#define GGML_COMMON_IMPL_CPP #define GGML_COMMON_DECL_CPP #include "ggml-common.h" #include "ggml-backend-impl.h" #include "ggml-impl.h" #include "ggml-cpu.h" #include "ggml-cpu-impl.h" #include "traits.h" #include #include #include #include // for qsort #include // for GGML_ASSERT #include "repack.h" #if defined(__GNUC__) #pragma GCC diagnostic ignored "-Woverlength-strings" #endif #define UNUSED GGML_UNUSED static inline int nearest_int(float fval) { assert(fabsf(fval) <= 4194303.f); float val = fval + 12582912.f; int i; memcpy(&i, &val, sizeof(int)); return (i & 0x007fffff) - 0x00400000; } // Functions to create the interleaved data layout formats // interleave 4 block_q4_0s in blocks of blck_size_interleave // returns an interleaved block_q4_0x4 // in the interleaved block_q4_0x4, place deltas for 4 block_q4_0 blocks // first, then interleave quants from 4 block_q4_0s in blocks of blck_size_interleave // // - in : an array of block_q4_0 pointers // - blck_size_interleave : the block_q4_0 quants bytes are interleaved in blocks of // blck_size_interleave bytes // - xor_mask : the mask to convert the nibbles in block_q4_0 quants bytes // from bias offset form to pure sign form (this saves subtract // operations durin unpacking) // extern "C" { void ggml_quantize_mat_q8_0_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { assert(QK8_0 == 32); assert(k % QK8_0 == 0); const int nb = k / QK8_0; block_q8_0x4 * GGML_RESTRICT y = (block_q8_0x4 *) vy; // scalar const int blck_size_interleave = 4; float srcv[4][QK8_0]; float id[4]; for (int i = 0; i < nb; i++) { for (int row_iter = 0; row_iter < 4; row_iter++) { float amax = 0.0f; // absolute max for (int j = 0; j < QK8_0; j++) { srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j]; amax = MAX(amax, fabsf(srcv[row_iter][j])); } const float d = amax / ((1 << 7) - 1); id[row_iter] = d ? 1.0f / d : 0.0f; y[i].d[row_iter] = GGML_FP32_TO_FP16(d); } for (int j = 0; j < QK8_0 * 4; j++) { int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave; int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave; src_offset += (j % blck_size_interleave); float x0 = srcv[src_id][src_offset] * id[src_id]; y[i].qs[j] = roundf(x0); } } } GGML_CPU_NATIVE_IMPL(ggml_quantize_mat_q8_0_4x4) void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { assert(QK8_0 == 32); assert(k % QK8_0 == 0); const int nb = k / QK8_0; block_q8_0x4 * GGML_RESTRICT y = (block_q8_0x4 *) vy; // scalar const int blck_size_interleave = 8; float srcv[4][QK8_0]; float id[4]; for (int i = 0; i < nb; i++) { for (int row_iter = 0; row_iter < 4; row_iter++) { float amax = 0.0f; // absolute max for (int j = 0; j < QK8_0; j++) { srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j]; amax = MAX(amax, fabsf(srcv[row_iter][j])); } const float d = amax / ((1 << 7) - 1); id[row_iter] = d ? 1.0f / d : 0.0f; y[i].d[row_iter] = GGML_FP32_TO_FP16(d); } for (int j = 0; j < QK8_0 * 4; j++) { int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave; int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave; src_offset += (j % blck_size_interleave); float x0 = srcv[src_id][src_offset] * id[src_id]; y[i].qs[j] = roundf(x0); } } } GGML_CPU_NATIVE_IMPL(ggml_quantize_mat_q8_0_4x8) void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { assert(QK_K == 256); assert(k % QK_K == 0); const int nb = k / QK_K; block_q8_Kx4 * GGML_RESTRICT y = (block_q8_Kx4 *) vy; // scalar const int blck_size_interleave = 8; float srcv[4][QK_K]; float iscale[4]; for (int i = 0; i < nb; i++) { for (int row_iter = 0; row_iter < 4; row_iter++) { float amax = 0.0f; // absolute max float max = 0; for (int j = 0; j < QK_K; j++) { srcv[row_iter][j] = x[row_iter * k + i * QK_K + j]; // Update the maximum value of the corresponding super block if(amax < fabsf(srcv[row_iter][j])) { amax = fabsf(srcv[row_iter][j]); max = srcv[row_iter][j]; } } iscale[row_iter] = amax ? -127.f/max : 0; y[i].d[row_iter] = amax ? 1/iscale[row_iter] : 0; } for (int j = 0; j < QK_K / 4; j++) { y[i].bsums[j] = 0; } // Quants values are interleaved in sequence of eight bytes from corresponding super blocks // Bsums values are interleaved in sequence of four bsums from each super block taken for interleaving // i.e first four bsums from the first super block, followed by first four bsums from second super block and so on for (int j = 0; j < QK_K * 4; j++) { int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave; int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave; src_offset += (j % blck_size_interleave); int index = (((j & 31) >> 3) << 2) + ((j >> 8) << 4) + ((j >> 6) & 3); float x0 = srcv[src_id][src_offset] * iscale[src_id]; y[i].qs[j] = nearest_int(x0); y[i].bsums[index] += y[i].qs[j]; } } } GGML_CPU_NATIVE_IMPL(ggml_quantize_mat_q8_K_4x8) } // extern "C" template void ggml_quantize_mat_t(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row); template <> void ggml_quantize_mat_t<4, GGML_TYPE_Q8_0>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) { assert(nrow == 4); UNUSED(nrow); ggml_quantize_mat_q8_0_4x4(x, vy, n_per_row); } template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_0>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) { assert(nrow == 4); UNUSED(nrow); ggml_quantize_mat_q8_0_4x8(x, vy, n_per_row); } template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_K>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) { assert(nrow == 4); UNUSED(nrow); ggml_quantize_mat_q8_K_4x8(x, vy, n_per_row); } extern "C" { void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { const int qk = QK8_0; const int nb = n / qk; const int ncols_interleaved = 4; const int blocklen = 4; assert (n % qk == 0); assert (nc % ncols_interleaved == 0); UNUSED(s); UNUSED(bs); UNUSED(vx); UNUSED(vy); UNUSED(nr); UNUSED(nc); UNUSED(nb); UNUSED(ncols_interleaved); UNUSED(blocklen); float sumf[4]; int sumi; const block_q8_0 * a_ptr = (const block_q8_0 *) vy; for (int x = 0; x < nc / ncols_interleaved; x++) { const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb); for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0; for (int l = 0; l < nb; l++) { for (int k = 0; k < (qk / (2 * blocklen)); k++) { for (int j = 0; j < ncols_interleaved; j++) { sumi = 0; for (int i = 0; i < blocklen; ++i) { const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4; } sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d); } } } for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; } } GGML_CPU_NATIVE_IMPL(ggml_gemv_q4_0_4x4_q8_0) void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { const int qk = QK8_0; const int nb = n / qk; const int ncols_interleaved = 4; const int blocklen = 8; assert (n % qk == 0); assert (nc % ncols_interleaved == 0); UNUSED(s); UNUSED(bs); UNUSED(vx); UNUSED(vy); UNUSED(nr); UNUSED(nc); UNUSED(nb); UNUSED(ncols_interleaved); UNUSED(blocklen); float sumf[4]; int sumi; const block_q8_0 * a_ptr = (const block_q8_0 *) vy; for (int x = 0; x < nc / ncols_interleaved; x++) { const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb); for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0; for (int l = 0; l < nb; l++) { for (int k = 0; k < (qk / (2 * blocklen)); k++) { for (int j = 0; j < ncols_interleaved; j++) { sumi = 0; for (int i = 0; i < blocklen; ++i) { const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4; } sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d); } } } for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; } } GGML_CPU_NATIVE_IMPL(ggml_gemv_q4_0_4x8_q8_0) void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { const int qk = QK8_0; const int nb = n / qk; const int ncols_interleaved = 8; const int blocklen = 8; assert (n % qk == 0); assert (nc % ncols_interleaved == 0); UNUSED(s); UNUSED(bs); UNUSED(vx); UNUSED(vy); UNUSED(nr); UNUSED(nc); UNUSED(nb); UNUSED(ncols_interleaved); UNUSED(blocklen); { float sumf[8]; int sumi; const block_q8_0 * a_ptr = (const block_q8_0 *) vy; for (int x = 0; x < nc / ncols_interleaved; x++) { const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb); for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0; for (int l = 0; l < nb; l++) { for (int k = 0; k < (qk / (2 * blocklen)); k++) { for (int j = 0; j < ncols_interleaved; j++) { sumi = 0; for (int i = 0; i < blocklen; ++i) { const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4; } sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d); } } } for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; } } } GGML_CPU_NATIVE_IMPL(ggml_gemv_q4_0_8x8_q8_0) void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { const int qk = QK_K; const int nb = n / qk; const int ncols_interleaved = 8; const int blocklen = 8; static const uint32_t kmask1 = 0x3f3f3f3f; static const uint32_t kmask2 = 0x0f0f0f0f; static const uint32_t kmask3 = 0x03030303; assert (n % qk == 0); assert (nc % ncols_interleaved == 0); UNUSED(s); UNUSED(bs); UNUSED(vx); UNUSED(vy); UNUSED(nr); UNUSED(nc); UNUSED(nb); UNUSED(ncols_interleaved); UNUSED(blocklen); float sumf[8]; float sum_minf[8]; uint32_t utmp[32]; int sumi1; int sumi2; int sumi; const block_q8_K * a_ptr = (const block_q8_K *) vy; for (int x = 0; x < nc / ncols_interleaved; x++) { const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb); for (int j = 0; j < ncols_interleaved; j++) { sumf[j] = 0.0; sum_minf[j] = 0.0; } for (int l = 0; l < nb; l++) { for (int sb = 0; sb < 8; sb++) { memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12); utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4); const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1; utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4); utmp[sb * 4 + 2] = uaux_0; utmp[sb * 4 + 0] &= kmask1; } for (int k = 0; k < (qk / (2 * blocklen)); k++) { uint8_t *scales_0 = (uint8_t*) utmp + (k / 4) * 32; uint8_t *scales_1 = (uint8_t*) utmp + (k / 4) * 32 + 16; for (int j = 0; j < ncols_interleaved; j++) { sumi1 = 0; sumi2 = 0; sumi = 0; for (int i = 0; i < blocklen; ++i) { const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF); const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4); sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 64 + (k % 4) * blocklen + i]); sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 64 + (k % 4) * blocklen + i + 32]); sumi1 = sumi1 * scales_0[j]; sumi2 = sumi2 * scales_1[j]; sumi += sumi1 + sumi2; } sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d; } } for (int sb = 0; sb < 8; sb++) { uint8_t *mins = (uint8_t*) utmp + 8 + sb * 16; for (int j = 0; j < ncols_interleaved; j++) { sum_minf[j] += mins[j] * (a_ptr[l].bsums[sb * 2] + a_ptr[l].bsums[sb * 2 + 1]) * GGML_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d; } } } for (int j = 0; j < ncols_interleaved; j++) { s[x * ncols_interleaved + j] = sumf[j] - sum_minf[j]; } } } GGML_CPU_NATIVE_IMPL(ggml_gemv_q4_K_8x8_q8_K) void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { const int qk = QK8_0; const int nb = n / qk; const int ncols_interleaved = 4; const int blocklen = 4; assert (n % qk == 0); assert (nc % ncols_interleaved == 0); UNUSED(s); UNUSED(bs); UNUSED(vx); UNUSED(vy); UNUSED(nr); UNUSED(nc); UNUSED(nb); UNUSED(ncols_interleaved); UNUSED(blocklen); { float sumf[4]; int sumi; const block_q8_0 * a_ptr = (const block_q8_0 *) vy; for (int x = 0; x < nc / ncols_interleaved; x++) { const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb); for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0; for (int l = 0; l < nb; l++) { for (int k = 0; k < (qk / (2 * blocklen)); k++) { for (int j = 0; j < ncols_interleaved; j++) { sumi = 0; for (int i = 0; i < blocklen; ++i) { const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F]; const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4]; sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])); } sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d); } } } for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; } } } GGML_CPU_NATIVE_IMPL(ggml_gemv_iq4_nl_4x4_q8_0) void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { const int qk = QK8_0; const int nb = n / qk; const int ncols_interleaved = 4; const int blocklen = 4; assert (n % qk == 0); assert (nr % 4 == 0); assert (nc % ncols_interleaved == 0); UNUSED(s); UNUSED(bs); UNUSED(vx); UNUSED(vy); UNUSED(nr); UNUSED(nc); UNUSED(nb); UNUSED(ncols_interleaved); UNUSED(blocklen); { float sumf[4][4]; int sumi; for (int y = 0; y < nr / 4; y++) { const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb); for (int x = 0; x < nc / ncols_interleaved; x++) { const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb); for (int m = 0; m < 4; m++) { for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0; } for (int l = 0; l < nb; l++) { for (int k = 0; k < (qk / (2 * blocklen)); k++) { for (int m = 0; m < 4; m++) { for (int j = 0; j < ncols_interleaved; j++) { sumi = 0; for (int i = 0; i < blocklen; ++i) { const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4; } sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]); } } } } for (int m = 0; m < 4; m++) { for (int j = 0; j < ncols_interleaved; j++) s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j]; } } } } } GGML_CPU_NATIVE_IMPL(ggml_gemm_q4_0_4x4_q8_0) void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { const int qk = QK8_0; const int nb = n / qk; const int ncols_interleaved = 4; const int blocklen = 8; assert (n % qk == 0); assert (nr % 4 == 0); assert (nc % ncols_interleaved == 0); UNUSED(s); UNUSED(bs); UNUSED(vx); UNUSED(vy); UNUSED(nr); UNUSED(nc); UNUSED(nb); UNUSED(ncols_interleaved); UNUSED(blocklen); float sumf[4][4]; int sumi; for (int y = 0; y < nr / 4; y++) { const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb); for (int x = 0; x < nc / ncols_interleaved; x++) { const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb); for (int m = 0; m < 4; m++) { for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0; } for (int l = 0; l < nb; l++) { for (int k = 0; k < (qk / (2 * blocklen)); k++) { for (int m = 0; m < 4; m++) { for (int j = 0; j < ncols_interleaved; j++) { sumi = 0; for (int i = 0; i < blocklen; ++i) { const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4; } sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]); } } } } for (int m = 0; m < 4; m++) { for (int j = 0; j < ncols_interleaved; j++) s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j]; } } } } GGML_CPU_NATIVE_IMPL(ggml_gemm_q4_0_4x8_q8_0) void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { const int qk = QK8_0; const int nb = n / qk; const int ncols_interleaved = 8; const int blocklen = 8; assert (n % qk == 0); assert (nr % 4 == 0); assert (nc % ncols_interleaved == 0); UNUSED(s); UNUSED(bs); UNUSED(vx); UNUSED(vy); UNUSED(nr); UNUSED(nc); UNUSED(nb); UNUSED(ncols_interleaved); UNUSED(blocklen); float sumf[4][8]; int sumi; for (int y = 0; y < nr / 4; y++) { const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb); for (int x = 0; x < nc / ncols_interleaved; x++) { const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb); for (int m = 0; m < 4; m++) { for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0; } for (int l = 0; l < nb; l++) { for (int k = 0; k < (qk / (2 * blocklen)); k++) { for (int m = 0; m < 4; m++) { for (int j = 0; j < ncols_interleaved; j++) { sumi = 0; for (int i = 0; i < blocklen; ++i) { const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4; } sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]); } } } } for (int m = 0; m < 4; m++) { for (int j = 0; j < ncols_interleaved; j++) s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j]; } } } } GGML_CPU_NATIVE_IMPL(ggml_gemm_q4_0_8x8_q8_0) void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { const int qk = QK_K; const int nb = n / qk; const int ncols_interleaved = 8; const int blocklen = 8; static const uint32_t kmask1 = 0x3f3f3f3f; static const uint32_t kmask2 = 0x0f0f0f0f; static const uint32_t kmask3 = 0x03030303; assert (n % qk == 0); assert (nr % 4 == 0); assert (nc % ncols_interleaved == 0); UNUSED(s); UNUSED(bs); UNUSED(vx); UNUSED(vy); UNUSED(nr); UNUSED(nc); UNUSED(nb); UNUSED(ncols_interleaved); UNUSED(blocklen); float sumf[4][8]; float sum_minf[4][8]; uint32_t utmp[32]; int sumi1; int sumi2; int sumi; for (int y = 0; y < nr / 4; y++) { const block_q8_Kx4 * a_ptr = (const block_q8_Kx4 *) vy + (y * nb); for (int x = 0; x < nc / ncols_interleaved; x++) { const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb); for (int m = 0; m < 4; m++) { for (int j = 0; j < ncols_interleaved; j++) { sumf[m][j] = 0.0; sum_minf[m][j] = 0.0; } } for (int l = 0; l < nb; l++) { for (int sb = 0; sb < 8; sb++) { memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12); utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4); const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1; utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4); utmp[sb * 4 + 2] = uaux_0; utmp[sb * 4 + 0] &= kmask1; } for (int k = 0; k < (qk / (2 * blocklen)); k++) { uint8_t *scales_0 = (uint8_t*) utmp + (k / 4) * 32; uint8_t *scales_1 = (uint8_t*) utmp + (k / 4) * 32 + 16; for (int m = 0; m < 4; m++) { for (int j = 0; j < ncols_interleaved; j++) { sumi1 = 0; sumi2 = 0; sumi = 0; for (int i = 0; i < blocklen; ++i) { const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF); const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4); sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 256 + (k % 4) * 4 * blocklen + m * blocklen + i]); sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 256 + (k % 4) * 4 * blocklen + m * blocklen + i + 128]); sumi1 = sumi1 * scales_0[j]; sumi2 = sumi2 * scales_1[j]; sumi += sumi1 + sumi2; } sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d[m]; } } } for (int sb = 0; sb < 8; sb++) { uint8_t *mins = (uint8_t*) utmp + 8 + sb * 16; for(int m = 0; m < 4; m++) { const int16_t *bsums = a_ptr[l].bsums + (sb * 8) + (m * 4) - ((sb % 2) * 6); for(int j = 0; j < ncols_interleaved; j++) { sum_minf[m][j] += mins[j] * (bsums[0] + bsums[1]) * GGML_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d[m]; } } } } for (int m = 0; m < 4; m++) { for (int j = 0; j < ncols_interleaved; j++) { s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j] - sum_minf[m][j]; } } } } } GGML_CPU_NATIVE_IMPL(ggml_gemm_q4_K_8x8_q8_K) void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { const int qk = QK8_0; const int nb = n / qk; const int ncols_interleaved = 4; const int blocklen = 4; assert (n % qk == 0); assert (nr % 4 == 0); assert (nc % ncols_interleaved == 0); UNUSED(s); UNUSED(bs); UNUSED(vx); UNUSED(vy); UNUSED(nr); UNUSED(nc); UNUSED(nb); UNUSED(ncols_interleaved); UNUSED(blocklen); { float sumf[4][4]; int sumi; for (int y = 0; y < nr / 4; y++) { const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb); for (int x = 0; x < nc / ncols_interleaved; x++) { const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb); for (int m = 0; m < 4; m++) { for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0; } for (int l = 0; l < nb; l++) { for (int k = 0; k < (qk / (2 * blocklen)); k++) { for (int m = 0; m < 4; m++) { for (int j = 0; j < ncols_interleaved; j++) { sumi = 0; for (int i = 0; i < blocklen; ++i) { const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F]; const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4]; sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])); } sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]); } } } } for (int m = 0; m < 4; m++) { for (int j = 0; j < ncols_interleaved; j++) s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j]; } } } } } GGML_CPU_NATIVE_IMPL(ggml_gemm_iq4_nl_4x4_q8_0) } // extern "C" static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int blck_size_interleave) { block_q4_0x4 out; for (int i = 0; i < 4; i++) { out.d[i] = in[i].d; } const int end = QK4_0 * 2 / blck_size_interleave; if (blck_size_interleave == 8) { const uint64_t xor_mask = 0x8888888888888888ULL; for (int i = 0; i < end; ++i) { int src_id = i % 4; int src_offset = (i / 4) * blck_size_interleave; int dst_offset = i * blck_size_interleave; uint64_t elems; // Using memcpy to avoid unaligned memory accesses memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t)); elems ^= xor_mask; memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t)); } } else if (blck_size_interleave == 4) { const uint32_t xor_mask = 0x88888888; for (int i = 0; i < end; ++i) { int src_id = i % 4; int src_offset = (i / 4) * blck_size_interleave; int dst_offset = i * blck_size_interleave; uint32_t elems; memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint32_t)); elems ^= xor_mask; memcpy(&out.qs[dst_offset], &elems, sizeof(uint32_t)); } } else { GGML_ASSERT(false); } return out; } // interleave 8 block_q4_0s in blocks of blck_size_interleave // returns an interleaved block_q4_0x8 // in the interleaved block_q4_0x8, place deltas for 8 block_q4_0 blocks // first, then interleave quants from 8 block_q4_0s in blocks of blck_size_interleave static block_q4_0x8 make_block_q4_0x8(block_q4_0 * in, unsigned int blck_size_interleave) { block_q4_0x8 out; for (int i = 0; i < 8; i++) { out.d[i] = in[i].d; } const int end = QK4_0 * 4 / blck_size_interleave; const uint64_t xor_mask = 0x8888888888888888ULL; for (int i = 0; i < end; ++i) { int src_id = i % 8; int src_offset = (i / 8) * blck_size_interleave; int dst_offset = i * blck_size_interleave; uint64_t elems; memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t)); elems ^= xor_mask; memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t)); } return out; } static block_q4_Kx8 make_block_q4_Kx8(block_q4_K * in, unsigned int blck_size_interleave) { block_q4_Kx8 out; //Delta(scale) and dmin values of the eight Q4_K structures are copied onto the output interleaved structure for (int i = 0; i < 8; i++) { out.d[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d; } for (int i = 0; i < 8; i++) { out.dmin[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.dmin; } const int end = QK_K * 4 / blck_size_interleave; // Interleave Q4_K quants by taking 8 bytes at a time for (int i = 0; i < end; ++i) { int src_id = i % 8; int src_offset = (i / 8) * blck_size_interleave; int dst_offset = i * blck_size_interleave; uint64_t elems; memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t)); memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t)); } // The below logic is designed so as to unpack and rearrange scales and mins values in Q4_K // Currently the Q4_K structure has 8 scales and 8 mins packed in 12 bytes ( 6 bits for each value) // The output Q4_Kx8 structure has 96 bytes // Every 12 byte is packed such that it contains scales and mins for corresponding sub blocks from Q4_K structure // For eg - First 12 bytes contains 8 scales and 8 mins - each of first sub block from different Q4_K structures uint8_t s[8], m[8]; for (int i = 0; i < 4; i++) { for (int j = 0; j < 8; j++) { s[j] = in[j].scales[i] & 63; m[j] = in[j].scales[i + 4] & 63; } out.scales[i * 12] = (s[0] & 63) + ((s[4] & 48) << 2); out.scales[i * 12 + 1] = (s[1] & 63) + ((s[5] & 48) << 2); out.scales[i * 12 + 2] = (s[2] & 63) + ((s[6] & 48) << 2); out.scales[i * 12 + 3] = (s[3] & 63) + ((s[7] & 48) << 2); out.scales[i * 12 + 4] = (m[0] & 63) + ((m[4] & 48) << 2); out.scales[i * 12 + 5] = (m[1] & 63) + ((m[5] & 48) << 2); out.scales[i * 12 + 6] = (m[2] & 63) + ((m[6] & 48) << 2); out.scales[i * 12 + 7] = (m[3] & 63) + ((m[7] & 48) << 2); out.scales[i * 12 + 8] = (s[4] & 15) + ((m[4] & 15) << 4); out.scales[i * 12 + 9] = (s[5] & 15) + ((m[5] & 15) << 4); out.scales[i * 12 + 10] = (s[6] & 15) + ((m[6] & 15) << 4); out.scales[i * 12 + 11] = (s[7] & 15) + ((m[7] & 15) << 4); } for (int i = 0; i < 4; i++) { for (int j = 0; j < 8; j++) { s[j] = ((in[j].scales[i] & 192) >> 2) | (in[j].scales[i+8] & 15); m[j] = ((in[j].scales[i + 4] & 192) >> 2) | ((in[j].scales[i+8] & 240) >> 4); } out.scales[i * 12 + 48] = (s[0] & 63) + ((s[4] & 48) << 2); out.scales[i * 12 + 49] = (s[1] & 63) + ((s[5] & 48) << 2); out.scales[i * 12 + 50] = (s[2] & 63) + ((s[6] & 48) << 2); out.scales[i * 12 + 51] = (s[3] & 63) + ((s[7] & 48) << 2); out.scales[i * 12 + 52] = (m[0] & 63) + ((m[4] & 48) << 2); out.scales[i * 12 + 53] = (m[1] & 63) + ((m[5] & 48) << 2); out.scales[i * 12 + 54] = (m[2] & 63) + ((m[6] & 48) << 2); out.scales[i * 12 + 55] = (m[3] & 63) + ((m[7] & 48) << 2); out.scales[i * 12 + 56] = (s[4] & 15) + ((m[4] & 15) << 4); out.scales[i * 12 + 57] = (s[5] & 15) + ((m[5] & 15) << 4); out.scales[i * 12 + 58] = (s[6] & 15) + ((m[6] & 15) << 4); out.scales[i * 12 + 59] = (s[7] & 15) + ((m[7] & 15) << 4); } return out; } static int repack_q4_0_to_q4_0_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { GGML_ASSERT(t->type == GGML_TYPE_Q4_0); GGML_ASSERT(interleave_block == 4 || interleave_block == 8); constexpr int nrows_interleaved = 4; block_q4_0x4 * dst = (block_q4_0x4 *)t->data; const block_q4_0 * src = (const block_q4_0 *)data; block_q4_0 dst_tmp[4]; int nrow = ggml_nrows(t); int nblocks = t->ne[0] / QK4_0; GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_0)); if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) { return -1; } for (int b = 0; b < nrow; b += nrows_interleaved) { for (int64_t x = 0; x < nblocks; x++) { for (int i = 0; i < nrows_interleaved; i++) { dst_tmp[i] = src[x + i * nblocks]; } *dst++ = make_block_q4_0x4(dst_tmp, interleave_block); } src += nrows_interleaved * nblocks; } return 0; GGML_UNUSED(data_size); } static int repack_q4_K_to_q4_K_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { GGML_ASSERT(t->type == GGML_TYPE_Q4_K); GGML_ASSERT(interleave_block == 8); constexpr int nrows_interleaved = 8; block_q4_Kx8 * dst = (block_q4_Kx8*)t->data; const block_q4_K * src = (const block_q4_K*) data; block_q4_K dst_tmp[8]; int nrow = ggml_nrows(t); int nblocks = t->ne[0] / QK_K; GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_K)); if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) { return -1; } for (int b = 0; b < nrow; b += nrows_interleaved) { for (int64_t x = 0; x < nblocks; x++) { for (int i = 0; i < nrows_interleaved; i++ ) { dst_tmp[i] = src[x + i * nblocks]; } *dst++ = make_block_q4_Kx8(dst_tmp, interleave_block); } src += nrows_interleaved * nblocks; } return 0; GGML_UNUSED(data_size); } static int repack_q4_0_to_q4_0_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { GGML_ASSERT(t->type == GGML_TYPE_Q4_0); GGML_ASSERT(interleave_block == 8); constexpr int nrows_interleaved = 8; block_q4_0x8 * dst = (block_q4_0x8*)t->data; const block_q4_0 * src = (const block_q4_0*) data; block_q4_0 dst_tmp[8]; int nrow = ggml_nrows(t); int nblocks = t->ne[0] / QK4_0; GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_0)); if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) { return -1; } for (int b = 0; b < nrow; b += nrows_interleaved) { for (int64_t x = 0; x < nblocks; x++) { for (int i = 0; i < nrows_interleaved; i++ ) { dst_tmp[i] = src[x + i * nblocks]; } *dst++ = make_block_q4_0x8(dst_tmp, interleave_block); } src += nrows_interleaved * nblocks; } return 0; GGML_UNUSED(data_size); } static block_iq4_nlx4 make_block_iq4_nlx4(block_iq4_nl * in, unsigned int blck_size_interleave) { block_iq4_nlx4 out; for (int i = 0; i < 4; i++) { out.d[i] = in[i].d; } const int end = QK4_NL * 2 / blck_size_interleave; // TODO: this branch seems wrong //if (blck_size_interleave == 8) { // for (int i = 0; i < end; ++i) { // int src_id = i % 4; // int src_offset = (i / 4) * blck_size_interleave; // int dst_offset = i * blck_size_interleave; // // Using memcpy to avoid unaligned memory accesses // memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint64_t)); // } //} else if (blck_size_interleave == 4) { for (int i = 0; i < end; ++i) { int src_id = i % 4; int src_offset = (i / 4) * blck_size_interleave; int dst_offset = i * blck_size_interleave; memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint32_t)); } } else { GGML_ASSERT(false); } return out; } static int repack_iq4_nl_to_iq4_nl_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { GGML_ASSERT(t->type == GGML_TYPE_IQ4_NL); //GGML_ASSERT(interleave_block == 4 || interleave_block == 8); GGML_ASSERT(interleave_block == 4); block_iq4_nlx4 * dst = (block_iq4_nlx4 *)t->data; const block_iq4_nl * src = (const block_iq4_nl *)data; block_iq4_nl dst_tmp[4]; int nrow = ggml_nrows(t); int nrows_interleaved = 4; int nblocks = t->ne[0] / QK4_0; GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_iq4_nl)); if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) { return -1; } for (int b = 0; b < nrow; b += nrows_interleaved) { for (int64_t x = 0; x < nblocks; x++) { for (int i = 0; i < nrows_interleaved; i++) { dst_tmp[i] = src[x + i * nblocks]; } *dst++ = make_block_iq4_nlx4(dst_tmp, interleave_block); } src += nrows_interleaved * nblocks; } return 0; GGML_UNUSED(data_size); } namespace ggml::cpu::repack { // repack template int repack(struct ggml_tensor *, const void *, size_t); // TODO: generalise. template <> int repack(struct ggml_tensor * t, const void * data, size_t data_size) { return repack_q4_0_to_q4_0_4_bl(t, 4, data, data_size); } template <> int repack(struct ggml_tensor * t, const void * data, size_t data_size) { return repack_q4_0_to_q4_0_4_bl(t, 8, data, data_size); } template <> int repack(struct ggml_tensor * t, const void * data, size_t data_size) { return repack_q4_0_to_q4_0_8_bl(t, 8, data, data_size); } template <> int repack(struct ggml_tensor * t, const void * data, size_t data_size) { return repack_q4_K_to_q4_K_8_bl(t, 8, data, data_size); } template <> int repack(struct ggml_tensor * t, const void * data, size_t data_size) { return repack_iq4_nl_to_iq4_nl_4_bl(t, 4, data, data_size); } // TODO: needs to be revisited //template <> int repack(struct ggml_tensor * t, const void * data, size_t data_size) { // return repack_iq4_nl_to_iq4_nl_4_bl(t, 8, data, data_size); //} // gemv template void gemv(int, float *, size_t, const void *, const void *, int, int); template <> void gemv(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { ggml_gemv_q4_0_4x4_q8_0(n, s, bs, vx, vy, nr, nc); } template <> void gemv(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { ggml_gemv_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc); } template <> void gemv(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { ggml_gemv_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc); } template <> void gemv(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { ggml_gemv_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc); } template <> void gemv(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { ggml_gemv_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc); } // gemm template void gemm(int, float *, size_t, const void *, const void *, int, int); template <> void gemm(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { ggml_gemm_q4_0_4x4_q8_0(n, s, bs, vx, vy, nr, nc); } template <> void gemm(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { ggml_gemm_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc); } template <> void gemm(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { ggml_gemm_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc); } template <> void gemm(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { ggml_gemm_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc); } template <> void gemm(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { ggml_gemm_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc); } class tensor_traits_base : public ggml::cpu::tensor_traits { public: virtual int repack(struct ggml_tensor * t, const void * data, size_t data_size) = 0; }; template class tensor_traits : public tensor_traits_base { bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override { // not realy a GGML_TYPE_Q8_0 but same size. switch (op->op) { case GGML_OP_MUL_MAT: size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1])); return true; case GGML_OP_MUL_MAT_ID: size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1])); size = GGML_PAD(size, sizeof(int64_t)); // + padding for next bloc. size += sizeof(int64_t) * (1+op->src[0]->ne[2]) * op->src[1]->ne[2]; return true; default: // GGML_ABORT("fatal error"); break; } return false; } bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op) override { switch (op->op) { case GGML_OP_MUL_MAT: forward_mul_mat(params, op); return true; case GGML_OP_MUL_MAT_ID: forward_mul_mat_id(params, op); return true; default: // GGML_ABORT("fatal error"); break; } return false; } void forward_mul_mat(ggml_compute_params * params, ggml_tensor * op) { const ggml_tensor * src0 = op->src[0]; const ggml_tensor * src1 = op->src[1]; ggml_tensor * dst = op; GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; GGML_ASSERT(ne0 == ne01); GGML_ASSERT(ne1 == ne11); GGML_ASSERT(ne2 == ne12); GGML_ASSERT(ne3 == ne13); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT(ggml_n_dims(op->src[0]) == 2); // GGML_ASSERT(ggml_n_dims(op->src[1]) == 2); char * wdata = static_cast(params->wdata); const size_t nbw1 = ggml_row_size(PARAM_TYPE, ne10); assert(params->wsize >= nbw1 * ne11); const ggml_from_float_t from_float = ggml_get_type_traits_cpu(PARAM_TYPE)->from_float; int64_t i11_processed = 0; for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) { ggml_quantize_mat_t((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), 4, ne10); } i11_processed = ne11 - ne11 % 4; for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) { from_float((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), ne10); } ggml_barrier(params->threadpool); const void * src1_wdata = params->wdata; const size_t src1_col_stride = ggml_row_size(PARAM_TYPE, ne10); int64_t src0_start = (ith * ne01) / nth; int64_t src0_end = ((ith + 1) * ne01) / nth; src0_start = (src0_start % NB_COLS) ? src0_start + NB_COLS - (src0_start % NB_COLS) : src0_start; src0_end = (src0_end % NB_COLS) ? src0_end + NB_COLS - (src0_end % NB_COLS) : src0_end; if (src0_start >= src0_end) { return; } // If there are more than three rows in src1, use gemm; otherwise, use gemv. if (ne11 > 3) { gemm(ne00, (float *) ((char *) dst->data) + src0_start, ne01, (const char *) src0->data + src0_start * nb01, (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start); } for (int iter = ne11 - ne11 % 4; iter < ne11; iter++) { gemv(ne00, (float *) ((char *) dst->data + (iter * nb1)) + src0_start, ne01, (const char *) src0->data + src0_start * nb01, (const char *) src1_wdata + (src1_col_stride * iter), 1, src0_end - src0_start); } } void forward_mul_mat_id(ggml_compute_params * params, ggml_tensor * op) { const ggml_tensor * src0 = op->src[0]; const ggml_tensor * src1 = op->src[1]; const ggml_tensor * ids = op->src[2]; ggml_tensor * dst = op; GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; const ggml_from_float_t from_float = ggml_get_type_traits_cpu(PARAM_TYPE)->from_float; // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == ggml_type_size(src0->type)); GGML_ASSERT(nb10 == ggml_type_size(src1->type)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); GGML_ASSERT(ne03 == 1); GGML_ASSERT(ne13 == 1); GGML_ASSERT(ne3 == 1); GGML_ASSERT(src1->type == GGML_TYPE_F32); // row groups const int n_ids = ids->ne[0]; // n_expert_used const int n_as = ne02; // n_expert const size_t nbw1 = ggml_row_size(PARAM_TYPE, ne10); const size_t nbw2 = nbw1*ne11; const size_t nbw3 = nbw2*ne12; struct mmid_row_mapping { int32_t i1; int32_t i2; }; GGML_ASSERT(params->wsize >= (GGML_PAD(nbw3, sizeof(int64_t)) + n_as * sizeof(int64_t) + n_as * ne12 * sizeof(mmid_row_mapping))); auto * wdata = (char *) params->wdata; auto * wdata_src1_end = (char *) wdata + GGML_PAD(nbw3, sizeof(int64_t)); auto * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as] struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *) (matrix_row_counts + n_as); // [n_as][ne12] // src1: float32 => param type for (int64_t i12 = 0; i12 < ne12; ++i12) { for (int64_t i11 = ith; i11 < ne11; i11 += nth) { from_float((float *)((char *) src1->data + i12 * nb12 + i11 * nb11), (void *) (wdata + i12 * nbw2 + i11 * nbw1), ne10); } } #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id) * ne12 + (i1)] if (ith == 0) { // initialize matrix_row_counts memset(matrix_row_counts, 0, n_as * sizeof(int64_t)); // group rows by src0 matrix for (int32_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) { for (int32_t id = 0; id < n_ids; ++id) { const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1 * ids->nb[1] + id * ids->nb[0]); GGML_ASSERT(i02 >= 0 && i02 < n_as); MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = { id, iid1 }; matrix_row_counts[i02] += 1; } } } ggml_barrier(params->threadpool); // compute each matrix multiplication in sequence for (int cur_a = 0; cur_a < n_as; ++cur_a) { const int64_t cne1 = matrix_row_counts[cur_a]; if (cne1 == 0) { continue; } const auto * src0_cur = (const char *) src0->data + cur_a*nb02; //const int64_t nr0 = ne01; // src0 rows const int64_t nr1 = cne1; // src1 rows int64_t src0_cur_start = (ith * ne01) / nth; int64_t src0_cur_end = ((ith + 1) * ne01) / nth; src0_cur_start = (src0_cur_start % NB_COLS) ? src0_cur_start + NB_COLS - (src0_cur_start % NB_COLS) : src0_cur_start; src0_cur_end = (src0_cur_end % NB_COLS) ? src0_cur_end + NB_COLS - (src0_cur_end % NB_COLS) : src0_cur_end; if (src0_cur_start >= src0_cur_end) { return; } for (int ir1 = 0; ir1 < nr1; ir1++) { struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1); const int id = row_mapping.i1; // selected expert index const int64_t i11 = id % ne11; const int64_t i12 = row_mapping.i2; // row index in src1 const int64_t i1 = id; // selected expert index const int64_t i2 = i12; // row const auto * src1_col = (const char *) wdata + (i11 * nbw1 + i12 * nbw2); gemv(ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01, src0_cur + src0_cur_start * nb01, src1_col, 1, src0_cur_end - src0_cur_start); } } #undef MMID_MATRIX_ROW } int repack(struct ggml_tensor * t, const void * data, size_t data_size) override { GGML_LOG_DEBUG("%s: repack tensor %s with %s_%dx%d\n", __func__, t->name, ggml_type_name(t->type), (int) NB_COLS, (int) INTER_SIZE); return ggml::cpu::repack::repack(t, data, data_size); } }; // instance for Q4 static const tensor_traits q4_0_4x4_q8_0; static const tensor_traits q4_0_4x8_q8_0; static const tensor_traits q4_0_8x8_q8_0; static const tensor_traits q4_K_8x8_q8_K; // instance for IQ4 static const tensor_traits iq4_nl_4x4_q8_0; } // namespace ggml::cpu::repack static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(const struct ggml_tensor * cur) { if (cur->type == GGML_TYPE_Q4_0) { if (ggml_cpu_has_avx2() || (ggml_cpu_has_sve() && ggml_cpu_has_matmul_int8() && ggml_cpu_get_sve_cnt() == QK8_0)) { if (cur->ne[1] % 8 == 0) { return &ggml::cpu::repack::q4_0_8x8_q8_0; } } if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) { if (cur->ne[1] % 4 == 0) { return &ggml::cpu::repack::q4_0_4x8_q8_0; } } if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) { if (cur->ne[1] % 4 == 0) { return &ggml::cpu::repack::q4_0_4x4_q8_0; } } } else if (cur->type == GGML_TYPE_Q4_K) { if (ggml_cpu_has_avx2()) { if (cur->ne[1] % 8 == 0) { return &ggml::cpu::repack::q4_K_8x8_q8_K; } } } else if (cur->type == GGML_TYPE_IQ4_NL) { if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) { if (cur->ne[1] % 4 == 0) { return &ggml::cpu::repack::iq4_nl_4x4_q8_0; } } } return nullptr; } static enum ggml_status ggml_backend_cpu_repack_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { tensor->extra = (void *) const_cast(ggml_repack_get_optimal_repack_type(tensor)); GGML_UNUSED(buffer); return GGML_STATUS_SUCCESS; } static void ggml_backend_cpu_repack_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { GGML_ASSERT(offset == 0); GGML_ASSERT(size == ggml_nbytes(tensor)); auto tensor_traits = (ggml::cpu::repack::tensor_traits_base *) tensor->extra; auto OK = tensor_traits->repack(tensor, data, size); GGML_ASSERT(OK == 0); GGML_UNUSED(buffer); } static const char * ggml_backend_cpu_repack_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return "CPU_REPACK"; GGML_UNUSED(buft); } static ggml_backend_buffer_t ggml_backend_cpu_repack_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size); if (buffer == nullptr) { return nullptr; } buffer->buft = buft; buffer->iface.init_tensor = ggml_backend_cpu_repack_buffer_init_tensor; buffer->iface.set_tensor = ggml_backend_cpu_repack_buffer_set_tensor; buffer->iface.get_tensor = nullptr; buffer->iface.cpy_tensor = nullptr; return buffer; } static size_t ggml_backend_cpu_repack_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return TENSOR_ALIGNMENT; GGML_UNUSED(buft); } namespace ggml::cpu::repack { class extra_buffer_type : ggml::cpu::extra_buffer_type { bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override { if ( op->op == GGML_OP_MUL_MAT && op->src[0]->buffer && (ggml_n_dims(op->src[0]) == 2) && op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type() && ggml_repack_get_optimal_repack_type(op->src[0]) ) { if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) { return false; } if (op->src[1]->type == GGML_TYPE_F32) { return true; } //if (op->src[1]->type == GGML_TYPE_Q8_0) { // return true; //} // may be possible if Q8_0 packed... } else if (op->op == GGML_OP_MUL_MAT_ID && op->src[0]->buffer && (ggml_n_dims(op->src[0]) == 3) && op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type() && ggml_repack_get_optimal_repack_type(op->src[0]) ) { if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) { return false; } if (op->src[1]->type == GGML_TYPE_F32) { return true; } //if (op->src[1]->type == GGML_TYPE_Q8_0) { // return true; //} } return false; } ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override { if (op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_MUL_MAT_ID) { if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type()) { return (ggml::cpu::tensor_traits *) op->src[0]->extra; } } return nullptr; } }; } // namespace ggml::cpu::repack ggml_backend_buffer_type_t ggml_backend_cpu_repack_buffer_type(void) { static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_repack = { /* .iface = */ { /* .get_name = */ ggml_backend_cpu_repack_buffer_type_get_name, /* .alloc_buffer = */ ggml_backend_cpu_repack_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_cpu_repack_buffer_type_get_alignment, /* .get_max_size = */ nullptr, // defaults to SIZE_MAX /* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes /* .is_host = */ nullptr, }, /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0), /* .context = */ new ggml::cpu::repack::extra_buffer_type(), }; return &ggml_backend_cpu_buffer_type_repack; }