None:
|
|
logger.info("LLAMA_ARG_N_GPU_LAYERS not explicitly set, using 999")
|
|
os.environ["LLAMA_ARG_N_GPU_LAYERS"] = "999"
|
|
if os.environ.get("LLAMA_ARG_FLASH_ATTN") is None:
|
|
logger.info("LLAMA_ARG_FLASH_ATTN not explicitly set, using 'true'")
|
|
os.environ["LLAMA_ARG_FLASH_ATTN"] = "true"
|
|
|
|
parallel: int = int(os.environ.get("LLAMA_ARG_N_PARALLEL", 1))
|
|
prompts: Union[None, list[str], list[list[int]]] = get_prompts_text(prompt_source, n_prompts)
|
|
synthetic_prompts: bool = prompts is None
|
|
prompt_n = []
|
|
|
|
if synthetic_prompts:
|
|
prompt_source_split: list[str] = prompt_source.split("-")
|
|
assert len(prompt_source_split) == 3
|
|
assert prompt_source_split[0].lower() == "rng"
|
|
prompt_length_min: int = int(prompt_source_split[1])
|
|
prompt_length_max: int = int(prompt_source_split[2])
|
|
logger.info("Generating random prompts...")
|
|
prompt_n = get_prompt_lengths_rng(n_prompts, prompt_length_min, prompt_length_max)
|
|
prompts = get_prompts_rng(prompt_n)
|
|
else:
|
|
n_predict_min = n_predict
|
|
|
|
if os.environ.get("LLAMA_ARG_CTX_SIZE") is None:
|
|
context_per_slot: int = int(1.05 * (n_predict + (np.max(prompt_n) if synthetic_prompts else 2048)))
|
|
context_total: int = context_per_slot * parallel
|
|
os.environ["LLAMA_ARG_CTX_SIZE"] = str(context_total)
|
|
logger.info(f"LLAMA_ARG_CTX_SIZE not explicitly set, using {context_total} ({context_per_slot} per slot).")
|
|
|
|
server: Optional[dict] = None
|
|
session = None
|
|
try:
|
|
server = get_server(path_server, path_log)
|
|
server_address: str = server["address"]
|
|
|
|
adapter = requests.adapters.HTTPAdapter(pool_connections=parallel, pool_maxsize=parallel) # type: ignore
|
|
session = requests.Session()
|
|
session.mount("http://", adapter)
|
|
session.mount("https://", adapter)
|
|
|
|
data: list[dict] = []
|
|
|
|
for i, p in enumerate(prompts):
|
|
random.seed(13 * i + 1)
|
|
data.append({
|
|
"session": session, "server_address": server_address, "prompt": p, "synthetic_prompt": synthetic_prompts,
|
|
"n_predict": random.randint(n_predict_min, n_predict), "seed": 13 * i + 2})
|
|
|
|
if not synthetic_prompts:
|
|
logger.info("Getting the prompt lengths...")
|
|
prompt_n = [get_prompt_length(d) for d in data]
|
|
|
|
logger.info("Starting the benchmark...\n")
|
|
t0 = time()
|
|
results: list[tuple[float, list[float]]] = thread_map(send_prompt, data, max_workers=parallel, chunksize=1)
|
|
finally:
|
|
if server is not None:
|
|
server["process"].terminate()
|
|
server["process"].wait()
|
|
if session is not None:
|
|
session.close()
|
|
|
|
prompt_t = []
|
|
token_t = []
|
|
depth_sum: int = 0
|
|
for pn, (t_submit, tat) in zip(prompt_n, results):
|
|
prompt_t.append(tat[0] - t_submit)
|
|
token_t += tat
|
|
n_tokens: int = len(tat)
|
|
depth_sum += n_tokens * pn
|
|
depth_sum += n_tokens * (n_tokens + 1) // 2
|
|
assert len(token_t) > 0
|
|
prompt_n = np.array(prompt_n, dtype=np.int64)
|
|
prompt_t = np.array(prompt_t, dtype=np.float64)
|
|
token_t = np.array(token_t, dtype=np.float64)
|
|
|
|
token_t -= t0
|
|
token_t_last = np.max(token_t)
|
|
|
|
logger.info("")
|
|
logger.info(f"Benchmark duration: {token_t_last:.2f} s")
|
|
logger.info(f"Request throughput: {n_prompts / token_t_last:.2f} requests/s = {n_prompts / (token_t_last/60):.2f} requests/min")
|
|
logger.info(f"Total prompt length: {np.sum(prompt_n)} tokens")
|
|
logger.info(f"Average prompt length: {np.mean(prompt_n):.2f} tokens")
|
|
logger.info(f"Average prompt latency: {1e3 * np.mean(prompt_t):.2f} ms")
|
|
logger.info(f"Average prompt speed: {np.sum(prompt_n) / np.sum(prompt_t):.2f} tokens/s")
|
|
logger.info(f"Total generated tokens: {token_t.shape[0]}")
|
|
logger.info(f"Average generation depth: {depth_sum / token_t.shape[0]:.2f} tokens")
|
|
logger.info(f"Average total generation speed: {token_t.shape[0] / token_t_last:.2f} tokens/s")
|
|
logger.info(f"Average generation speed per slot: {token_t.shape[0] / (parallel * token_t_last):.2f} tokens/s / slot")
|
|
logger.info("")
|
|
logger.info(
|
|
"The above numbers are the speeds as observed by the Python script and may differ from the performance reported by the server, "
|
|
"particularly when the server is fast vs. the network or Python script (e.g. when serving a very small model).")
|
|
|
|
plt.figure()
|
|
plt.scatter(prompt_n, 1e3 * prompt_t, s=10.0, marker=".", alpha=0.25)
|
|
plt.xlim(0, 1.05e0 * np.max(prompt_n))
|
|
plt.ylim(0, 1.05e3 * np.max(prompt_t))
|
|
plt.xlabel("Prompt length [tokens]")
|
|
plt.ylabel("Time to first token [ms]")
|
|
plt.savefig("prompt_time.png", dpi=240)
|
|
|
|
bin_max = np.ceil(token_t_last) + 1
|
|
plt.figure()
|
|
plt.hist(token_t, np.arange(0, bin_max))
|
|
plt.xlim(0, bin_max + 1)
|
|
plt.xlabel("Time [s]")
|
|
plt.ylabel("Num. tokens generated per second")
|
|
plt.savefig("gen_rate.png", dpi=240)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
description="Tool for benchmarking the throughput of the llama.cpp HTTP server. "
|
|
"Results are printed to console and visualized as plots (saved to current working directory). "
|
|
"To pass arguments such as the model path to the server, set the corresponding environment variables (see llama-server --help).")
|
|
parser.add_argument("--path_server", type=str, default="llama-server", help="Path to the llama.cpp server binary")
|
|
parser.add_argument("--path_log", type=str, default="server-bench.log", help="Path to the model to use for the benchmark")
|
|
parser.add_argument(
|
|
"--prompt_source", type=str, default="rng-1024-2048",
|
|
help="How to get the prompts for the benchmark, either 'mmlu' for MMLU questions or "
|
|
"rng-MIN-MAX for synthetic prompts with random lengths in the interval [MIN, MAX]")
|
|
parser.add_argument("--n_prompts", type=int, default=100, help="Number of prompts to evaluate")
|
|
parser.add_argument("--n_predict", type=int, default=2048, help="Max. number of tokens to predict per prompt")
|
|
parser.add_argument(
|
|
"--n_predict_min", type=int, default=1024,
|
|
help="Min. number of tokens to predict per prompt (supported for synthetic prompts only)")
|
|
args = parser.parse_args()
|
|
benchmark(**vars(args))
|