mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-29 12:35:16 +00:00
* [CANN] Add Ascend NPU backend Ascend is a full-stack AI computing infrastructure for industry applications and services based on Huawei Ascend processors and software. CANN (Compute Architecture of Neural Networks), developped by Huawei, is a heterogeneous computing architecture for AI. Co-authored-by: wangshuai09 <391746016@qq.com> * delete trailing whitespaces * Modify the code based on review comment * Rename LLAMA_CANN to GGML_CANN * Make ggml-common.h private * add ggml_cann prefix for acl funcs * Add logging for CANN backend * Delete Trailing whitespace --------- Co-authored-by: wangshuai09 <391746016@qq.com>
187 lines
6.8 KiB
C++
187 lines
6.8 KiB
C++
#include "kernel_operator.h"
|
|
|
|
// optimize me. Use template to avoid copy code.
|
|
using namespace AscendC;
|
|
|
|
#define BUFFER_NUM 2
|
|
|
|
class GET_ROW_F16 {
|
|
public:
|
|
__aicore__ inline GET_ROW_F16() {}
|
|
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
|
int64_t *input_ne_ub, size_t *input_nb_ub,
|
|
int64_t *indices_ne_ub, size_t *indices_nb_ub,
|
|
int64_t *output_ne_ub, size_t *output_nb_ub) {
|
|
// TODO, use template for F16/f32
|
|
int64_t op_block_num = GetBlockNum();
|
|
int64_t op_block_idx = GetBlockIdx();
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
input_ne[i] = input_ne_ub[i];
|
|
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
|
|
|
indices_ne[i] = indices_ne_ub[i];
|
|
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
|
|
|
output_ne[i] = output_ne_ub[i];
|
|
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
|
}
|
|
|
|
// Indices has two dims. n_elements = all rows should get.
|
|
// dr, all rows should this thread get.
|
|
uint64_t n_elements =
|
|
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
|
dr = n_elements / op_block_num;
|
|
|
|
uint64_t tails = n_elements % op_block_num;
|
|
if (op_block_idx < tails) {
|
|
dr += 1;
|
|
ir = dr * op_block_idx;
|
|
} else {
|
|
ir = dr * op_block_idx + tails;
|
|
}
|
|
|
|
input_gm.SetGlobalBuffer((__gm__ half *)input);
|
|
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
|
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
|
|
|
uint64_t input_local_buffer_size = ((input_ne[0] * sizeof(half) + 31)
|
|
& ~31);
|
|
uint64_t output_local_buffer_size = ((input_ne[0] * sizeof(float) + 31)
|
|
& ~31);
|
|
|
|
local_buffer_elems = input_local_buffer_size / sizeof(half);
|
|
|
|
// TODO, consider long row that can't put in UB.
|
|
// All data should asign to 32. It's ok because all data is align to 32.
|
|
pipe.InitBuffer(input_queue, BUFFER_NUM, input_local_buffer_size);
|
|
pipe.InitBuffer(output_queue, BUFFER_NUM, output_local_buffer_size);
|
|
}
|
|
|
|
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
|
|
LocalTensor<half> input_local = input_queue.AllocTensor<half>();
|
|
size_t tail = len % 32;
|
|
len = len & ~31;
|
|
DataCopy(input_local, input_gm[offset], len);
|
|
if(tail != 0) {
|
|
DataCopyExtParams dataCopyParams;
|
|
dataCopyParams.blockCount = 1;
|
|
dataCopyParams.blockLen = tail * sizeof(half);
|
|
DataCopyPadExtParams<half> padParams;
|
|
DataCopyPad(input_local[len], input_gm[offset + len],
|
|
dataCopyParams, padParams);
|
|
}
|
|
input_queue.EnQue(input_local);
|
|
}
|
|
|
|
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
|
|
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
|
size_t tail = len % 32;
|
|
len = len & ~31;
|
|
DataCopy(output_gm[offset], output_local, len);
|
|
if(tail != 0) {
|
|
DataCopyExtParams dataCopyParams;
|
|
dataCopyParams.blockCount = 1;
|
|
dataCopyParams.blockLen = tail * sizeof(float);
|
|
DataCopyPad(output_gm[offset + len], output_local[len],
|
|
dataCopyParams);
|
|
}
|
|
output_queue.FreeTensor(output_local);
|
|
}
|
|
|
|
__aicore__ inline void calculate_row(int64_t idx) {
|
|
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
|
const int64_t indices_ne1_idx =
|
|
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
|
indices_ne[0];
|
|
const int64_t indices_ne0_idx =
|
|
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
|
indices_ne1_idx * indices_ne[0]);
|
|
|
|
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
|
indices_ne1_idx * indices_stride[1] +
|
|
indices_ne2_idx * indices_stride[2];
|
|
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
|
|
|
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
|
indices_ne1_idx * input_stride[2] +
|
|
indices_ne2_idx * input_stride[3];
|
|
|
|
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
|
indices_ne1_idx * output_stride[2] +
|
|
indices_ne2_idx * output_stride[3];
|
|
|
|
copy_in(input_offset, input_ne[0]);
|
|
LocalTensor<half> input_local = input_queue.DeQue<half>();
|
|
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
|
|
|
Cast(output_local, input_local, RoundMode::CAST_NONE,
|
|
local_buffer_elems);
|
|
output_queue.EnQue(output_local);
|
|
copy_out(output_offset, input_ne[0]);
|
|
|
|
input_queue.FreeTensor(input_local);
|
|
}
|
|
|
|
__aicore__ inline void calculate() {
|
|
for (int64_t i = ir; i < ir + dr; i++) {
|
|
calculate_row(i);
|
|
}
|
|
}
|
|
|
|
private:
|
|
int64_t input_ne[4];
|
|
size_t input_stride[4];
|
|
|
|
int64_t indices_ne[4];
|
|
size_t indices_stride[4];
|
|
|
|
int64_t output_ne[4];
|
|
size_t output_stride[4];
|
|
|
|
size_t local_buffer_elems;
|
|
|
|
int64_t ir;
|
|
int64_t dr;
|
|
|
|
TPipe pipe;
|
|
GlobalTensor<half> input_gm;
|
|
GlobalTensor<int32_t> indices_gm;
|
|
GlobalTensor<float> output_gm;
|
|
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
|
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
|
};
|
|
|
|
template <typename T>
|
|
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
|
auto gm_ptr = (__gm__ uint8_t *)gm;
|
|
auto ub_ptr = (uint8_t *)(ub);
|
|
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
|
*ub_ptr = *gm_ptr;
|
|
}
|
|
}
|
|
|
|
extern "C" __global__ __aicore__ void ascendc_get_row_f16(
|
|
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
|
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
|
|
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
|
int64_t input_ne_ub[4];
|
|
size_t input_nb_ub[4];
|
|
int64_t indices_ne_ub[4];
|
|
size_t indices_nb_ub[4];
|
|
int64_t output_ne_ub[4];
|
|
size_t output_nb_ub[4];
|
|
|
|
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
|
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
|
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
|
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
|
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
|
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
|
|
|
GET_ROW_F16 op;
|
|
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
|
|
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
|
|
op.calculate();
|
|
}
|