Files
llama.cpp/ggml/src/ggml-cuda/out-prod.cu
2025-01-24 12:38:31 +01:00

69 lines
2.3 KiB
Plaintext

#include "out-prod.cuh"
#include <cstdint>
void ggml_cuda_out_prod(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(ne01 == ne11);
GGML_ASSERT(ne0 == ne00);
GGML_ASSERT(ne1 == ne10);
GGML_ASSERT(ne2 % src0->ne[2] == 0);
GGML_ASSERT(ne3 % src0->ne[3] == 0);
GGML_ASSERT(ne2 == src1->ne[2]);
GGML_ASSERT(ne3 == src1->ne[3]);
const float * src0_d = (const float *) src0->data;
const float * src1_d = (const float *) src1->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
cublasHandle_t handle = ctx.cublas_handle();
const float alpha = 1.0f;
const float beta = 0.0f;
CUBLAS_CHECK(cublasSetStream(handle, stream));
const int64_t lda = nb01 / sizeof(float);
const int64_t ldc = nb1 / sizeof(float);
const bool src1_T = ggml_is_transposed(src1);
const cublasOperation_t src1_cublas_op = src1_T ? CUBLAS_OP_N : CUBLAS_OP_T;
const int64_t ldb = (src1_T ? nb10 : nb11) / sizeof(float);
GGML_ASSERT( (src1_T ? nb11 : nb10) == sizeof(float));
// data strides in dimensions 2/3
const size_t s02 = nb02 / sizeof(float);
const size_t s03 = nb03 / sizeof(float);
const size_t s12 = nb12 / sizeof(float);
const size_t s13 = nb13 / sizeof(float);
const size_t s2 = nb2 / sizeof(float);
const size_t s3 = nb3 / sizeof(float);
// dps == dst per src0, used for group query attention
const int64_t dps2 = ne2 / ne02;
const int64_t dps3 = ne3 / ne03;
// TODO batched matrix multiplication
for (int64_t i3 = 0; i3 < ne3; ++i3) {
for (int64_t i2 = 0; i2 < ne2; ++i2) {
CUBLAS_CHECK(
cublasSgemm(handle, CUBLAS_OP_N, src1_cublas_op,
ne0, ne1, ne01,
&alpha, src0_d + (i3/dps3)*s03 + (i2/dps2)*s02, lda,
src1_d + i3 *s13 + i2 *s12, ldb,
&beta, dst_d + i3 *s3 + i2 *s2, ldc));
}
}
}