Files
llama.cpp/scripts/compare-llama-bench.py
2025-08-02 17:20:40 +08:00

1095 lines
45 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import csv
import heapq
import json
import logging
import os
import sqlite3
import sys
from collections.abc import Iterator, Sequence
from glob import glob
from typing import Any, Optional, Union
try:
import git
from tabulate import tabulate
except ImportError as e:
print("the following Python libraries are required: GitPython, tabulate.") # noqa: NP100
raise e
logger = logging.getLogger("compare-llama-bench")
# All llama-bench SQL fields
LLAMA_BENCH_DB_FIELDS = [
"build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
"model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
"cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
"split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
"defrag_thold",
"use_mmap", "embeddings", "no_op_offload", "n_prompt", "n_gen", "n_depth",
"test_time", "avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
]
LLAMA_BENCH_DB_TYPES = [
"TEXT", "INTEGER", "TEXT", "TEXT", "TEXT", "TEXT",
"TEXT", "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
"TEXT", "INTEGER", "INTEGER", "TEXT", "TEXT", "INTEGER",
"TEXT", "INTEGER", "INTEGER", "INTEGER", "TEXT", "TEXT",
"REAL",
"INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
"TEXT", "INTEGER", "INTEGER", "REAL", "REAL",
]
# All test-backend-ops SQL fields
TEST_BACKEND_OPS_DB_FIELDS = [
"test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode",
"supported", "passed", "error_message", "time_us", "flops", "bandwidth_gb_s",
"memory_kb", "n_runs"
]
TEST_BACKEND_OPS_DB_TYPES = [
"TEXT", "TEXT", "TEXT", "TEXT", "TEXT", "TEXT",
"INTEGER", "INTEGER", "TEXT", "REAL", "REAL", "REAL",
"INTEGER", "INTEGER"
]
assert len(LLAMA_BENCH_DB_FIELDS) == len(LLAMA_BENCH_DB_TYPES)
assert len(TEST_BACKEND_OPS_DB_FIELDS) == len(TEST_BACKEND_OPS_DB_TYPES)
# Properties by which to differentiate results per commit for llama-bench:
LLAMA_BENCH_KEY_PROPERTIES = [
"cpu_info", "gpu_info", "backends", "n_gpu_layers", "tensor_buft_overrides", "model_filename", "model_type",
"n_batch", "n_ubatch", "embeddings", "cpu_mask", "cpu_strict", "poll", "n_threads", "type_k", "type_v",
"use_mmap", "no_kv_offload", "split_mode", "main_gpu", "tensor_split", "flash_attn", "n_prompt", "n_gen", "n_depth"
]
# Properties by which to differentiate results per commit for test-backend-ops:
TEST_BACKEND_OPS_KEY_PROPERTIES = [
"backend_name", "op_name", "op_params", "test_mode"
]
# Properties that are boolean and are converted to Yes/No for the table:
LLAMA_BENCH_BOOL_PROPERTIES = ["embeddings", "cpu_strict", "use_mmap", "no_kv_offload", "flash_attn"]
TEST_BACKEND_OPS_BOOL_PROPERTIES = ["supported", "passed"]
# Header names for the table (llama-bench):
LLAMA_BENCH_PRETTY_NAMES = {
"cpu_info": "CPU", "gpu_info": "GPU", "backends": "Backends", "n_gpu_layers": "GPU layers",
"tensor_buft_overrides": "Tensor overrides", "model_filename": "File", "model_type": "Model", "model_size": "Model size [GiB]",
"model_n_params": "Num. of par.", "n_batch": "Batch size", "n_ubatch": "Microbatch size", "embeddings": "Embeddings",
"cpu_mask": "CPU mask", "cpu_strict": "CPU strict", "poll": "Poll", "n_threads": "Threads", "type_k": "K type", "type_v": "V type",
"use_mmap": "Use mmap", "no_kv_offload": "NKVO", "split_mode": "Split mode", "main_gpu": "Main GPU", "tensor_split": "Tensor split",
"flash_attn": "FlashAttention",
}
# Header names for the table (test-backend-ops):
TEST_BACKEND_OPS_PRETTY_NAMES = {
"backend_name": "Backend", "op_name": "GGML op", "op_params": "Op parameters", "test_mode": "Mode",
"supported": "Supported", "passed": "Passed", "error_message": "Error",
"flops": "FLOPS", "bandwidth_gb_s": "Bandwidth (GB/s)", "memory_kb": "Memory (KB)", "n_runs": "Runs"
}
DEFAULT_SHOW_LLAMA_BENCH = ["model_type"] # Always show these properties by default.
DEFAULT_HIDE_LLAMA_BENCH = ["model_filename"] # Always hide these properties by default.
DEFAULT_SHOW_TEST_BACKEND_OPS = ["backend_name", "op_name"] # Always show these properties by default.
DEFAULT_HIDE_TEST_BACKEND_OPS = ["error_message"] # Always hide these properties by default.
GPU_NAME_STRIP = ["NVIDIA GeForce ", "Tesla ", "AMD Radeon "] # Strip prefixes for smaller tables.
MODEL_SUFFIX_REPLACE = {" - Small": "_S", " - Medium": "_M", " - Large": "_L"}
DESCRIPTION = """Creates tables from llama-bench or test-backend-ops data written to multiple JSON/CSV files, a single JSONL file or SQLite database. Example usage (Linux):
For llama-bench:
$ git checkout master
$ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t llama-bench -j $(nproc)
$ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
$ git checkout some_branch
$ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t llama-bench -j $(nproc)
$ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
$ ./scripts/compare-llama-bench.py
For test-backend-ops:
$ git checkout master
$ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t test-backend-ops -j $(nproc)
$ ./test-backend-ops perf --output sql | sqlite3 test-backend-ops.sqlite
$ git checkout some_branch
$ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t test-backend-ops -j $(nproc)
$ ./test-backend-ops perf --output sql | sqlite3 test-backend-ops.sqlite
$ ./scripts/compare-llama-bench.py --tool test-backend-ops -i test-backend-ops.sqlite
Performance numbers from multiple runs per commit are averaged WITHOUT being weighted by the --repetitions parameter of llama-bench.
"""
parser = argparse.ArgumentParser(
description=DESCRIPTION, formatter_class=argparse.RawDescriptionHelpFormatter)
help_b = (
"The baseline commit to compare performance to. "
"Accepts either a branch name, tag name, or commit hash. "
"Defaults to latest master commit with data."
)
parser.add_argument("-b", "--baseline", help=help_b)
help_c = (
"The commit whose performance is to be compared to the baseline. "
"Accepts either a branch name, tag name, or commit hash. "
"Defaults to the non-master commit for which llama-bench was run most recently."
)
parser.add_argument("-c", "--compare", help=help_c)
help_t = (
"The tool whose data is being compared. "
"Either 'llama-bench' or 'test-backend-ops'. "
"This determines the database schema and comparison logic used. "
"If left unspecified, try to determine from the input file."
)
parser.add_argument("-t", "--tool", help=help_t, default=None, choices=[None, "llama-bench", "test-backend-ops"])
help_i = (
"JSON/JSONL/SQLite/CSV files for comparing commits. "
"Specify multiple times to use multiple input files (JSON/CSV only). "
"Defaults to 'llama-bench.sqlite' in the current working directory. "
"If no such file is found and there is exactly one .sqlite file in the current directory, "
"that file is instead used as input."
)
parser.add_argument("-i", "--input", action="append", help=help_i)
help_o = (
"Output format for the table. "
"Defaults to 'pipe' (GitHub compatible). "
"Also supports e.g. 'latex' or 'mediawiki'. "
"See tabulate documentation for full list."
)
parser.add_argument("-o", "--output", help=help_o, default="pipe")
help_s = (
"Columns to add to the table. "
"Accepts a comma-separated list of values. "
f"Legal values for test-backend-ops: {', '.join(TEST_BACKEND_OPS_KEY_PROPERTIES)}. "
f"Legal values for llama-bench: {', '.join(LLAMA_BENCH_KEY_PROPERTIES[:-3])}. "
"Defaults to model name (model_type) and CPU and/or GPU name (cpu_info, gpu_info) "
"plus any column where not all data points are the same. "
"If the columns are manually specified, then the results for each unique combination of the "
"specified values are averaged WITHOUT weighing by the --repetitions parameter of llama-bench."
)
parser.add_argument("--check", action="store_true", help="check if all required Python libraries are installed")
parser.add_argument("-s", "--show", help=help_s)
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
parser.add_argument("--plot", help="generate a performance comparison plot and save to specified file (e.g., plot.png)")
parser.add_argument("--plot_x", help="parameter to use as x axis for plotting (default: n_depth)", default="n_depth")
parser.add_argument("--plot_log_scale", action="store_true", help="use log scale for x axis in plots (off by default)")
known_args, unknown_args = parser.parse_known_args()
logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO)
if known_args.check:
# Check if all required Python libraries are installed. Would have failed earlier if not.
sys.exit(0)
if unknown_args:
logger.error(f"Received unknown args: {unknown_args}.\n")
parser.print_help()
sys.exit(1)
input_file = known_args.input
tool = known_args.tool
if not input_file:
if tool == "llama-bench" and os.path.exists("./llama-bench.sqlite"):
input_file = ["llama-bench.sqlite"]
elif tool == "test-backend-ops" and os.path.exists("./test-backend-ops.sqlite"):
input_file = ["test-backend-ops.sqlite"]
if not input_file:
sqlite_files = glob("*.sqlite")
if len(sqlite_files) == 1:
input_file = sqlite_files
if not input_file:
logger.error("Cannot find a suitable input file, please provide one.\n")
parser.print_help()
sys.exit(1)
class LlamaBenchData:
repo: Optional[git.Repo]
build_len_min: int
build_len_max: int
build_len: int = 8
builds: list[str] = []
tool: str = "llama-bench" # Tool type: "llama-bench" or "test-backend-ops"
def __init__(self, tool: str = "llama-bench"):
self.tool = tool
try:
self.repo = git.Repo(".", search_parent_directories=True)
except git.InvalidGitRepositoryError:
self.repo = None
# Set schema-specific properties based on tool
if self.tool == "llama-bench":
self.check_keys = set(LLAMA_BENCH_KEY_PROPERTIES + ["build_commit", "test_time", "avg_ts"])
elif self.tool == "test-backend-ops":
self.check_keys = set(TEST_BACKEND_OPS_KEY_PROPERTIES + ["build_commit", "test_time"])
else:
assert False
def _builds_init(self):
self.build_len = self.build_len_min
def _check_keys(self, keys: set) -> Optional[set]:
"""Private helper method that checks against required data keys and returns missing ones."""
if not keys >= self.check_keys:
return self.check_keys - keys
return None
def find_parent_in_data(self, commit: git.Commit) -> Optional[str]:
"""Helper method to find the most recent parent measured in number of commits for which there is data."""
heap: list[tuple[int, git.Commit]] = [(0, commit)]
seen_hexsha8 = set()
while heap:
depth, current_commit = heapq.heappop(heap)
current_hexsha8 = commit.hexsha[:self.build_len]
if current_hexsha8 in self.builds:
return current_hexsha8
for parent in commit.parents:
parent_hexsha8 = parent.hexsha[:self.build_len]
if parent_hexsha8 not in seen_hexsha8:
seen_hexsha8.add(parent_hexsha8)
heapq.heappush(heap, (depth + 1, parent))
return None
def get_all_parent_hexsha8s(self, commit: git.Commit) -> Sequence[str]:
"""Helper method to recursively get hexsha8 values for all parents of a commit."""
unvisited = [commit]
visited = []
while unvisited:
current_commit = unvisited.pop(0)
visited.append(current_commit.hexsha[:self.build_len])
for parent in current_commit.parents:
if parent.hexsha[:self.build_len] not in visited:
unvisited.append(parent)
return visited
def get_commit_name(self, hexsha8: str) -> str:
"""Helper method to find a human-readable name for a commit if possible."""
if self.repo is None:
return hexsha8
for h in self.repo.heads:
if h.commit.hexsha[:self.build_len] == hexsha8:
return h.name
for t in self.repo.tags:
if t.commit.hexsha[:self.build_len] == hexsha8:
return t.name
return hexsha8
def get_commit_hexsha8(self, name: str) -> Optional[str]:
"""Helper method to search for a commit given a human-readable name."""
if self.repo is None:
return None
for h in self.repo.heads:
if h.name == name:
return h.commit.hexsha[:self.build_len]
for t in self.repo.tags:
if t.name == name:
return t.commit.hexsha[:self.build_len]
for c in self.repo.iter_commits("--all"):
if c.hexsha[:self.build_len] == name[:self.build_len]:
return c.hexsha[:self.build_len]
return None
def builds_timestamp(self, reverse: bool = False) -> Union[Iterator[tuple], Sequence[tuple]]:
"""Helper method that gets rows of (build_commit, test_time) sorted by the latter."""
return []
def get_rows(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
"""
Helper method that gets table rows for some list of properties.
Rows are created by combining those where all provided properties are equal.
The resulting rows are then grouped by the provided properties and the t/s values are averaged.
The returned rows are unique in terms of property combinations.
"""
return []
class LlamaBenchDataSQLite3(LlamaBenchData):
connection: sqlite3.Connection
cursor: sqlite3.Cursor
table_name: str
def __init__(self, tool: str = "llama-bench"):
super().__init__(tool)
self.connection = sqlite3.connect(":memory:")
self.cursor = self.connection.cursor()
# Set table name and schema based on tool
if self.tool == "llama-bench":
self.table_name = "llama_bench"
db_fields = LLAMA_BENCH_DB_FIELDS
db_types = LLAMA_BENCH_DB_TYPES
elif self.tool == "test-backend-ops":
self.table_name = "test_backend_ops"
db_fields = TEST_BACKEND_OPS_DB_FIELDS
db_types = TEST_BACKEND_OPS_DB_TYPES
else:
assert False
self.cursor.execute(f"CREATE TABLE {self.table_name}({', '.join(' '.join(x) for x in zip(db_fields, db_types))});")
def _builds_init(self):
if self.connection:
self.build_len_min = self.cursor.execute(f"SELECT MIN(LENGTH(build_commit)) from {self.table_name};").fetchone()[0]
self.build_len_max = self.cursor.execute(f"SELECT MAX(LENGTH(build_commit)) from {self.table_name};").fetchone()[0]
if self.build_len_min != self.build_len_max:
logger.warning("Data contains commit hashes of differing lengths. It's possible that the wrong commits will be compared. "
"Try purging the the database of old commits.")
self.cursor.execute(f"UPDATE {self.table_name} SET build_commit = SUBSTRING(build_commit, 1, {self.build_len_min});")
builds = self.cursor.execute(f"SELECT DISTINCT build_commit FROM {self.table_name};").fetchall()
self.builds = list(map(lambda b: b[0], builds)) # list[tuple[str]] -> list[str]
super()._builds_init()
def builds_timestamp(self, reverse: bool = False) -> Union[Iterator[tuple], Sequence[tuple]]:
data = self.cursor.execute(
f"SELECT build_commit, test_time FROM {self.table_name} ORDER BY test_time;").fetchall()
return reversed(data) if reverse else data
def get_rows(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
if self.tool == "llama-bench":
return self._get_rows_llama_bench(properties, hexsha8_baseline, hexsha8_compare)
elif self.tool == "test-backend-ops":
return self._get_rows_test_backend_ops(properties, hexsha8_baseline, hexsha8_compare)
else:
assert False
def _get_rows_llama_bench(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
select_string = ", ".join(
[f"tb.{p}" for p in properties] + ["tb.n_prompt", "tb.n_gen", "tb.n_depth", "AVG(tb.avg_ts)", "AVG(tc.avg_ts)"])
equal_string = " AND ".join(
[f"tb.{p} = tc.{p}" for p in LLAMA_BENCH_KEY_PROPERTIES] + [
f"tb.build_commit = '{hexsha8_baseline}'", f"tc.build_commit = '{hexsha8_compare}'"]
)
group_order_string = ", ".join([f"tb.{p}" for p in properties] + ["tb.n_gen", "tb.n_prompt", "tb.n_depth"])
query = (f"SELECT {select_string} FROM {self.table_name} tb JOIN {self.table_name} tc ON {equal_string} "
f"GROUP BY {group_order_string} ORDER BY {group_order_string};")
return self.cursor.execute(query).fetchall()
def _get_rows_test_backend_ops(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
# For test-backend-ops, we compare FLOPS and bandwidth metrics (prioritizing FLOPS over bandwidth)
select_string = ", ".join(
[f"tb.{p}" for p in properties] + [
"AVG(tb.flops)", "AVG(tc.flops)",
"AVG(tb.bandwidth_gb_s)", "AVG(tc.bandwidth_gb_s)"
])
equal_string = " AND ".join(
[f"tb.{p} = tc.{p}" for p in TEST_BACKEND_OPS_KEY_PROPERTIES] + [
f"tb.build_commit = '{hexsha8_baseline}'", f"tc.build_commit = '{hexsha8_compare}'",
"tb.supported = 1", "tc.supported = 1", "tb.passed = 1", "tc.passed = 1"] # Only compare successful tests
)
group_order_string = ", ".join([f"tb.{p}" for p in properties])
query = (f"SELECT {select_string} FROM {self.table_name} tb JOIN {self.table_name} tc ON {equal_string} "
f"GROUP BY {group_order_string} ORDER BY {group_order_string};")
return self.cursor.execute(query).fetchall()
class LlamaBenchDataSQLite3File(LlamaBenchDataSQLite3):
def __init__(self, data_file: str, tool: Any):
super().__init__(tool)
self.connection.close()
self.connection = sqlite3.connect(data_file)
self.cursor = self.connection.cursor()
# Check which table exists in the database
tables = self.cursor.execute("SELECT name FROM sqlite_master WHERE type='table';").fetchall()
table_names = [table[0] for table in tables]
# Tool selection logic
if tool is None:
if "llama_bench" in table_names:
self.table_name = "llama_bench"
self.tool = "llama-bench"
elif "test_backend_ops" in table_names:
self.table_name = "test_backend_ops"
self.tool = "test-backend-ops"
else:
raise RuntimeError(f"No suitable table found in database. Available tables: {table_names}")
elif tool == "llama-bench":
if "llama_bench" in table_names:
self.table_name = "llama_bench"
self.tool = "llama-bench"
else:
raise RuntimeError(f"Table 'test' not found for tool 'llama-bench'. Available tables: {table_names}")
elif tool == "test-backend-ops":
if "test_backend_ops" in table_names:
self.table_name = "test_backend_ops"
self.tool = "test-backend-ops"
else:
raise RuntimeError(f"Table 'test_backend_ops' not found for tool 'test-backend-ops'. Available tables: {table_names}")
else:
raise RuntimeError(f"Unknown tool: {tool}")
self._builds_init()
@staticmethod
def valid_format(data_file: str) -> bool:
connection = sqlite3.connect(data_file)
cursor = connection.cursor()
try:
if cursor.execute("PRAGMA schema_version;").fetchone()[0] == 0:
raise sqlite3.DatabaseError("The provided input file does not exist or is empty.")
except sqlite3.DatabaseError as e:
logger.debug(f'"{data_file}" is not a valid SQLite3 file.', exc_info=e)
cursor = None
connection.close()
return True if cursor else False
class LlamaBenchDataJSONL(LlamaBenchDataSQLite3):
def __init__(self, data_file: str, tool: str = "llama-bench"):
super().__init__(tool)
# Get the appropriate field list based on tool
db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
with open(data_file, "r", encoding="utf-8") as fp:
for i, line in enumerate(fp):
parsed = json.loads(line)
for k in parsed.keys() - set(db_fields):
del parsed[k]
if (missing_keys := self._check_keys(parsed.keys())):
raise RuntimeError(f"Missing required data key(s) at line {i + 1}: {', '.join(missing_keys)}")
self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
self._builds_init()
@staticmethod
def valid_format(data_file: str) -> bool:
try:
with open(data_file, "r", encoding="utf-8") as fp:
for line in fp:
json.loads(line)
break
except Exception as e:
logger.debug(f'"{data_file}" is not a valid JSONL file.', exc_info=e)
return False
return True
class LlamaBenchDataJSON(LlamaBenchDataSQLite3):
def __init__(self, data_files: list[str], tool: str = "llama-bench"):
super().__init__(tool)
# Get the appropriate field list based on tool
db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
for data_file in data_files:
with open(data_file, "r", encoding="utf-8") as fp:
parsed = json.load(fp)
for i, entry in enumerate(parsed):
for k in entry.keys() - set(db_fields):
del entry[k]
if (missing_keys := self._check_keys(entry.keys())):
raise RuntimeError(f"Missing required data key(s) at entry {i + 1}: {', '.join(missing_keys)}")
self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(entry.keys())}) VALUES({', '.join('?' * len(entry))});", tuple(entry.values()))
self._builds_init()
@staticmethod
def valid_format(data_files: list[str]) -> bool:
if not data_files:
return False
for data_file in data_files:
try:
with open(data_file, "r", encoding="utf-8") as fp:
json.load(fp)
except Exception as e:
logger.debug(f'"{data_file}" is not a valid JSON file.', exc_info=e)
return False
return True
class LlamaBenchDataCSV(LlamaBenchDataSQLite3):
def __init__(self, data_files: list[str], tool: str = "llama-bench"):
super().__init__(tool)
# Get the appropriate field list based on tool
db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
for data_file in data_files:
with open(data_file, "r", encoding="utf-8") as fp:
for i, parsed in enumerate(csv.DictReader(fp)):
keys = set(parsed.keys())
for k in keys - set(db_fields):
del parsed[k]
if (missing_keys := self._check_keys(keys)):
raise RuntimeError(f"Missing required data key(s) at line {i + 1}: {', '.join(missing_keys)}")
self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
self._builds_init()
@staticmethod
def valid_format(data_files: list[str]) -> bool:
if not data_files:
return False
for data_file in data_files:
try:
with open(data_file, "r", encoding="utf-8") as fp:
for parsed in csv.DictReader(fp):
break
except Exception as e:
logger.debug(f'"{data_file}" is not a valid CSV file.', exc_info=e)
return False
return True
def format_flops(flops_value: float) -> str:
"""Format FLOPS values with appropriate units for better readability."""
if flops_value == 0:
return "0.00"
# Define unit thresholds and names
units = [
(1e12, "T"), # TeraFLOPS
(1e9, "G"), # GigaFLOPS
(1e6, "M"), # MegaFLOPS
(1e3, "k"), # kiloFLOPS
(1, "") # FLOPS
]
for threshold, unit in units:
if abs(flops_value) >= threshold:
formatted_value = flops_value / threshold
if formatted_value >= 100:
return f"{formatted_value:.1f}{unit}"
else:
return f"{formatted_value:.2f}{unit}"
# Fallback for very small values
return f"{flops_value:.2f}"
def format_flops_for_table(flops_value: float, target_unit: str) -> str:
"""Format FLOPS values for table display without unit suffix (since unit is in header)."""
if flops_value == 0:
return "0.00"
# Define unit thresholds based on target unit
unit_divisors = {
"TFLOPS": 1e12,
"GFLOPS": 1e9,
"MFLOPS": 1e6,
"kFLOPS": 1e3,
"FLOPS": 1
}
divisor = unit_divisors.get(target_unit, 1)
formatted_value = flops_value / divisor
if formatted_value >= 100:
return f"{formatted_value:.1f}"
else:
return f"{formatted_value:.2f}"
def get_flops_unit_name(flops_values: list) -> str:
"""Determine the best FLOPS unit name based on the magnitude of values."""
if not flops_values or all(v == 0 for v in flops_values):
return "FLOPS"
# Find the maximum absolute value to determine appropriate unit
max_flops = max(abs(v) for v in flops_values if v != 0)
if max_flops >= 1e12:
return "TFLOPS"
elif max_flops >= 1e9:
return "GFLOPS"
elif max_flops >= 1e6:
return "MFLOPS"
elif max_flops >= 1e3:
return "kFLOPS"
else:
return "FLOPS"
bench_data = None
if len(input_file) == 1:
if LlamaBenchDataSQLite3File.valid_format(input_file[0]):
bench_data = LlamaBenchDataSQLite3File(input_file[0], tool)
elif LlamaBenchDataJSON.valid_format(input_file):
bench_data = LlamaBenchDataJSON(input_file, tool)
elif LlamaBenchDataJSONL.valid_format(input_file[0]):
bench_data = LlamaBenchDataJSONL(input_file[0], tool)
elif LlamaBenchDataCSV.valid_format(input_file):
bench_data = LlamaBenchDataCSV(input_file, tool)
else:
if LlamaBenchDataJSON.valid_format(input_file):
bench_data = LlamaBenchDataJSON(input_file, tool)
elif LlamaBenchDataCSV.valid_format(input_file):
bench_data = LlamaBenchDataCSV(input_file, tool)
if not bench_data:
raise RuntimeError("No valid (or some invalid) input files found.")
if not bench_data.builds:
raise RuntimeError(f"{input_file} does not contain any builds.")
hexsha8_baseline = name_baseline = None
# If the user specified a baseline, try to find a commit for it:
if known_args.baseline is not None:
if known_args.baseline in bench_data.builds:
hexsha8_baseline = known_args.baseline
if hexsha8_baseline is None:
hexsha8_baseline = bench_data.get_commit_hexsha8(known_args.baseline)
name_baseline = known_args.baseline
if hexsha8_baseline is None:
logger.error(f"cannot find data for baseline={known_args.baseline}.")
sys.exit(1)
# Otherwise, search for the most recent parent of master for which there is data:
elif bench_data.repo is not None:
hexsha8_baseline = bench_data.find_parent_in_data(bench_data.repo.heads.master.commit)
if hexsha8_baseline is None:
logger.error("No baseline was provided and did not find data for any master branch commits.\n")
parser.print_help()
sys.exit(1)
else:
logger.error("No baseline was provided and the current working directory "
"is not part of a git repository from which a baseline could be inferred.\n")
parser.print_help()
sys.exit(1)
name_baseline = bench_data.get_commit_name(hexsha8_baseline)
hexsha8_compare = name_compare = None
# If the user has specified a compare value, try to find a corresponding commit:
if known_args.compare is not None:
if known_args.compare in bench_data.builds:
hexsha8_compare = known_args.compare
if hexsha8_compare is None:
hexsha8_compare = bench_data.get_commit_hexsha8(known_args.compare)
name_compare = known_args.compare
if hexsha8_compare is None:
logger.error(f"cannot find data for compare={known_args.compare}.")
sys.exit(1)
# Otherwise, search for the commit for llama-bench was most recently run
# and that is not a parent of master:
elif bench_data.repo is not None:
hexsha8s_master = bench_data.get_all_parent_hexsha8s(bench_data.repo.heads.master.commit)
for (hexsha8, _) in bench_data.builds_timestamp(reverse=True):
if hexsha8 not in hexsha8s_master:
hexsha8_compare = hexsha8
break
if hexsha8_compare is None:
logger.error("No compare target was provided and did not find data for any non-master commits.\n")
parser.print_help()
sys.exit(1)
else:
logger.error("No compare target was provided and the current working directory "
"is not part of a git repository from which a compare target could be inferred.\n")
parser.print_help()
sys.exit(1)
name_compare = bench_data.get_commit_name(hexsha8_compare)
# Get tool-specific configuration
if tool == "llama-bench":
key_properties = LLAMA_BENCH_KEY_PROPERTIES
bool_properties = LLAMA_BENCH_BOOL_PROPERTIES
pretty_names = LLAMA_BENCH_PRETTY_NAMES
default_show = DEFAULT_SHOW_LLAMA_BENCH
default_hide = DEFAULT_HIDE_LLAMA_BENCH
elif tool == "test-backend-ops":
key_properties = TEST_BACKEND_OPS_KEY_PROPERTIES
bool_properties = TEST_BACKEND_OPS_BOOL_PROPERTIES
pretty_names = TEST_BACKEND_OPS_PRETTY_NAMES
default_show = DEFAULT_SHOW_TEST_BACKEND_OPS
default_hide = DEFAULT_HIDE_TEST_BACKEND_OPS
else:
assert False
# If the user provided columns to group the results by, use them:
if known_args.show is not None:
show = known_args.show.split(",")
unknown_cols = []
for prop in show:
valid_props = key_properties if tool == "test-backend-ops" else key_properties[:-3] # Exclude n_prompt, n_gen, n_depth for llama-bench
if prop not in valid_props:
unknown_cols.append(prop)
if unknown_cols:
logger.error(f"Unknown values for --show: {', '.join(unknown_cols)}")
parser.print_usage()
sys.exit(1)
rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)
# Otherwise, select those columns where the values are not all the same:
else:
rows_full = bench_data.get_rows(key_properties, hexsha8_baseline, hexsha8_compare)
properties_different = []
if tool == "llama-bench":
# For llama-bench, skip n_prompt, n_gen, n_depth from differentiation logic
check_properties = [kp for kp in key_properties if kp not in ["n_prompt", "n_gen", "n_depth"]]
for i, kp_i in enumerate(key_properties):
if kp_i in default_show or kp_i in ["n_prompt", "n_gen", "n_depth"]:
continue
for row_full in rows_full:
if row_full[i] != rows_full[0][i]:
properties_different.append(kp_i)
break
elif tool == "test-backend-ops":
# For test-backend-ops, check all key properties
for i, kp_i in enumerate(key_properties):
if kp_i in default_show:
continue
for row_full in rows_full:
if row_full[i] != rows_full[0][i]:
properties_different.append(kp_i)
break
else:
assert False
show = []
if tool == "llama-bench":
# Show CPU and/or GPU by default even if the hardware for all results is the same:
if rows_full and "n_gpu_layers" not in properties_different:
ngl = int(rows_full[0][key_properties.index("n_gpu_layers")])
if ngl != 99 and "cpu_info" not in properties_different:
show.append("cpu_info")
show += properties_different
index_default = 0
for prop in ["cpu_info", "gpu_info", "n_gpu_layers", "main_gpu"]:
if prop in show:
index_default += 1
show = show[:index_default] + default_show + show[index_default:]
elif tool == "test-backend-ops":
show = default_show + properties_different
else:
assert False
for prop in default_hide:
try:
show.remove(prop)
except ValueError:
pass
# Add plot_x parameter to parameters to show if it's not already present:
if known_args.plot:
for k, v in pretty_names.items():
if v == known_args.plot_x and k not in show:
show.append(k)
break
rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)
if not rows_show:
logger.error(f"No comparable data was found between {name_baseline} and {name_compare}.\n")
sys.exit(1)
table = []
primary_metric = "FLOPS" # Default to FLOPS for test-backend-ops
if tool == "llama-bench":
# For llama-bench, create test names and compare avg_ts values
for row in rows_show:
n_prompt = int(row[-5])
n_gen = int(row[-4])
n_depth = int(row[-3])
if n_prompt != 0 and n_gen == 0:
test_name = f"pp{n_prompt}"
elif n_prompt == 0 and n_gen != 0:
test_name = f"tg{n_gen}"
else:
test_name = f"pp{n_prompt}+tg{n_gen}"
if n_depth != 0:
test_name = f"{test_name}@d{n_depth}"
# Regular columns test name avg t/s values Speedup
# VVVVVVVVVVVVV VVVVVVVVV VVVVVVVVVVVVVV VVVVVVV
table.append(list(row[:-5]) + [test_name] + list(row[-2:]) + [float(row[-1]) / float(row[-2])])
elif tool == "test-backend-ops":
# Determine the primary metric by checking rows until we find one with valid data
if rows_show:
primary_metric = "FLOPS" # Default to FLOPS
flops_values = []
# Collect all FLOPS values to determine the best unit
for sample_row in rows_show:
baseline_flops = float(sample_row[-4])
compare_flops = float(sample_row[-3])
baseline_bandwidth = float(sample_row[-2])
if baseline_flops > 0:
flops_values.extend([baseline_flops, compare_flops])
elif baseline_bandwidth > 0 and not flops_values:
primary_metric = "Bandwidth (GB/s)"
# If we have FLOPS data, determine the appropriate unit
if flops_values:
primary_metric = get_flops_unit_name(flops_values)
# For test-backend-ops, prioritize FLOPS > bandwidth for comparison
for row in rows_show:
# Extract metrics: flops, bandwidth_gb_s (baseline and compare)
baseline_flops = float(row[-4])
compare_flops = float(row[-3])
baseline_bandwidth = float(row[-2])
compare_bandwidth = float(row[-1])
# Determine which metric to use for comparison (prioritize FLOPS > bandwidth)
if baseline_flops > 0 and compare_flops > 0:
# Use FLOPS comparison (higher is better)
speedup = compare_flops / baseline_flops
baseline_str = format_flops_for_table(baseline_flops, primary_metric)
compare_str = format_flops_for_table(compare_flops, primary_metric)
elif baseline_bandwidth > 0 and compare_bandwidth > 0:
# Use bandwidth comparison (higher is better)
speedup = compare_bandwidth / baseline_bandwidth
baseline_str = f"{baseline_bandwidth:.2f}"
compare_str = f"{compare_bandwidth:.2f}"
else:
# Fallback if no valid data is available
baseline_str = "N/A"
compare_str = "N/A"
from math import nan
speedup = nan
table.append(list(row[:-4]) + [baseline_str, compare_str, speedup])
else:
assert False
# Some a-posteriori fixes to make the table contents prettier:
for bool_property in bool_properties:
if bool_property in show:
ip = show.index(bool_property)
for row_table in table:
row_table[ip] = "Yes" if int(row_table[ip]) == 1 else "No"
if tool == "llama-bench":
if "model_type" in show:
ip = show.index("model_type")
for (old, new) in MODEL_SUFFIX_REPLACE.items():
for row_table in table:
row_table[ip] = row_table[ip].replace(old, new)
if "model_size" in show:
ip = show.index("model_size")
for row_table in table:
row_table[ip] = float(row_table[ip]) / 1024 ** 3
if "gpu_info" in show:
ip = show.index("gpu_info")
for row_table in table:
for gns in GPU_NAME_STRIP:
row_table[ip] = row_table[ip].replace(gns, "")
gpu_names = row_table[ip].split(", ")
num_gpus = len(gpu_names)
all_names_the_same = len(set(gpu_names)) == 1
if len(gpu_names) >= 2 and all_names_the_same:
row_table[ip] = f"{num_gpus}x {gpu_names[0]}"
headers = [pretty_names.get(p, p) for p in show]
if tool == "llama-bench":
headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"]
elif tool == "test-backend-ops":
headers += [f"{primary_metric} {name_baseline}", f"{primary_metric} {name_compare}", "Speedup"]
else:
assert False
if known_args.plot:
def create_performance_plot(table_data: list[list[str]], headers: list[str], baseline_name: str, compare_name: str, output_file: str, plot_x_param: str, log_scale: bool = False, tool_type: str = "llama-bench", metric_name: str = "t/s"):
try:
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')
except ImportError as e:
logger.error("matplotlib is required for --plot.")
raise e
data_headers = headers[:-4] # Exclude the last 4 columns (Test, baseline t/s, compare t/s, Speedup)
plot_x_index = None
plot_x_label = plot_x_param
if plot_x_param not in ["n_prompt", "n_gen", "n_depth"]:
pretty_name = LLAMA_BENCH_PRETTY_NAMES.get(plot_x_param, plot_x_param)
if pretty_name in data_headers:
plot_x_index = data_headers.index(pretty_name)
plot_x_label = pretty_name
elif plot_x_param in data_headers:
plot_x_index = data_headers.index(plot_x_param)
plot_x_label = plot_x_param
else:
logger.error(f"Parameter '{plot_x_param}' not found in current table columns. Available columns: {', '.join(data_headers)}")
return
grouped_data = {}
for i, row in enumerate(table_data):
group_key_parts = []
test_name = row[-4]
base_test = ""
x_value = None
if plot_x_param in ["n_prompt", "n_gen", "n_depth"]:
for j, val in enumerate(row[:-4]):
header_name = data_headers[j]
if val is not None and str(val).strip():
group_key_parts.append(f"{header_name}={val}")
if plot_x_param == "n_prompt" and "pp" in test_name:
base_test = test_name.split("@")[0]
x_value = base_test
elif plot_x_param == "n_gen" and "tg" in test_name:
x_value = test_name.split("@")[0]
elif plot_x_param == "n_depth" and "@d" in test_name:
base_test = test_name.split("@d")[0]
x_value = int(test_name.split("@d")[1])
else:
base_test = test_name
if base_test.strip():
group_key_parts.append(f"Test={base_test}")
else:
for j, val in enumerate(row[:-4]):
if j != plot_x_index:
header_name = data_headers[j]
if val is not None and str(val).strip():
group_key_parts.append(f"{header_name}={val}")
else:
x_value = val
group_key_parts.append(f"Test={test_name}")
group_key = tuple(group_key_parts)
if group_key not in grouped_data:
grouped_data[group_key] = []
grouped_data[group_key].append({
'x_value': x_value,
'baseline': float(row[-3]),
'compare': float(row[-2]),
'speedup': float(row[-1])
})
if not grouped_data:
logger.error("No data available for plotting")
return
def make_axes(num_groups, max_cols=2, base_size=(8, 4)):
from math import ceil
cols = 1 if num_groups == 1 else min(max_cols, num_groups)
rows = ceil(num_groups / cols)
# Scale figure size by grid dimensions
w, h = base_size
fig, ax_arr = plt.subplots(rows, cols,
figsize=(w * cols, h * rows),
squeeze=False)
axes = ax_arr.flatten()[:num_groups]
return fig, axes
num_groups = len(grouped_data)
fig, axes = make_axes(num_groups)
plot_idx = 0
for group_key, points in grouped_data.items():
if plot_idx >= len(axes):
break
ax = axes[plot_idx]
try:
points_sorted = sorted(points, key=lambda p: float(p['x_value']) if p['x_value'] is not None else 0)
x_values = [float(p['x_value']) if p['x_value'] is not None else 0 for p in points_sorted]
except ValueError:
points_sorted = sorted(points, key=lambda p: group_key)
x_values = [p['x_value'] for p in points_sorted]
baseline_vals = [p['baseline'] for p in points_sorted]
compare_vals = [p['compare'] for p in points_sorted]
ax.plot(x_values, baseline_vals, 'o-', color='skyblue',
label=f'{baseline_name}', linewidth=2, markersize=6)
ax.plot(x_values, compare_vals, 's--', color='lightcoral', alpha=0.8,
label=f'{compare_name}', linewidth=2, markersize=6)
if log_scale:
ax.set_xscale('log', base=2)
unique_x = sorted(set(x_values))
ax.set_xticks(unique_x)
ax.set_xticklabels([str(int(x)) for x in unique_x])
title_parts = []
for part in group_key:
if '=' in part:
key, value = part.split('=', 1)
title_parts.append(f"{key}: {value}")
title = ', '.join(title_parts) if title_parts else "Performance comparison"
# Determine y-axis label based on tool type
if tool_type == "llama-bench":
y_label = "Tokens per second (t/s)"
elif tool_type == "test-backend-ops":
y_label = metric_name
else:
assert False
ax.set_xlabel(plot_x_label, fontsize=12, fontweight='bold')
ax.set_ylabel(y_label, fontsize=12, fontweight='bold')
ax.set_title(title, fontsize=12, fontweight='bold')
ax.legend(loc='best', fontsize=10)
ax.grid(True, alpha=0.3)
plot_idx += 1
for i in range(plot_idx, len(axes)):
axes[i].set_visible(False)
fig.suptitle(f'Performance comparison: {compare_name} vs. {baseline_name}',
fontsize=14, fontweight='bold')
fig.subplots_adjust(top=1)
plt.tight_layout()
plt.savefig(output_file, dpi=300, bbox_inches='tight')
plt.close()
create_performance_plot(table, headers, name_baseline, name_compare, known_args.plot, known_args.plot_x, known_args.plot_log_scale, tool, primary_metric)
print(tabulate( # noqa: NP100
table,
headers=headers,
floatfmt=".2f",
tablefmt=known_args.output
))