mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-08-13 03:47:46 -04:00
1095 lines
45 KiB
Python
Executable File
1095 lines
45 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import argparse
|
|
import csv
|
|
import heapq
|
|
import json
|
|
import logging
|
|
import os
|
|
import sqlite3
|
|
import sys
|
|
from collections.abc import Iterator, Sequence
|
|
from glob import glob
|
|
from typing import Any, Optional, Union
|
|
|
|
try:
|
|
import git
|
|
from tabulate import tabulate
|
|
except ImportError as e:
|
|
print("the following Python libraries are required: GitPython, tabulate.") # noqa: NP100
|
|
raise e
|
|
|
|
|
|
logger = logging.getLogger("compare-llama-bench")
|
|
|
|
# All llama-bench SQL fields
|
|
LLAMA_BENCH_DB_FIELDS = [
|
|
"build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
|
|
"model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
|
|
"cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
|
|
"split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
|
|
"defrag_thold",
|
|
"use_mmap", "embeddings", "no_op_offload", "n_prompt", "n_gen", "n_depth",
|
|
"test_time", "avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
|
|
]
|
|
|
|
LLAMA_BENCH_DB_TYPES = [
|
|
"TEXT", "INTEGER", "TEXT", "TEXT", "TEXT", "TEXT",
|
|
"TEXT", "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
|
|
"TEXT", "INTEGER", "INTEGER", "TEXT", "TEXT", "INTEGER",
|
|
"TEXT", "INTEGER", "INTEGER", "INTEGER", "TEXT", "TEXT",
|
|
"REAL",
|
|
"INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
|
|
"TEXT", "INTEGER", "INTEGER", "REAL", "REAL",
|
|
]
|
|
|
|
# All test-backend-ops SQL fields
|
|
TEST_BACKEND_OPS_DB_FIELDS = [
|
|
"test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode",
|
|
"supported", "passed", "error_message", "time_us", "flops", "bandwidth_gb_s",
|
|
"memory_kb", "n_runs"
|
|
]
|
|
|
|
TEST_BACKEND_OPS_DB_TYPES = [
|
|
"TEXT", "TEXT", "TEXT", "TEXT", "TEXT", "TEXT",
|
|
"INTEGER", "INTEGER", "TEXT", "REAL", "REAL", "REAL",
|
|
"INTEGER", "INTEGER"
|
|
]
|
|
|
|
assert len(LLAMA_BENCH_DB_FIELDS) == len(LLAMA_BENCH_DB_TYPES)
|
|
assert len(TEST_BACKEND_OPS_DB_FIELDS) == len(TEST_BACKEND_OPS_DB_TYPES)
|
|
|
|
# Properties by which to differentiate results per commit for llama-bench:
|
|
LLAMA_BENCH_KEY_PROPERTIES = [
|
|
"cpu_info", "gpu_info", "backends", "n_gpu_layers", "tensor_buft_overrides", "model_filename", "model_type",
|
|
"n_batch", "n_ubatch", "embeddings", "cpu_mask", "cpu_strict", "poll", "n_threads", "type_k", "type_v",
|
|
"use_mmap", "no_kv_offload", "split_mode", "main_gpu", "tensor_split", "flash_attn", "n_prompt", "n_gen", "n_depth"
|
|
]
|
|
|
|
# Properties by which to differentiate results per commit for test-backend-ops:
|
|
TEST_BACKEND_OPS_KEY_PROPERTIES = [
|
|
"backend_name", "op_name", "op_params", "test_mode"
|
|
]
|
|
|
|
# Properties that are boolean and are converted to Yes/No for the table:
|
|
LLAMA_BENCH_BOOL_PROPERTIES = ["embeddings", "cpu_strict", "use_mmap", "no_kv_offload", "flash_attn"]
|
|
TEST_BACKEND_OPS_BOOL_PROPERTIES = ["supported", "passed"]
|
|
|
|
# Header names for the table (llama-bench):
|
|
LLAMA_BENCH_PRETTY_NAMES = {
|
|
"cpu_info": "CPU", "gpu_info": "GPU", "backends": "Backends", "n_gpu_layers": "GPU layers",
|
|
"tensor_buft_overrides": "Tensor overrides", "model_filename": "File", "model_type": "Model", "model_size": "Model size [GiB]",
|
|
"model_n_params": "Num. of par.", "n_batch": "Batch size", "n_ubatch": "Microbatch size", "embeddings": "Embeddings",
|
|
"cpu_mask": "CPU mask", "cpu_strict": "CPU strict", "poll": "Poll", "n_threads": "Threads", "type_k": "K type", "type_v": "V type",
|
|
"use_mmap": "Use mmap", "no_kv_offload": "NKVO", "split_mode": "Split mode", "main_gpu": "Main GPU", "tensor_split": "Tensor split",
|
|
"flash_attn": "FlashAttention",
|
|
}
|
|
|
|
# Header names for the table (test-backend-ops):
|
|
TEST_BACKEND_OPS_PRETTY_NAMES = {
|
|
"backend_name": "Backend", "op_name": "GGML op", "op_params": "Op parameters", "test_mode": "Mode",
|
|
"supported": "Supported", "passed": "Passed", "error_message": "Error",
|
|
"flops": "FLOPS", "bandwidth_gb_s": "Bandwidth (GB/s)", "memory_kb": "Memory (KB)", "n_runs": "Runs"
|
|
}
|
|
|
|
DEFAULT_SHOW_LLAMA_BENCH = ["model_type"] # Always show these properties by default.
|
|
DEFAULT_HIDE_LLAMA_BENCH = ["model_filename"] # Always hide these properties by default.
|
|
|
|
DEFAULT_SHOW_TEST_BACKEND_OPS = ["backend_name", "op_name"] # Always show these properties by default.
|
|
DEFAULT_HIDE_TEST_BACKEND_OPS = ["error_message"] # Always hide these properties by default.
|
|
|
|
GPU_NAME_STRIP = ["NVIDIA GeForce ", "Tesla ", "AMD Radeon "] # Strip prefixes for smaller tables.
|
|
MODEL_SUFFIX_REPLACE = {" - Small": "_S", " - Medium": "_M", " - Large": "_L"}
|
|
|
|
DESCRIPTION = """Creates tables from llama-bench or test-backend-ops data written to multiple JSON/CSV files, a single JSONL file or SQLite database. Example usage (Linux):
|
|
|
|
For llama-bench:
|
|
$ git checkout master
|
|
$ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t llama-bench -j $(nproc)
|
|
$ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
|
|
$ git checkout some_branch
|
|
$ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t llama-bench -j $(nproc)
|
|
$ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
|
|
$ ./scripts/compare-llama-bench.py
|
|
|
|
For test-backend-ops:
|
|
$ git checkout master
|
|
$ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t test-backend-ops -j $(nproc)
|
|
$ ./test-backend-ops perf --output sql | sqlite3 test-backend-ops.sqlite
|
|
$ git checkout some_branch
|
|
$ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t test-backend-ops -j $(nproc)
|
|
$ ./test-backend-ops perf --output sql | sqlite3 test-backend-ops.sqlite
|
|
$ ./scripts/compare-llama-bench.py --tool test-backend-ops -i test-backend-ops.sqlite
|
|
|
|
Performance numbers from multiple runs per commit are averaged WITHOUT being weighted by the --repetitions parameter of llama-bench.
|
|
"""
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description=DESCRIPTION, formatter_class=argparse.RawDescriptionHelpFormatter)
|
|
help_b = (
|
|
"The baseline commit to compare performance to. "
|
|
"Accepts either a branch name, tag name, or commit hash. "
|
|
"Defaults to latest master commit with data."
|
|
)
|
|
parser.add_argument("-b", "--baseline", help=help_b)
|
|
help_c = (
|
|
"The commit whose performance is to be compared to the baseline. "
|
|
"Accepts either a branch name, tag name, or commit hash. "
|
|
"Defaults to the non-master commit for which llama-bench was run most recently."
|
|
)
|
|
parser.add_argument("-c", "--compare", help=help_c)
|
|
help_t = (
|
|
"The tool whose data is being compared. "
|
|
"Either 'llama-bench' or 'test-backend-ops'. "
|
|
"This determines the database schema and comparison logic used. "
|
|
"If left unspecified, try to determine from the input file."
|
|
)
|
|
parser.add_argument("-t", "--tool", help=help_t, default=None, choices=[None, "llama-bench", "test-backend-ops"])
|
|
help_i = (
|
|
"JSON/JSONL/SQLite/CSV files for comparing commits. "
|
|
"Specify multiple times to use multiple input files (JSON/CSV only). "
|
|
"Defaults to 'llama-bench.sqlite' in the current working directory. "
|
|
"If no such file is found and there is exactly one .sqlite file in the current directory, "
|
|
"that file is instead used as input."
|
|
)
|
|
parser.add_argument("-i", "--input", action="append", help=help_i)
|
|
help_o = (
|
|
"Output format for the table. "
|
|
"Defaults to 'pipe' (GitHub compatible). "
|
|
"Also supports e.g. 'latex' or 'mediawiki'. "
|
|
"See tabulate documentation for full list."
|
|
)
|
|
parser.add_argument("-o", "--output", help=help_o, default="pipe")
|
|
help_s = (
|
|
"Columns to add to the table. "
|
|
"Accepts a comma-separated list of values. "
|
|
f"Legal values for test-backend-ops: {', '.join(TEST_BACKEND_OPS_KEY_PROPERTIES)}. "
|
|
f"Legal values for llama-bench: {', '.join(LLAMA_BENCH_KEY_PROPERTIES[:-3])}. "
|
|
"Defaults to model name (model_type) and CPU and/or GPU name (cpu_info, gpu_info) "
|
|
"plus any column where not all data points are the same. "
|
|
"If the columns are manually specified, then the results for each unique combination of the "
|
|
"specified values are averaged WITHOUT weighing by the --repetitions parameter of llama-bench."
|
|
)
|
|
parser.add_argument("--check", action="store_true", help="check if all required Python libraries are installed")
|
|
parser.add_argument("-s", "--show", help=help_s)
|
|
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
|
parser.add_argument("--plot", help="generate a performance comparison plot and save to specified file (e.g., plot.png)")
|
|
parser.add_argument("--plot_x", help="parameter to use as x axis for plotting (default: n_depth)", default="n_depth")
|
|
parser.add_argument("--plot_log_scale", action="store_true", help="use log scale for x axis in plots (off by default)")
|
|
|
|
known_args, unknown_args = parser.parse_known_args()
|
|
|
|
logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO)
|
|
|
|
|
|
if known_args.check:
|
|
# Check if all required Python libraries are installed. Would have failed earlier if not.
|
|
sys.exit(0)
|
|
|
|
if unknown_args:
|
|
logger.error(f"Received unknown args: {unknown_args}.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
|
|
input_file = known_args.input
|
|
tool = known_args.tool
|
|
|
|
if not input_file:
|
|
if tool == "llama-bench" and os.path.exists("./llama-bench.sqlite"):
|
|
input_file = ["llama-bench.sqlite"]
|
|
elif tool == "test-backend-ops" and os.path.exists("./test-backend-ops.sqlite"):
|
|
input_file = ["test-backend-ops.sqlite"]
|
|
|
|
if not input_file:
|
|
sqlite_files = glob("*.sqlite")
|
|
if len(sqlite_files) == 1:
|
|
input_file = sqlite_files
|
|
|
|
if not input_file:
|
|
logger.error("Cannot find a suitable input file, please provide one.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
|
|
|
|
class LlamaBenchData:
|
|
repo: Optional[git.Repo]
|
|
build_len_min: int
|
|
build_len_max: int
|
|
build_len: int = 8
|
|
builds: list[str] = []
|
|
tool: str = "llama-bench" # Tool type: "llama-bench" or "test-backend-ops"
|
|
|
|
def __init__(self, tool: str = "llama-bench"):
|
|
self.tool = tool
|
|
try:
|
|
self.repo = git.Repo(".", search_parent_directories=True)
|
|
except git.InvalidGitRepositoryError:
|
|
self.repo = None
|
|
|
|
# Set schema-specific properties based on tool
|
|
if self.tool == "llama-bench":
|
|
self.check_keys = set(LLAMA_BENCH_KEY_PROPERTIES + ["build_commit", "test_time", "avg_ts"])
|
|
elif self.tool == "test-backend-ops":
|
|
self.check_keys = set(TEST_BACKEND_OPS_KEY_PROPERTIES + ["build_commit", "test_time"])
|
|
else:
|
|
assert False
|
|
|
|
def _builds_init(self):
|
|
self.build_len = self.build_len_min
|
|
|
|
def _check_keys(self, keys: set) -> Optional[set]:
|
|
"""Private helper method that checks against required data keys and returns missing ones."""
|
|
if not keys >= self.check_keys:
|
|
return self.check_keys - keys
|
|
return None
|
|
|
|
def find_parent_in_data(self, commit: git.Commit) -> Optional[str]:
|
|
"""Helper method to find the most recent parent measured in number of commits for which there is data."""
|
|
heap: list[tuple[int, git.Commit]] = [(0, commit)]
|
|
seen_hexsha8 = set()
|
|
while heap:
|
|
depth, current_commit = heapq.heappop(heap)
|
|
current_hexsha8 = commit.hexsha[:self.build_len]
|
|
if current_hexsha8 in self.builds:
|
|
return current_hexsha8
|
|
for parent in commit.parents:
|
|
parent_hexsha8 = parent.hexsha[:self.build_len]
|
|
if parent_hexsha8 not in seen_hexsha8:
|
|
seen_hexsha8.add(parent_hexsha8)
|
|
heapq.heappush(heap, (depth + 1, parent))
|
|
return None
|
|
|
|
def get_all_parent_hexsha8s(self, commit: git.Commit) -> Sequence[str]:
|
|
"""Helper method to recursively get hexsha8 values for all parents of a commit."""
|
|
unvisited = [commit]
|
|
visited = []
|
|
|
|
while unvisited:
|
|
current_commit = unvisited.pop(0)
|
|
visited.append(current_commit.hexsha[:self.build_len])
|
|
for parent in current_commit.parents:
|
|
if parent.hexsha[:self.build_len] not in visited:
|
|
unvisited.append(parent)
|
|
|
|
return visited
|
|
|
|
def get_commit_name(self, hexsha8: str) -> str:
|
|
"""Helper method to find a human-readable name for a commit if possible."""
|
|
if self.repo is None:
|
|
return hexsha8
|
|
for h in self.repo.heads:
|
|
if h.commit.hexsha[:self.build_len] == hexsha8:
|
|
return h.name
|
|
for t in self.repo.tags:
|
|
if t.commit.hexsha[:self.build_len] == hexsha8:
|
|
return t.name
|
|
return hexsha8
|
|
|
|
def get_commit_hexsha8(self, name: str) -> Optional[str]:
|
|
"""Helper method to search for a commit given a human-readable name."""
|
|
if self.repo is None:
|
|
return None
|
|
for h in self.repo.heads:
|
|
if h.name == name:
|
|
return h.commit.hexsha[:self.build_len]
|
|
for t in self.repo.tags:
|
|
if t.name == name:
|
|
return t.commit.hexsha[:self.build_len]
|
|
for c in self.repo.iter_commits("--all"):
|
|
if c.hexsha[:self.build_len] == name[:self.build_len]:
|
|
return c.hexsha[:self.build_len]
|
|
return None
|
|
|
|
def builds_timestamp(self, reverse: bool = False) -> Union[Iterator[tuple], Sequence[tuple]]:
|
|
"""Helper method that gets rows of (build_commit, test_time) sorted by the latter."""
|
|
return []
|
|
|
|
def get_rows(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
|
|
"""
|
|
Helper method that gets table rows for some list of properties.
|
|
Rows are created by combining those where all provided properties are equal.
|
|
The resulting rows are then grouped by the provided properties and the t/s values are averaged.
|
|
The returned rows are unique in terms of property combinations.
|
|
"""
|
|
return []
|
|
|
|
|
|
class LlamaBenchDataSQLite3(LlamaBenchData):
|
|
connection: sqlite3.Connection
|
|
cursor: sqlite3.Cursor
|
|
table_name: str
|
|
|
|
def __init__(self, tool: str = "llama-bench"):
|
|
super().__init__(tool)
|
|
self.connection = sqlite3.connect(":memory:")
|
|
self.cursor = self.connection.cursor()
|
|
|
|
# Set table name and schema based on tool
|
|
if self.tool == "llama-bench":
|
|
self.table_name = "llama_bench"
|
|
db_fields = LLAMA_BENCH_DB_FIELDS
|
|
db_types = LLAMA_BENCH_DB_TYPES
|
|
elif self.tool == "test-backend-ops":
|
|
self.table_name = "test_backend_ops"
|
|
db_fields = TEST_BACKEND_OPS_DB_FIELDS
|
|
db_types = TEST_BACKEND_OPS_DB_TYPES
|
|
else:
|
|
assert False
|
|
|
|
self.cursor.execute(f"CREATE TABLE {self.table_name}({', '.join(' '.join(x) for x in zip(db_fields, db_types))});")
|
|
|
|
def _builds_init(self):
|
|
if self.connection:
|
|
self.build_len_min = self.cursor.execute(f"SELECT MIN(LENGTH(build_commit)) from {self.table_name};").fetchone()[0]
|
|
self.build_len_max = self.cursor.execute(f"SELECT MAX(LENGTH(build_commit)) from {self.table_name};").fetchone()[0]
|
|
|
|
if self.build_len_min != self.build_len_max:
|
|
logger.warning("Data contains commit hashes of differing lengths. It's possible that the wrong commits will be compared. "
|
|
"Try purging the the database of old commits.")
|
|
self.cursor.execute(f"UPDATE {self.table_name} SET build_commit = SUBSTRING(build_commit, 1, {self.build_len_min});")
|
|
|
|
builds = self.cursor.execute(f"SELECT DISTINCT build_commit FROM {self.table_name};").fetchall()
|
|
self.builds = list(map(lambda b: b[0], builds)) # list[tuple[str]] -> list[str]
|
|
super()._builds_init()
|
|
|
|
def builds_timestamp(self, reverse: bool = False) -> Union[Iterator[tuple], Sequence[tuple]]:
|
|
data = self.cursor.execute(
|
|
f"SELECT build_commit, test_time FROM {self.table_name} ORDER BY test_time;").fetchall()
|
|
return reversed(data) if reverse else data
|
|
|
|
def get_rows(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
|
|
if self.tool == "llama-bench":
|
|
return self._get_rows_llama_bench(properties, hexsha8_baseline, hexsha8_compare)
|
|
elif self.tool == "test-backend-ops":
|
|
return self._get_rows_test_backend_ops(properties, hexsha8_baseline, hexsha8_compare)
|
|
else:
|
|
assert False
|
|
|
|
def _get_rows_llama_bench(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
|
|
select_string = ", ".join(
|
|
[f"tb.{p}" for p in properties] + ["tb.n_prompt", "tb.n_gen", "tb.n_depth", "AVG(tb.avg_ts)", "AVG(tc.avg_ts)"])
|
|
equal_string = " AND ".join(
|
|
[f"tb.{p} = tc.{p}" for p in LLAMA_BENCH_KEY_PROPERTIES] + [
|
|
f"tb.build_commit = '{hexsha8_baseline}'", f"tc.build_commit = '{hexsha8_compare}'"]
|
|
)
|
|
group_order_string = ", ".join([f"tb.{p}" for p in properties] + ["tb.n_gen", "tb.n_prompt", "tb.n_depth"])
|
|
query = (f"SELECT {select_string} FROM {self.table_name} tb JOIN {self.table_name} tc ON {equal_string} "
|
|
f"GROUP BY {group_order_string} ORDER BY {group_order_string};")
|
|
return self.cursor.execute(query).fetchall()
|
|
|
|
def _get_rows_test_backend_ops(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
|
|
# For test-backend-ops, we compare FLOPS and bandwidth metrics (prioritizing FLOPS over bandwidth)
|
|
select_string = ", ".join(
|
|
[f"tb.{p}" for p in properties] + [
|
|
"AVG(tb.flops)", "AVG(tc.flops)",
|
|
"AVG(tb.bandwidth_gb_s)", "AVG(tc.bandwidth_gb_s)"
|
|
])
|
|
equal_string = " AND ".join(
|
|
[f"tb.{p} = tc.{p}" for p in TEST_BACKEND_OPS_KEY_PROPERTIES] + [
|
|
f"tb.build_commit = '{hexsha8_baseline}'", f"tc.build_commit = '{hexsha8_compare}'",
|
|
"tb.supported = 1", "tc.supported = 1", "tb.passed = 1", "tc.passed = 1"] # Only compare successful tests
|
|
)
|
|
group_order_string = ", ".join([f"tb.{p}" for p in properties])
|
|
query = (f"SELECT {select_string} FROM {self.table_name} tb JOIN {self.table_name} tc ON {equal_string} "
|
|
f"GROUP BY {group_order_string} ORDER BY {group_order_string};")
|
|
return self.cursor.execute(query).fetchall()
|
|
|
|
|
|
class LlamaBenchDataSQLite3File(LlamaBenchDataSQLite3):
|
|
def __init__(self, data_file: str, tool: Any):
|
|
super().__init__(tool)
|
|
|
|
self.connection.close()
|
|
self.connection = sqlite3.connect(data_file)
|
|
self.cursor = self.connection.cursor()
|
|
|
|
# Check which table exists in the database
|
|
tables = self.cursor.execute("SELECT name FROM sqlite_master WHERE type='table';").fetchall()
|
|
table_names = [table[0] for table in tables]
|
|
|
|
# Tool selection logic
|
|
if tool is None:
|
|
if "llama_bench" in table_names:
|
|
self.table_name = "llama_bench"
|
|
self.tool = "llama-bench"
|
|
elif "test_backend_ops" in table_names:
|
|
self.table_name = "test_backend_ops"
|
|
self.tool = "test-backend-ops"
|
|
else:
|
|
raise RuntimeError(f"No suitable table found in database. Available tables: {table_names}")
|
|
elif tool == "llama-bench":
|
|
if "llama_bench" in table_names:
|
|
self.table_name = "llama_bench"
|
|
self.tool = "llama-bench"
|
|
else:
|
|
raise RuntimeError(f"Table 'test' not found for tool 'llama-bench'. Available tables: {table_names}")
|
|
elif tool == "test-backend-ops":
|
|
if "test_backend_ops" in table_names:
|
|
self.table_name = "test_backend_ops"
|
|
self.tool = "test-backend-ops"
|
|
else:
|
|
raise RuntimeError(f"Table 'test_backend_ops' not found for tool 'test-backend-ops'. Available tables: {table_names}")
|
|
else:
|
|
raise RuntimeError(f"Unknown tool: {tool}")
|
|
|
|
self._builds_init()
|
|
|
|
@staticmethod
|
|
def valid_format(data_file: str) -> bool:
|
|
connection = sqlite3.connect(data_file)
|
|
cursor = connection.cursor()
|
|
|
|
try:
|
|
if cursor.execute("PRAGMA schema_version;").fetchone()[0] == 0:
|
|
raise sqlite3.DatabaseError("The provided input file does not exist or is empty.")
|
|
except sqlite3.DatabaseError as e:
|
|
logger.debug(f'"{data_file}" is not a valid SQLite3 file.', exc_info=e)
|
|
cursor = None
|
|
|
|
connection.close()
|
|
return True if cursor else False
|
|
|
|
|
|
class LlamaBenchDataJSONL(LlamaBenchDataSQLite3):
|
|
def __init__(self, data_file: str, tool: str = "llama-bench"):
|
|
super().__init__(tool)
|
|
|
|
# Get the appropriate field list based on tool
|
|
db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
|
|
|
|
with open(data_file, "r", encoding="utf-8") as fp:
|
|
for i, line in enumerate(fp):
|
|
parsed = json.loads(line)
|
|
|
|
for k in parsed.keys() - set(db_fields):
|
|
del parsed[k]
|
|
|
|
if (missing_keys := self._check_keys(parsed.keys())):
|
|
raise RuntimeError(f"Missing required data key(s) at line {i + 1}: {', '.join(missing_keys)}")
|
|
|
|
self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
|
|
|
|
self._builds_init()
|
|
|
|
@staticmethod
|
|
def valid_format(data_file: str) -> bool:
|
|
try:
|
|
with open(data_file, "r", encoding="utf-8") as fp:
|
|
for line in fp:
|
|
json.loads(line)
|
|
break
|
|
except Exception as e:
|
|
logger.debug(f'"{data_file}" is not a valid JSONL file.', exc_info=e)
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
class LlamaBenchDataJSON(LlamaBenchDataSQLite3):
|
|
def __init__(self, data_files: list[str], tool: str = "llama-bench"):
|
|
super().__init__(tool)
|
|
|
|
# Get the appropriate field list based on tool
|
|
db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
|
|
|
|
for data_file in data_files:
|
|
with open(data_file, "r", encoding="utf-8") as fp:
|
|
parsed = json.load(fp)
|
|
|
|
for i, entry in enumerate(parsed):
|
|
for k in entry.keys() - set(db_fields):
|
|
del entry[k]
|
|
|
|
if (missing_keys := self._check_keys(entry.keys())):
|
|
raise RuntimeError(f"Missing required data key(s) at entry {i + 1}: {', '.join(missing_keys)}")
|
|
|
|
self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(entry.keys())}) VALUES({', '.join('?' * len(entry))});", tuple(entry.values()))
|
|
|
|
self._builds_init()
|
|
|
|
@staticmethod
|
|
def valid_format(data_files: list[str]) -> bool:
|
|
if not data_files:
|
|
return False
|
|
|
|
for data_file in data_files:
|
|
try:
|
|
with open(data_file, "r", encoding="utf-8") as fp:
|
|
json.load(fp)
|
|
except Exception as e:
|
|
logger.debug(f'"{data_file}" is not a valid JSON file.', exc_info=e)
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
class LlamaBenchDataCSV(LlamaBenchDataSQLite3):
|
|
def __init__(self, data_files: list[str], tool: str = "llama-bench"):
|
|
super().__init__(tool)
|
|
|
|
# Get the appropriate field list based on tool
|
|
db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
|
|
|
|
for data_file in data_files:
|
|
with open(data_file, "r", encoding="utf-8") as fp:
|
|
for i, parsed in enumerate(csv.DictReader(fp)):
|
|
keys = set(parsed.keys())
|
|
|
|
for k in keys - set(db_fields):
|
|
del parsed[k]
|
|
|
|
if (missing_keys := self._check_keys(keys)):
|
|
raise RuntimeError(f"Missing required data key(s) at line {i + 1}: {', '.join(missing_keys)}")
|
|
|
|
self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
|
|
|
|
self._builds_init()
|
|
|
|
@staticmethod
|
|
def valid_format(data_files: list[str]) -> bool:
|
|
if not data_files:
|
|
return False
|
|
|
|
for data_file in data_files:
|
|
try:
|
|
with open(data_file, "r", encoding="utf-8") as fp:
|
|
for parsed in csv.DictReader(fp):
|
|
break
|
|
except Exception as e:
|
|
logger.debug(f'"{data_file}" is not a valid CSV file.', exc_info=e)
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
def format_flops(flops_value: float) -> str:
|
|
"""Format FLOPS values with appropriate units for better readability."""
|
|
if flops_value == 0:
|
|
return "0.00"
|
|
|
|
# Define unit thresholds and names
|
|
units = [
|
|
(1e12, "T"), # TeraFLOPS
|
|
(1e9, "G"), # GigaFLOPS
|
|
(1e6, "M"), # MegaFLOPS
|
|
(1e3, "k"), # kiloFLOPS
|
|
(1, "") # FLOPS
|
|
]
|
|
|
|
for threshold, unit in units:
|
|
if abs(flops_value) >= threshold:
|
|
formatted_value = flops_value / threshold
|
|
if formatted_value >= 100:
|
|
return f"{formatted_value:.1f}{unit}"
|
|
else:
|
|
return f"{formatted_value:.2f}{unit}"
|
|
|
|
# Fallback for very small values
|
|
return f"{flops_value:.2f}"
|
|
|
|
|
|
def format_flops_for_table(flops_value: float, target_unit: str) -> str:
|
|
"""Format FLOPS values for table display without unit suffix (since unit is in header)."""
|
|
if flops_value == 0:
|
|
return "0.00"
|
|
|
|
# Define unit thresholds based on target unit
|
|
unit_divisors = {
|
|
"TFLOPS": 1e12,
|
|
"GFLOPS": 1e9,
|
|
"MFLOPS": 1e6,
|
|
"kFLOPS": 1e3,
|
|
"FLOPS": 1
|
|
}
|
|
|
|
divisor = unit_divisors.get(target_unit, 1)
|
|
formatted_value = flops_value / divisor
|
|
|
|
if formatted_value >= 100:
|
|
return f"{formatted_value:.1f}"
|
|
else:
|
|
return f"{formatted_value:.2f}"
|
|
|
|
|
|
def get_flops_unit_name(flops_values: list) -> str:
|
|
"""Determine the best FLOPS unit name based on the magnitude of values."""
|
|
if not flops_values or all(v == 0 for v in flops_values):
|
|
return "FLOPS"
|
|
|
|
# Find the maximum absolute value to determine appropriate unit
|
|
max_flops = max(abs(v) for v in flops_values if v != 0)
|
|
|
|
if max_flops >= 1e12:
|
|
return "TFLOPS"
|
|
elif max_flops >= 1e9:
|
|
return "GFLOPS"
|
|
elif max_flops >= 1e6:
|
|
return "MFLOPS"
|
|
elif max_flops >= 1e3:
|
|
return "kFLOPS"
|
|
else:
|
|
return "FLOPS"
|
|
|
|
|
|
bench_data = None
|
|
if len(input_file) == 1:
|
|
if LlamaBenchDataSQLite3File.valid_format(input_file[0]):
|
|
bench_data = LlamaBenchDataSQLite3File(input_file[0], tool)
|
|
elif LlamaBenchDataJSON.valid_format(input_file):
|
|
bench_data = LlamaBenchDataJSON(input_file, tool)
|
|
elif LlamaBenchDataJSONL.valid_format(input_file[0]):
|
|
bench_data = LlamaBenchDataJSONL(input_file[0], tool)
|
|
elif LlamaBenchDataCSV.valid_format(input_file):
|
|
bench_data = LlamaBenchDataCSV(input_file, tool)
|
|
else:
|
|
if LlamaBenchDataJSON.valid_format(input_file):
|
|
bench_data = LlamaBenchDataJSON(input_file, tool)
|
|
elif LlamaBenchDataCSV.valid_format(input_file):
|
|
bench_data = LlamaBenchDataCSV(input_file, tool)
|
|
|
|
if not bench_data:
|
|
raise RuntimeError("No valid (or some invalid) input files found.")
|
|
|
|
if not bench_data.builds:
|
|
raise RuntimeError(f"{input_file} does not contain any builds.")
|
|
|
|
|
|
hexsha8_baseline = name_baseline = None
|
|
|
|
# If the user specified a baseline, try to find a commit for it:
|
|
if known_args.baseline is not None:
|
|
if known_args.baseline in bench_data.builds:
|
|
hexsha8_baseline = known_args.baseline
|
|
if hexsha8_baseline is None:
|
|
hexsha8_baseline = bench_data.get_commit_hexsha8(known_args.baseline)
|
|
name_baseline = known_args.baseline
|
|
if hexsha8_baseline is None:
|
|
logger.error(f"cannot find data for baseline={known_args.baseline}.")
|
|
sys.exit(1)
|
|
# Otherwise, search for the most recent parent of master for which there is data:
|
|
elif bench_data.repo is not None:
|
|
hexsha8_baseline = bench_data.find_parent_in_data(bench_data.repo.heads.master.commit)
|
|
|
|
if hexsha8_baseline is None:
|
|
logger.error("No baseline was provided and did not find data for any master branch commits.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
else:
|
|
logger.error("No baseline was provided and the current working directory "
|
|
"is not part of a git repository from which a baseline could be inferred.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
|
|
|
|
name_baseline = bench_data.get_commit_name(hexsha8_baseline)
|
|
|
|
hexsha8_compare = name_compare = None
|
|
|
|
# If the user has specified a compare value, try to find a corresponding commit:
|
|
if known_args.compare is not None:
|
|
if known_args.compare in bench_data.builds:
|
|
hexsha8_compare = known_args.compare
|
|
if hexsha8_compare is None:
|
|
hexsha8_compare = bench_data.get_commit_hexsha8(known_args.compare)
|
|
name_compare = known_args.compare
|
|
if hexsha8_compare is None:
|
|
logger.error(f"cannot find data for compare={known_args.compare}.")
|
|
sys.exit(1)
|
|
# Otherwise, search for the commit for llama-bench was most recently run
|
|
# and that is not a parent of master:
|
|
elif bench_data.repo is not None:
|
|
hexsha8s_master = bench_data.get_all_parent_hexsha8s(bench_data.repo.heads.master.commit)
|
|
for (hexsha8, _) in bench_data.builds_timestamp(reverse=True):
|
|
if hexsha8 not in hexsha8s_master:
|
|
hexsha8_compare = hexsha8
|
|
break
|
|
|
|
if hexsha8_compare is None:
|
|
logger.error("No compare target was provided and did not find data for any non-master commits.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
else:
|
|
logger.error("No compare target was provided and the current working directory "
|
|
"is not part of a git repository from which a compare target could be inferred.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
|
|
name_compare = bench_data.get_commit_name(hexsha8_compare)
|
|
|
|
# Get tool-specific configuration
|
|
if tool == "llama-bench":
|
|
key_properties = LLAMA_BENCH_KEY_PROPERTIES
|
|
bool_properties = LLAMA_BENCH_BOOL_PROPERTIES
|
|
pretty_names = LLAMA_BENCH_PRETTY_NAMES
|
|
default_show = DEFAULT_SHOW_LLAMA_BENCH
|
|
default_hide = DEFAULT_HIDE_LLAMA_BENCH
|
|
elif tool == "test-backend-ops":
|
|
key_properties = TEST_BACKEND_OPS_KEY_PROPERTIES
|
|
bool_properties = TEST_BACKEND_OPS_BOOL_PROPERTIES
|
|
pretty_names = TEST_BACKEND_OPS_PRETTY_NAMES
|
|
default_show = DEFAULT_SHOW_TEST_BACKEND_OPS
|
|
default_hide = DEFAULT_HIDE_TEST_BACKEND_OPS
|
|
else:
|
|
assert False
|
|
|
|
# If the user provided columns to group the results by, use them:
|
|
if known_args.show is not None:
|
|
show = known_args.show.split(",")
|
|
unknown_cols = []
|
|
for prop in show:
|
|
valid_props = key_properties if tool == "test-backend-ops" else key_properties[:-3] # Exclude n_prompt, n_gen, n_depth for llama-bench
|
|
if prop not in valid_props:
|
|
unknown_cols.append(prop)
|
|
if unknown_cols:
|
|
logger.error(f"Unknown values for --show: {', '.join(unknown_cols)}")
|
|
parser.print_usage()
|
|
sys.exit(1)
|
|
rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)
|
|
# Otherwise, select those columns where the values are not all the same:
|
|
else:
|
|
rows_full = bench_data.get_rows(key_properties, hexsha8_baseline, hexsha8_compare)
|
|
properties_different = []
|
|
|
|
if tool == "llama-bench":
|
|
# For llama-bench, skip n_prompt, n_gen, n_depth from differentiation logic
|
|
check_properties = [kp for kp in key_properties if kp not in ["n_prompt", "n_gen", "n_depth"]]
|
|
for i, kp_i in enumerate(key_properties):
|
|
if kp_i in default_show or kp_i in ["n_prompt", "n_gen", "n_depth"]:
|
|
continue
|
|
for row_full in rows_full:
|
|
if row_full[i] != rows_full[0][i]:
|
|
properties_different.append(kp_i)
|
|
break
|
|
elif tool == "test-backend-ops":
|
|
# For test-backend-ops, check all key properties
|
|
for i, kp_i in enumerate(key_properties):
|
|
if kp_i in default_show:
|
|
continue
|
|
for row_full in rows_full:
|
|
if row_full[i] != rows_full[0][i]:
|
|
properties_different.append(kp_i)
|
|
break
|
|
else:
|
|
assert False
|
|
|
|
show = []
|
|
|
|
if tool == "llama-bench":
|
|
# Show CPU and/or GPU by default even if the hardware for all results is the same:
|
|
if rows_full and "n_gpu_layers" not in properties_different:
|
|
ngl = int(rows_full[0][key_properties.index("n_gpu_layers")])
|
|
|
|
if ngl != 99 and "cpu_info" not in properties_different:
|
|
show.append("cpu_info")
|
|
|
|
show += properties_different
|
|
|
|
index_default = 0
|
|
for prop in ["cpu_info", "gpu_info", "n_gpu_layers", "main_gpu"]:
|
|
if prop in show:
|
|
index_default += 1
|
|
show = show[:index_default] + default_show + show[index_default:]
|
|
elif tool == "test-backend-ops":
|
|
show = default_show + properties_different
|
|
else:
|
|
assert False
|
|
|
|
for prop in default_hide:
|
|
try:
|
|
show.remove(prop)
|
|
except ValueError:
|
|
pass
|
|
|
|
# Add plot_x parameter to parameters to show if it's not already present:
|
|
if known_args.plot:
|
|
for k, v in pretty_names.items():
|
|
if v == known_args.plot_x and k not in show:
|
|
show.append(k)
|
|
break
|
|
|
|
rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)
|
|
|
|
if not rows_show:
|
|
logger.error(f"No comparable data was found between {name_baseline} and {name_compare}.\n")
|
|
sys.exit(1)
|
|
|
|
table = []
|
|
primary_metric = "FLOPS" # Default to FLOPS for test-backend-ops
|
|
|
|
if tool == "llama-bench":
|
|
# For llama-bench, create test names and compare avg_ts values
|
|
for row in rows_show:
|
|
n_prompt = int(row[-5])
|
|
n_gen = int(row[-4])
|
|
n_depth = int(row[-3])
|
|
if n_prompt != 0 and n_gen == 0:
|
|
test_name = f"pp{n_prompt}"
|
|
elif n_prompt == 0 and n_gen != 0:
|
|
test_name = f"tg{n_gen}"
|
|
else:
|
|
test_name = f"pp{n_prompt}+tg{n_gen}"
|
|
if n_depth != 0:
|
|
test_name = f"{test_name}@d{n_depth}"
|
|
# Regular columns test name avg t/s values Speedup
|
|
# VVVVVVVVVVVVV VVVVVVVVV VVVVVVVVVVVVVV VVVVVVV
|
|
table.append(list(row[:-5]) + [test_name] + list(row[-2:]) + [float(row[-1]) / float(row[-2])])
|
|
elif tool == "test-backend-ops":
|
|
# Determine the primary metric by checking rows until we find one with valid data
|
|
if rows_show:
|
|
primary_metric = "FLOPS" # Default to FLOPS
|
|
flops_values = []
|
|
|
|
# Collect all FLOPS values to determine the best unit
|
|
for sample_row in rows_show:
|
|
baseline_flops = float(sample_row[-4])
|
|
compare_flops = float(sample_row[-3])
|
|
baseline_bandwidth = float(sample_row[-2])
|
|
|
|
if baseline_flops > 0:
|
|
flops_values.extend([baseline_flops, compare_flops])
|
|
elif baseline_bandwidth > 0 and not flops_values:
|
|
primary_metric = "Bandwidth (GB/s)"
|
|
|
|
# If we have FLOPS data, determine the appropriate unit
|
|
if flops_values:
|
|
primary_metric = get_flops_unit_name(flops_values)
|
|
|
|
# For test-backend-ops, prioritize FLOPS > bandwidth for comparison
|
|
for row in rows_show:
|
|
# Extract metrics: flops, bandwidth_gb_s (baseline and compare)
|
|
baseline_flops = float(row[-4])
|
|
compare_flops = float(row[-3])
|
|
baseline_bandwidth = float(row[-2])
|
|
compare_bandwidth = float(row[-1])
|
|
|
|
# Determine which metric to use for comparison (prioritize FLOPS > bandwidth)
|
|
if baseline_flops > 0 and compare_flops > 0:
|
|
# Use FLOPS comparison (higher is better)
|
|
speedup = compare_flops / baseline_flops
|
|
baseline_str = format_flops_for_table(baseline_flops, primary_metric)
|
|
compare_str = format_flops_for_table(compare_flops, primary_metric)
|
|
elif baseline_bandwidth > 0 and compare_bandwidth > 0:
|
|
# Use bandwidth comparison (higher is better)
|
|
speedup = compare_bandwidth / baseline_bandwidth
|
|
baseline_str = f"{baseline_bandwidth:.2f}"
|
|
compare_str = f"{compare_bandwidth:.2f}"
|
|
else:
|
|
# Fallback if no valid data is available
|
|
baseline_str = "N/A"
|
|
compare_str = "N/A"
|
|
from math import nan
|
|
speedup = nan
|
|
|
|
table.append(list(row[:-4]) + [baseline_str, compare_str, speedup])
|
|
else:
|
|
assert False
|
|
|
|
# Some a-posteriori fixes to make the table contents prettier:
|
|
for bool_property in bool_properties:
|
|
if bool_property in show:
|
|
ip = show.index(bool_property)
|
|
for row_table in table:
|
|
row_table[ip] = "Yes" if int(row_table[ip]) == 1 else "No"
|
|
|
|
if tool == "llama-bench":
|
|
if "model_type" in show:
|
|
ip = show.index("model_type")
|
|
for (old, new) in MODEL_SUFFIX_REPLACE.items():
|
|
for row_table in table:
|
|
row_table[ip] = row_table[ip].replace(old, new)
|
|
|
|
if "model_size" in show:
|
|
ip = show.index("model_size")
|
|
for row_table in table:
|
|
row_table[ip] = float(row_table[ip]) / 1024 ** 3
|
|
|
|
if "gpu_info" in show:
|
|
ip = show.index("gpu_info")
|
|
for row_table in table:
|
|
for gns in GPU_NAME_STRIP:
|
|
row_table[ip] = row_table[ip].replace(gns, "")
|
|
|
|
gpu_names = row_table[ip].split(", ")
|
|
num_gpus = len(gpu_names)
|
|
all_names_the_same = len(set(gpu_names)) == 1
|
|
if len(gpu_names) >= 2 and all_names_the_same:
|
|
row_table[ip] = f"{num_gpus}x {gpu_names[0]}"
|
|
|
|
headers = [pretty_names.get(p, p) for p in show]
|
|
if tool == "llama-bench":
|
|
headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"]
|
|
elif tool == "test-backend-ops":
|
|
headers += [f"{primary_metric} {name_baseline}", f"{primary_metric} {name_compare}", "Speedup"]
|
|
else:
|
|
assert False
|
|
|
|
if known_args.plot:
|
|
def create_performance_plot(table_data: list[list[str]], headers: list[str], baseline_name: str, compare_name: str, output_file: str, plot_x_param: str, log_scale: bool = False, tool_type: str = "llama-bench", metric_name: str = "t/s"):
|
|
try:
|
|
import matplotlib
|
|
import matplotlib.pyplot as plt
|
|
matplotlib.use('Agg')
|
|
except ImportError as e:
|
|
logger.error("matplotlib is required for --plot.")
|
|
raise e
|
|
|
|
data_headers = headers[:-4] # Exclude the last 4 columns (Test, baseline t/s, compare t/s, Speedup)
|
|
plot_x_index = None
|
|
plot_x_label = plot_x_param
|
|
|
|
if plot_x_param not in ["n_prompt", "n_gen", "n_depth"]:
|
|
pretty_name = LLAMA_BENCH_PRETTY_NAMES.get(plot_x_param, plot_x_param)
|
|
if pretty_name in data_headers:
|
|
plot_x_index = data_headers.index(pretty_name)
|
|
plot_x_label = pretty_name
|
|
elif plot_x_param in data_headers:
|
|
plot_x_index = data_headers.index(plot_x_param)
|
|
plot_x_label = plot_x_param
|
|
else:
|
|
logger.error(f"Parameter '{plot_x_param}' not found in current table columns. Available columns: {', '.join(data_headers)}")
|
|
return
|
|
|
|
grouped_data = {}
|
|
|
|
for i, row in enumerate(table_data):
|
|
group_key_parts = []
|
|
test_name = row[-4]
|
|
|
|
base_test = ""
|
|
x_value = None
|
|
|
|
if plot_x_param in ["n_prompt", "n_gen", "n_depth"]:
|
|
for j, val in enumerate(row[:-4]):
|
|
header_name = data_headers[j]
|
|
if val is not None and str(val).strip():
|
|
group_key_parts.append(f"{header_name}={val}")
|
|
|
|
if plot_x_param == "n_prompt" and "pp" in test_name:
|
|
base_test = test_name.split("@")[0]
|
|
x_value = base_test
|
|
elif plot_x_param == "n_gen" and "tg" in test_name:
|
|
x_value = test_name.split("@")[0]
|
|
elif plot_x_param == "n_depth" and "@d" in test_name:
|
|
base_test = test_name.split("@d")[0]
|
|
x_value = int(test_name.split("@d")[1])
|
|
else:
|
|
base_test = test_name
|
|
|
|
if base_test.strip():
|
|
group_key_parts.append(f"Test={base_test}")
|
|
else:
|
|
for j, val in enumerate(row[:-4]):
|
|
if j != plot_x_index:
|
|
header_name = data_headers[j]
|
|
if val is not None and str(val).strip():
|
|
group_key_parts.append(f"{header_name}={val}")
|
|
else:
|
|
x_value = val
|
|
|
|
group_key_parts.append(f"Test={test_name}")
|
|
|
|
group_key = tuple(group_key_parts)
|
|
|
|
if group_key not in grouped_data:
|
|
grouped_data[group_key] = []
|
|
|
|
grouped_data[group_key].append({
|
|
'x_value': x_value,
|
|
'baseline': float(row[-3]),
|
|
'compare': float(row[-2]),
|
|
'speedup': float(row[-1])
|
|
})
|
|
|
|
if not grouped_data:
|
|
logger.error("No data available for plotting")
|
|
return
|
|
|
|
def make_axes(num_groups, max_cols=2, base_size=(8, 4)):
|
|
from math import ceil
|
|
cols = 1 if num_groups == 1 else min(max_cols, num_groups)
|
|
rows = ceil(num_groups / cols)
|
|
|
|
# Scale figure size by grid dimensions
|
|
w, h = base_size
|
|
fig, ax_arr = plt.subplots(rows, cols,
|
|
figsize=(w * cols, h * rows),
|
|
squeeze=False)
|
|
|
|
axes = ax_arr.flatten()[:num_groups]
|
|
return fig, axes
|
|
|
|
num_groups = len(grouped_data)
|
|
fig, axes = make_axes(num_groups)
|
|
|
|
plot_idx = 0
|
|
|
|
for group_key, points in grouped_data.items():
|
|
if plot_idx >= len(axes):
|
|
break
|
|
ax = axes[plot_idx]
|
|
|
|
try:
|
|
points_sorted = sorted(points, key=lambda p: float(p['x_value']) if p['x_value'] is not None else 0)
|
|
x_values = [float(p['x_value']) if p['x_value'] is not None else 0 for p in points_sorted]
|
|
except ValueError:
|
|
points_sorted = sorted(points, key=lambda p: group_key)
|
|
x_values = [p['x_value'] for p in points_sorted]
|
|
|
|
baseline_vals = [p['baseline'] for p in points_sorted]
|
|
compare_vals = [p['compare'] for p in points_sorted]
|
|
|
|
ax.plot(x_values, baseline_vals, 'o-', color='skyblue',
|
|
label=f'{baseline_name}', linewidth=2, markersize=6)
|
|
ax.plot(x_values, compare_vals, 's--', color='lightcoral', alpha=0.8,
|
|
label=f'{compare_name}', linewidth=2, markersize=6)
|
|
|
|
if log_scale:
|
|
ax.set_xscale('log', base=2)
|
|
unique_x = sorted(set(x_values))
|
|
ax.set_xticks(unique_x)
|
|
ax.set_xticklabels([str(int(x)) for x in unique_x])
|
|
|
|
title_parts = []
|
|
for part in group_key:
|
|
if '=' in part:
|
|
key, value = part.split('=', 1)
|
|
title_parts.append(f"{key}: {value}")
|
|
|
|
title = ', '.join(title_parts) if title_parts else "Performance comparison"
|
|
|
|
# Determine y-axis label based on tool type
|
|
if tool_type == "llama-bench":
|
|
y_label = "Tokens per second (t/s)"
|
|
elif tool_type == "test-backend-ops":
|
|
y_label = metric_name
|
|
else:
|
|
assert False
|
|
|
|
ax.set_xlabel(plot_x_label, fontsize=12, fontweight='bold')
|
|
ax.set_ylabel(y_label, fontsize=12, fontweight='bold')
|
|
ax.set_title(title, fontsize=12, fontweight='bold')
|
|
ax.legend(loc='best', fontsize=10)
|
|
ax.grid(True, alpha=0.3)
|
|
|
|
plot_idx += 1
|
|
|
|
for i in range(plot_idx, len(axes)):
|
|
axes[i].set_visible(False)
|
|
|
|
fig.suptitle(f'Performance comparison: {compare_name} vs. {baseline_name}',
|
|
fontsize=14, fontweight='bold')
|
|
fig.subplots_adjust(top=1)
|
|
|
|
plt.tight_layout()
|
|
plt.savefig(output_file, dpi=300, bbox_inches='tight')
|
|
plt.close()
|
|
|
|
create_performance_plot(table, headers, name_baseline, name_compare, known_args.plot, known_args.plot_x, known_args.plot_log_scale, tool, primary_metric)
|
|
|
|
print(tabulate( # noqa: NP100
|
|
table,
|
|
headers=headers,
|
|
floatfmt=".2f",
|
|
tablefmt=known_args.output
|
|
))
|