Files
llama.cpp/ggml/include/ggml-cpu.h
Radoslav Gerganov 8d94219a4a ggml : add ggml_set_rows (#14274)
* ggml : add ggml_set_rows

Add ggml_set_rows(a, b, c) which copies rows from 'b' into 'a' using
indices from 'c'.

ref: #8366

* use I64 for indices

* ggml : add repeat impl for i64

* ggml : add ggml_is_contiguous_rows

* ggml : ggml_set_rows support broadcast

* ggml : ggml_set_rows support quantized dst

ggml-ci

* ggml : support GGML_TYPE_F32 ".from_float" trait

* ggml : ggml_set_rows update comment + better index name

* tests : add ggml_set_rows

* metal : add ggml_set_rows implementation

ggml-ci

* ggml : simplify forward_dup_f32

* ggml : fix supports_op

* tests : add comment to set_rows

* ggml : leave the repeat_i64 for a separate PR

ggml-ci

* ggml : set_rows use std::min instead of MIN

* ggml : better error message for set_rows unsupported type

* metal : perform op->type check only once

* tests : more consistent implementation + more tests

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-27 16:41:40 +03:00

146 lines
7.2 KiB
C

#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
// the compute plan that needs to be prepared for ggml_graph_compute()
// since https://github.com/ggml-org/ggml/issues/287
struct ggml_cplan {
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
int n_threads;
struct ggml_threadpool * threadpool;
// abort ggml_graph_compute when true
ggml_abort_callback abort_callback;
void * abort_callback_data;
};
// numa strategies
enum ggml_numa_strategy {
GGML_NUMA_STRATEGY_DISABLED = 0,
GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
GGML_NUMA_STRATEGY_ISOLATE = 2,
GGML_NUMA_STRATEGY_NUMACTL = 3,
GGML_NUMA_STRATEGY_MIRROR = 4,
GGML_NUMA_STRATEGY_COUNT
};
GGML_BACKEND_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
GGML_BACKEND_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
GGML_BACKEND_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
GGML_BACKEND_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
GGML_BACKEND_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
GGML_BACKEND_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
GGML_BACKEND_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
GGML_BACKEND_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
GGML_BACKEND_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_BACKEND_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
GGML_BACKEND_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
GGML_BACKEND_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
GGML_BACKEND_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_BACKEND_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
GGML_BACKEND_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
GGML_BACKEND_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
GGML_BACKEND_API int ggml_threadpool_get_n_threads (struct ggml_threadpool * threadpool);
GGML_BACKEND_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
GGML_BACKEND_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
// ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_BACKEND_API struct ggml_cplan ggml_graph_plan(
const struct ggml_cgraph * cgraph,
int n_threads, /* = GGML_DEFAULT_N_THREADS */
struct ggml_threadpool * threadpool /* = NULL */ );
GGML_BACKEND_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
// same as ggml_graph_compute() but the work data is allocated as a part of the context
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
GGML_BACKEND_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
//
// system info
//
// x86
GGML_BACKEND_API int ggml_cpu_has_sse3 (void);
GGML_BACKEND_API int ggml_cpu_has_ssse3 (void);
GGML_BACKEND_API int ggml_cpu_has_avx (void);
GGML_BACKEND_API int ggml_cpu_has_avx_vnni (void);
GGML_BACKEND_API int ggml_cpu_has_avx2 (void);
GGML_BACKEND_API int ggml_cpu_has_bmi2 (void);
GGML_BACKEND_API int ggml_cpu_has_f16c (void);
GGML_BACKEND_API int ggml_cpu_has_fma (void);
GGML_BACKEND_API int ggml_cpu_has_avx512 (void);
GGML_BACKEND_API int ggml_cpu_has_avx512_vbmi(void);
GGML_BACKEND_API int ggml_cpu_has_avx512_vnni(void);
GGML_BACKEND_API int ggml_cpu_has_avx512_bf16(void);
GGML_BACKEND_API int ggml_cpu_has_amx_int8 (void);
// ARM
GGML_BACKEND_API int ggml_cpu_has_neon (void);
GGML_BACKEND_API int ggml_cpu_has_arm_fma (void);
GGML_BACKEND_API int ggml_cpu_has_fp16_va (void);
GGML_BACKEND_API int ggml_cpu_has_dotprod (void);
GGML_BACKEND_API int ggml_cpu_has_matmul_int8(void);
GGML_BACKEND_API int ggml_cpu_has_sve (void);
GGML_BACKEND_API int ggml_cpu_get_sve_cnt (void); // sve vector length in bytes
GGML_BACKEND_API int ggml_cpu_has_sme (void);
// other
GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
GGML_BACKEND_API int ggml_cpu_has_vsx (void);
GGML_BACKEND_API int ggml_cpu_has_vxe (void);
GGML_BACKEND_API int ggml_cpu_has_nnpa (void);
GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
GGML_BACKEND_API int ggml_cpu_has_llamafile (void);
// Internal types and functions exposed for tests and benchmarks
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
const void * GGML_RESTRICT y, size_t by, int nrc);
struct ggml_type_traits_cpu {
ggml_from_float_t from_float;
ggml_vec_dot_t vec_dot;
enum ggml_type vec_dot_type;
int64_t nrows; // number of rows to process simultaneously
};
GGML_BACKEND_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type);
GGML_BACKEND_API void ggml_cpu_init(void);
//
// CPU backend
//
GGML_BACKEND_API ggml_backend_t ggml_backend_cpu_init(void);
GGML_BACKEND_API bool ggml_backend_is_cpu (ggml_backend_t backend);
GGML_BACKEND_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
GGML_BACKEND_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
GGML_BACKEND_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
GGML_BACKEND_API void ggml_cpu_fp32_to_fp32(const float *, float *, int64_t);
GGML_BACKEND_API void ggml_cpu_fp32_to_fp16(const float *, ggml_fp16_t *, int64_t);
GGML_BACKEND_API void ggml_cpu_fp16_to_fp32(const ggml_fp16_t *, float *, int64_t);
GGML_BACKEND_API void ggml_cpu_fp32_to_bf16(const float *, ggml_bf16_t *, int64_t);
GGML_BACKEND_API void ggml_cpu_bf16_to_fp32(const ggml_bf16_t *, float *, int64_t);
#ifdef __cplusplus
}
#endif