#include "arg.h" #include "common.h" #include "log.h" #include "llama.h" #include "gguf.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif static void print_usage(int, char ** argv) { LOG("\nexample usage:\n"); LOG("\n %s \\\n" " -m model.gguf -f some-text.txt [-o imatrix.gguf] [--no-ppl] \\\n" " [--process-output] [--chunk 123] [--save-frequency 0] [--output-frequency 10] \\\n" " [--in-file imatrix-prev-0.gguf --in-file imatrix-prev-1.gguf ...] [--parse-special] \\\n" " [--show-statistics] [...]\n" , argv[0]); LOG("\n"); } static const char * const LLM_KV_IMATRIX_DATASETS = "imatrix.datasets"; static const char * const LLM_KV_IMATRIX_CHUNK_COUNT = "imatrix.chunk_count"; static const char * const LLM_KV_IMATRIX_CHUNK_SIZE = "imatrix.chunk_size"; struct Stats { std::vector values; std::vector counts; }; struct tensor_statistics { std::string tensor; Stats stats; float total_sqract = 0.0f; float mean_sqract = 0.0f; float max_sqract = 0.0f; float min_sqract = 0.0f; int elements = 0; float stddev = 0.0f; float active = 0.0f; float entropy = 0.0f; float zd = 0.0f; float cossim = 0.0f; }; class IMatrixCollector { public: IMatrixCollector() = default; void set_params(common_params params) { m_params = std::move(params); } bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data); void save_imatrix_legacy(int32_t ncall = -1) const; void save_imatrix(int32_t n_chunk = -1) const; bool load_imatrix_legacy(const char * fname); bool load_imatrix(const char * file_name); const std::unordered_map & get_mstats() const { return m_stats; } private: std::unordered_map m_stats; common_params m_params; std::mutex m_mutex; std::vector m_datasets; int32_t m_last_chunk = 0; std::vector m_src1_data; std::vector m_ids; // the expert ids from ggml_mul_mat_id }; // remove any prefix and suffixes from the name // CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight static std::string filter_tensor_name(const char * name) { std::string wname; const char * p = strchr(name, '#'); if (p != NULL) { p = p + 1; const char * q = strchr(p, '#'); if (q != NULL) { wname = std::string(p, q - p); } else { wname = p; } } else { wname = name; } return wname; } static void process_tensor_name(const std::string & input, std::string & layer, std::string & tensor) { std::vector name; std::istringstream stream(input); std::string item; while (std::getline(stream, item, '.')) { name.push_back(item); } for (size_t i = 0; i < name.size(); ++i) { if (name[i] == "blk" && i + 1 < name.size()) { layer = name[i + 1]; break; } } for (size_t i = 0; i < name.size(); ++i) { if (name[i] == "weight" && i > 0) { tensor = name[i - 1]; break; } } if (tensor.empty()) { tensor = input; } if (layer.empty()) { layer = "-"; } } static void compute_statistics(std::vector & tstats, const std::string & name, const Stats & e) { if (e.values.size() % e.counts.size() != 0) { LOG_ERR("%s: activation size mismatch for tensor %s (%zu vs %zu)\n", __func__, name.c_str(), e.counts.size(), e.values.size()); return; } if (e.counts.empty()) { LOG_ERR("%s: there are no activations for tensor %s. The imatrix may be suboptimal\n", __func__, name.c_str()); return; } const int n_mat = e.counts.size(); const int row_size = e.values.size() / n_mat; std::vector activations; activations.reserve(e.values.size()); for (int i = 0; i < n_mat; ++i) { for (int j = 0; j < row_size; ++j) { activations.push_back(e.values[i*row_size + j] / e.counts[i]); } } const float act_total = std::accumulate(activations.begin(), activations.end(), 0.0f); const float act_max = *std::max_element(activations.begin(), activations.end()); const float act_min = *std::min_element(activations.begin(), activations.end()); const float act_mean = act_total / activations.size(); const float act_sqr_total = std::inner_product(activations.begin(), activations.end(), activations.begin(), 0.0f); const float act_var = (act_sqr_total / activations.size()) - (act_mean * act_mean); const float act_dev = std::sqrt(std::max(0.0f, act_var)); float threshold = 1e-5f; const int inactive_count = std::count_if(activations.begin(), activations.end(), [threshold](const float v) { return fabsf(v) <= threshold; }); const float active_ratio = 1 - static_cast(inactive_count) / activations.size(); float entropy = 0; if (act_total > 0) { for (const auto act : activations) { if (const float p = act / act_total; p > 0) { entropy -= p * std::log2(p); } } } int z_score = 0; if (act_dev > 0.0f) { for (const auto act : activations) { if (const float p = (act - act_mean) / act_dev; p > 1) { z_score++; } } } auto & ts = tstats.emplace_back(); ts.tensor = name; ts.stats = e; ts.total_sqract = act_total; ts.mean_sqract = act_mean; ts.max_sqract = act_max; ts.min_sqract = act_min; ts.elements = static_cast(activations.size()); ts.stddev = act_dev; ts.active = active_ratio; ts.entropy = entropy; ts.zd = static_cast(z_score) / ts.elements; } static void compute_cossim(std::vector & tstats) { static const std::regex pattern(R"(blk\.(\d+)\.)"); for (auto & ts : tstats) { if (std::smatch match; std::regex_search(ts.tensor, match, pattern)) { const int blk = std::stoi(match[1]); std::string tname(ts.tensor); tname.replace(match.position(1), match.length(1), std::to_string(blk-1)); auto prev = std::find_if(tstats.begin(), tstats.end(), [tname](const tensor_statistics & t) { return t.tensor == tname; }); if (prev != tstats.end()) { const float dp = std::inner_product(ts.stats.values.begin(), ts.stats.values.end(), prev->stats.values.begin(), 0.0f); const float curr_mag = std::sqrt(std::inner_product(ts.stats.values.begin(), ts.stats.values.end(), ts.stats.values.begin(), 0.0f)); const float prev_mag = std::sqrt(std::inner_product(prev->stats.values.begin(), prev->stats.values.end(), prev->stats.values.begin(), 0.0f)); const float cs = dp / (curr_mag * prev_mag); ts.cossim = cs; } } else { ts.cossim = 0; } } } bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) { GGML_UNUSED(user_data); const struct ggml_tensor * src0 = t->src[0]; const struct ggml_tensor * src1 = t->src[1]; std::string wname = filter_tensor_name(src0->name); const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel; // when ask is true, the scheduler wants to know if we are interested in data from this tensor // if we return true, a follow-up call will be made with ask=false in which we can do the actual collection if (ask) { if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications if (t->op != GGML_OP_MUL_MAT) return false; // why are small batches ignored (<16 tokens)? if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false; if (!(wname.substr(0, 4) == "blk." || (m_params.process_output && wname == "output.weight"))) return false; return true; } std::lock_guard lock(m_mutex); // copy the data from the GPU memory if needed const bool is_host = ggml_backend_buffer_is_host(src1->buffer); if (!is_host) { const size_t src1_nbytes = ggml_nbytes(src1); m_src1_data.resize(src1_nbytes); ggml_backend_tensor_get(src1, m_src1_data.data(), 0, src1_nbytes); } const char * data = is_host ? (const char *) src1->data : m_src1_data.data(); GGML_ASSERT(src1->nb[0] == ggml_element_size(src1)); // TODO: 4d? (is that even used in practice?) // the extra dimension would need to be stored somewhere to be reflected in the imatrix file if (ggml_nrows(src1) != src1->ne[1] * src1->ne[2]) { LOG_ERR("%s: tensor has more than 3 dimensions: %s", __func__, wname.c_str()); GGML_ASSERT(false); } // this has been adapted to the new format of storing merged experts in a single 3d tensor // ref: https://github.com/ggml-org/llama.cpp/pull/6387 if (t->op == GGML_OP_MUL_MAT_ID) { // ids -> [n_experts_used, n_tokens] // src1 -> [cols, n_expert_used, n_tokens] const ggml_tensor * ids = t->src[2]; const int64_t n_as = src0->ne[2]; const int64_t n_ids = ids->ne[0]; // the top-k selected expert ids are stored in the ids tensor // for simplicity, always copy ids to host, because it is small // take into account that ids is not contiguous! GGML_ASSERT(ids->ne[1] == src1->ne[2]); m_ids.resize(ggml_nbytes(ids)); ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids)); auto & e = m_stats[wname]; if (e.counts.size() == 1 && n_as > 1) { // broadcast, when loading an old imatrix e.counts.resize(n_as, e.counts[0]); } if (e.values.empty()) { e.values.resize(src1->ne[0]*n_as, 0); e.counts.resize(n_as, 0); } else if (e.values.size() != (size_t)src1->ne[0]*n_as) { LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)(src1->ne[0]*n_as)); exit(1); //GGML_ABORT("fatal error"); } else if (e.counts.size() != (size_t)n_as) { LOG_ERR("%s: inconsistent expert count for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.counts.size(), (int)n_as); exit(1); //GGML_ABORT("fatal error"); } LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type); // loop over all possible experts, regardless if they are used or not in the batch for (int64_t ex = 0; ex < n_as; ++ex) { size_t e_start = ex*src1->ne[0]; for (int64_t idx = 0; idx < n_ids; ++idx) { for (int64_t row = 0; row < src1->ne[2]; ++row) { const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]); GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check if (excur != ex) continue; const int64_t i11 = idx % src1->ne[1]; const int64_t i12 = row; const float * x = (const float *)(data + i11*src1->nb[1] + i12*src1->nb[2]); e.counts[ex]++; for (int64_t j = 0; j < src1->ne[0]; ++j) { e.values[e_start + j] += x[j] * x[j]; if (!std::isfinite((float)e.values[e_start + j])) { LOG_ERR("%f detected in %s\n", (float)e.values[e_start + j], wname.c_str()); exit(1); } } } } const int32_t n_chunk = e.counts[ex] / chunk_size; if (n_chunk > m_last_chunk) { const int32_t chunk_step = n_chunk - m_last_chunk; m_last_chunk = n_chunk; if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) { save_imatrix(); } if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) { save_imatrix(m_last_chunk); } } } } else { auto & e = m_stats[wname]; const int64_t n_mat = src1->ne[2] * src1->ne[3]; if (e.values.empty()) { e.values.resize(src1->ne[0] * n_mat, 0); e.counts.resize(n_mat, 0); } else if (e.values.size() != (size_t)(src1->ne[0] * n_mat)) { LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)(src1->ne[0] * n_mat)); exit(1); //GGML_ABORT("fatal error"); } else if (e.counts.size() != (size_t)n_mat) { LOG_ERR("%s: inconsistent expert count for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.counts.size(), (int)n_mat); exit(1); //GGML_ABORT("fatal error"); } LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->ne[2], (int)src1->type); for (int64_t i3 = 0; i3 < src1->ne[3]; ++i3) { for (int64_t i2 = 0; i2 < src1->ne[2]; ++i2) { const int64_t mat_id = i3 * src1->ne[2] + i2; const int64_t mat_start = mat_id * src1->ne[0]; for (int64_t row = 0; row < src1->ne[1]; ++row) { const float * x = (const float *) (data + row * src1->nb[1] + i2 * src1->nb[2] + i3 * src1->ne[3]); e.counts[mat_id]++; for (int64_t j = 0; j < src1->ne[0]; ++j) { e.values[mat_start + j] += x[j] * x[j]; if (!std::isfinite((float)e.values[j])) { LOG_ERR("%f detected in %s\n", (float)e.values[j], wname.c_str()); exit(1); } } } const int32_t n_chunk = e.counts[mat_id] / chunk_size; if (n_chunk > m_last_chunk) { const int32_t chunk_step = n_chunk - m_last_chunk; m_last_chunk = n_chunk; if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) { save_imatrix(); } if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) { save_imatrix(m_last_chunk); } } } } } return true; } void IMatrixCollector::save_imatrix_legacy(int32_t ncall) const { auto fname = m_params.out_file; if (ncall > 0) { fname += ".at_"; fname += std::to_string(ncall); } // warn when writing imatrix entries that do not have full data // this can happen with MoE models where some of the experts end up not being exercised by the provided training data int n_entries = 0; std::vector to_store; bool is_first = true; // for printing for (const auto & kv : m_stats) { const int n_all = kv.second.counts.size(); if (n_all == 0) { continue; } int n_zeros = 0; for (const int c : kv.second.counts) { if (c == 0) { n_zeros++; } } if (n_zeros != 0 && is_first) { LOG_INF("\n"); is_first = false; } if (n_zeros == n_all) { LOG_WRN("%s: entry '%40s' has no data - skipping\n", __func__, kv.first.c_str()); continue; } if (n_zeros > 0) { LOG_WRN("%s: entry '%40s' has partial data (%.2f%%)\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all); } n_entries++; to_store.push_back(kv.first); } if (to_store.size() < m_stats.size()) { LOG_WRN("%s: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size()); } // deterministic tensor name order std::sort(to_store.begin(), to_store.end()); const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel; std::ofstream out(fname, std::ios::binary); out.write((const char *) &n_entries, sizeof(n_entries)); for (const auto & name : to_store) { const auto & stat = m_stats.at(name); const int32_t len = name.size(); out.write((const char *) &len, sizeof(len)); out.write(name.c_str(), len); // ceiling division to avoid accidental zeros const int32_t ncall = (*std::max_element(stat.counts.begin(), stat.counts.end()) + (chunk_size - 1)) / chunk_size; out.write((const char *) &ncall, sizeof(ncall)); const int32_t nval = stat.values.size(); const int32_t nmat = stat.counts.size(); out.write((const char *) &nval, sizeof(nval)); if (nval > 0 && nmat > 0) { std::vector tmp(nval); for (int32_t i = 0; i < nval; i++) { float count = static_cast(stat.counts[i / (nval / nmat)]); float value = stat.values[i]; if (count == 0.0f) { // store 1 for partial data value = 1.0f; count = 1.0f; } tmp[i] = (value / count) * static_cast(ncall); } out.write((const char *) tmp.data(), nval * sizeof(float)); } } // Write the number of call the matrix was computed with out.write((const char *) &m_last_chunk, sizeof(m_last_chunk)); // Write the input filename at the end of the file to later on specify it in quantize { const char * dataset_file = m_params.prompt_file.c_str(); int32_t len = m_params.prompt_file.size(); // When there is no prompt but there were other imatrix files loaded, use the last dataset if (m_params.prompt_file.empty() && !m_datasets.empty()) { const std::string & dataset_str = m_datasets[m_datasets.size() - 1]; dataset_file = dataset_str.c_str(); len = dataset_str.size(); } out.write((const char *) &len, sizeof(len)); out.write(dataset_file, len); } LOGV(1, "\n"); LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_chunk, fname.c_str()); } void IMatrixCollector::save_imatrix(int32_t n_chunk) const { auto fname = m_params.out_file; // TODO: use the new format in more cases if (!string_ends_with(fname, ".gguf")) { LOG_WRN("\n%s: saving to legacy imatrix format because output suffix is not .gguf\n", __func__); this->save_imatrix_legacy(n_chunk); return; } if (n_chunk > 0) { fname += ".at_"; fname += std::to_string(n_chunk); } // write imatrix entries even if they don't have full data. (can be corrected when reading) // this can happen with MoE models where some of the experts end up not being exercised by the provided training data std::vector to_store; size_t data_size = 0; bool is_first = true; // for printing for (const auto & kv : m_stats) { const int n_all = kv.second.counts.size(); int n_zeros = 0; for (const auto c : kv.second.counts) { if (c == 0) { n_zeros++; } } if (n_zeros != 0 && is_first) { LOG_INF("\n"); is_first = false; } if (n_zeros > 0) { LOG_WRN("%s: entry '%40s' has partial data (%.2f%%)\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all); } to_store.push_back(kv.first); data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.values.size(), GGML_MEM_ALIGN); data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.counts.size(), GGML_MEM_ALIGN); } // deterministic tensor name order std::sort(to_store.begin(), to_store.end()); struct ggml_init_params params = { /* .mem_size = */ data_size, /* .mem_buffer = */ NULL, /* .no_alloc = */ false, }; struct ggml_context * ctx = ggml_init(params); struct gguf_context * ctx_gguf = gguf_init_empty(); { std::vector datasets; datasets.reserve(m_datasets.size() + 1); for (size_t i = 0; i < m_datasets.size(); ++i) { datasets.push_back(m_datasets[i].c_str()); } if (!m_params.prompt_file.empty()) { datasets.push_back(m_params.prompt_file.c_str()); } gguf_set_val_str(ctx_gguf, "general.type", "imatrix"); // Write the dataset paths gguf_set_arr_str(ctx_gguf, LLM_KV_IMATRIX_DATASETS, datasets.data(), datasets.size()); // Write the number of chunks the matrix was computed with gguf_set_val_u32(ctx_gguf, LLM_KV_IMATRIX_CHUNK_COUNT, m_last_chunk); gguf_set_val_u32(ctx_gguf, LLM_KV_IMATRIX_CHUNK_SIZE, m_params.n_ctx / m_params.n_parallel); } for (const auto & name : to_store) { const auto & stat = m_stats.at(name); const int32_t nval = (int32_t) stat.values.size(); const int32_t nmat = (int32_t) stat.counts.size(); if (nval > 0 && nmat > 0) { struct ggml_tensor * in_sum2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nval / nmat, nmat); struct ggml_tensor * counts = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, nmat); ggml_format_name(in_sum2, "%s.in_sum2", name.c_str()); ggml_format_name(counts, "%s.counts", name.c_str()); for (int32_t j = 0; j < nval; ++j) { ((float *) in_sum2->data)[j] = (float) stat.values[j]; } for (int32_t j = 0; j < nmat; ++j) { ((float *) counts->data)[j] = (float) stat.counts[j]; } gguf_add_tensor(ctx_gguf, in_sum2); gguf_add_tensor(ctx_gguf, counts); } } gguf_write_to_file(ctx_gguf, fname.c_str(), false); LOGV(1, "\n"); LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_chunk, fname.c_str()); gguf_free(ctx_gguf); ggml_free(ctx); } bool IMatrixCollector::load_imatrix_legacy(const char * fname) { std::ifstream in(fname, std::ios::binary); if (!in) { LOG_ERR("%s: failed to open %s\n", __func__, fname); return false; } int n_entries; in.read((char *) &n_entries, sizeof(n_entries)); if (in.fail() || n_entries < 1) { LOG_ERR("%s: no data in file %s\n", __func__, fname); return false; } // Guess the chunk size because it's not stored in the file const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel; for (int i = 0; i < n_entries; ++i) { int32_t len = 0; in.read((char *) &len, sizeof(len)); std::vector name_as_vec(len + 1); in.read((char *) name_as_vec.data(), len); if (in.fail()) { LOG_ERR("%s: failed reading name for entry %d from %s\n", __func__, i + 1, fname); return false; } name_as_vec[len] = 0; std::string name{ name_as_vec.data() }; auto & e = m_stats[std::move(name)]; int32_t ncall = 0; in.read((char *) &ncall, sizeof(ncall)); int32_t nval = 0; in.read((char *) &nval, sizeof(nval)); if (in.fail() || nval < 1) { LOG_ERR("%s: failed reading number of values for entry %d\n", __func__, i); m_stats = {}; return false; } if (e.values.empty()) { e.values.resize(nval, 0.0f); e.counts.resize(1, 0); } std::vector tmp(nval); in.read((char *) tmp.data(), nval * sizeof(float)); if (in.fail()) { LOG_ERR("%s: failed reading data for entry %d\n", __func__, i); m_stats = {}; return false; } // Recreate the state as expected by save_imatrix(), and correct for weighted sum. for (int i = 0; i < nval; i++) { e.values[i] += tmp[i] * chunk_size; } // The legacy format doesn't distinguish the counts for different experts for (size_t j = 0; j < e.counts.size(); ++j) { e.counts[j] += ncall * chunk_size; } } { // TODO: extract into its own method; this is also used by the GGUF-based format // Calculate the last chunk count int64_t max_count = 0; for (const auto & stats : m_stats) { for (int64_t count : stats.second.counts) { if (count > max_count) { max_count = count; } } } m_last_chunk = max_count / (chunk_size); } { // Read the number of calls the matrix was computed with int32_t n_calls; in.read((char *) &n_calls, sizeof(n_calls)); // ignore it because it's not important } // Read the dataset path to include it when writing to GGUF if (!in.fail()){ int32_t len = 0; in.read((char *) &len, sizeof(len)); if (!in.fail()) { std::vector dataset; dataset.resize(len + 1, 0); in.read(dataset.data(), len); if (!in.fail()) { m_datasets.push_back(dataset.data()); } } } return true; } // Using GGUF as the file format, for greater extensibility bool IMatrixCollector::load_imatrix(const char * file_name) { struct ggml_context * ctx = nullptr; struct gguf_init_params meta_gguf_params = { /* .no_alloc = */ false, // the data is needed /* .ctx = */ &ctx, }; struct gguf_context * ctx_gguf = gguf_init_from_file(file_name, meta_gguf_params); if (!ctx_gguf) { return this->load_imatrix_legacy(file_name); } const int32_t n_entries = gguf_get_n_tensors(ctx_gguf); if (n_entries < 1) { LOG_ERR("%s: no data in file %s\n", __func__, file_name); gguf_free(ctx_gguf); ggml_free(ctx); return false; } const int64_t datasets_key = gguf_find_key(ctx_gguf, LLM_KV_IMATRIX_DATASETS); if (datasets_key != -1 && gguf_get_arr_type(ctx_gguf, datasets_key) == GGUF_TYPE_STRING) { const int64_t n = gguf_get_arr_n(ctx_gguf, datasets_key); m_datasets.reserve(m_datasets.size() + n); for (int64_t i = 0; i < n; ++i) { m_datasets.push_back(gguf_get_arr_str(ctx_gguf, datasets_key, i)); } } const std::string in_sum2_suffix{ ".in_sum2" }; const std::string counts_suffix{ ".counts" }; // Could re-use m_stats instead, but this allows // checking for completeness of *each* loaded imatrix file // and also makes it easier to re-use a similar implementation in quantize.cpp // Using an ordered map to get a deterministic iteration order. std::map> sums_counts_for; for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { std::string name = cur->name; if (name.empty()) { continue; } if (string_remove_suffix(name, in_sum2_suffix)) { // in_sum2 sums_counts_for[std::move(name)].first = cur; } else if (string_remove_suffix(name, counts_suffix)) { // counts sums_counts_for[std::move(name)].second = cur; } else { // ignore other tensors } } for (const auto & sc : sums_counts_for) { const std::string & name = sc.first; const struct ggml_tensor * in_sum2 = sc.second.first; const struct ggml_tensor * counts = sc.second.second; if (!in_sum2 || !counts) { LOG_ERR("%s: mismatched sums and counts for %s\n", __func__, name.c_str()); gguf_free(ctx_gguf); ggml_free(ctx); return false; } auto & e = m_stats[name]; int64_t nval = ggml_nelements(in_sum2); if (e.values.empty()) { e.values.resize(nval, 0.0f); } else if ((size_t) nval != e.values.size()) { LOG_ERR("%s: mismatched sums size for %s: %zu != %zu\n", __func__, name.c_str(), (size_t) nval, e.values.size()); gguf_free(ctx_gguf); ggml_free(ctx); return false; } int64_t ncounts = ggml_nelements(counts); if (e.counts.empty()) { e.counts.resize(ncounts, 0); } else if (e.counts.size() == 1 && ncounts > 1) { // broadcast, when loading an old imatrix e.counts.resize(ncounts, e.counts[0]); } else if ((size_t) ncounts != e.counts.size()) { LOG_ERR("%s: mismatched counts size for %s: %zu != %zu\n", __func__, name.c_str(), (size_t) ncounts, e.counts.size()); gguf_free(ctx_gguf); ggml_free(ctx); return false; } // Recreate the state as expected by save_imatrix() for (int64_t j = 0; j < nval; j++) { e.values[j] += ((const float *) in_sum2->data)[j]; } for (int64_t j = 0; j < ncounts; j++) { e.counts[j] += std::lround(((const float *) counts->data)[j]); } } // TODO: extract into its own method; this is also used by the legacy format // Calculate the last chunk count int64_t max_count = 0; for (const auto & stats : m_stats) { for (int64_t count : stats.second.counts) { if (count > max_count) { max_count = count; } } } m_last_chunk = max_count / (m_params.n_ctx / m_params.n_parallel); gguf_free(ctx_gguf); ggml_free(ctx); return true; } static IMatrixCollector g_collector; static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) { return g_collector.collect_imatrix(t, ask, user_data); } struct results_log_softmax { double log_softmax; float logit; float prob; }; static std::vector softmax(const std::vector & logits) { std::vector probs(logits.size()); float max_logit = logits[0]; for (float v : logits) { max_logit = std::max(max_logit, v); } double sum_exp = 0.0; for (size_t i = 0; i < logits.size(); i++) { // Subtract the maximum logit value from the current logit value for numerical stability const float logit = logits[i] - max_logit; const float exp_logit = expf(logit); sum_exp += exp_logit; probs[i] = exp_logit; } for (size_t i = 0; i < probs.size(); i++) { probs[i] /= sum_exp; } return probs; } static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) { float max_logit = logits[0]; for (int i = 1; i < n_vocab; ++i) { max_logit = std::max(max_logit, logits[i]); } double sum_exp = 0.0; for (int i = 0; i < n_vocab; ++i) { sum_exp += expf(logits[i] - max_logit); } return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp}; } static void process_logits( int n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, double & nll, double & nll2, float * logit_history, float * prob_history) { std::mutex mutex; int counter = 0; auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () { double local_nll = 0; double local_nll2 = 0; while (true) { std::unique_lock lock(mutex); int i = counter++; if (i >= n_token) { nll += local_nll; nll2 += local_nll2; break; } lock.unlock(); const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]); const double v = -results.log_softmax; local_nll += v; local_nll2 += v*v; logit_history[i] = results.logit; prob_history[i] = results.prob; } }; for (auto & w : workers) { w = std::thread(compute); } compute(); for (auto & w : workers) { w.join(); } } static bool compute_imatrix(llama_context * ctx, const common_params & params, const int32_t n_ctx) { const llama_model * model = llama_get_model(ctx); const llama_vocab * vocab = llama_model_get_vocab(model); const bool add_bos = llama_vocab_get_add_bos(vocab); GGML_ASSERT(!llama_vocab_get_add_eos(vocab)); auto tim1 = std::chrono::high_resolution_clock::now(); LOG_INF("%s: tokenizing the input ..\n", __func__); std::vector tokens = common_tokenize(ctx, params.prompt, true, params.parse_special); auto tim2 = std::chrono::high_resolution_clock::now(); LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast(tim2-tim1).count()); if (params.i_chunk > 0) { if (size_t((params.i_chunk + 2)*n_ctx) >= tokens.size()) { LOG_ERR("%s: there will be not enough tokens left after removing %d chunks\n", __func__, params.i_chunk); return false; } LOG_INF("%s: removing initial %d chunks (%d tokens)\n", __func__, params.i_chunk, params.i_chunk*n_ctx); tokens.erase(tokens.begin(), tokens.begin() + params.i_chunk*n_ctx); } if (int(tokens.size()) < 2*n_ctx) { LOG_ERR("%s: you need at least %d tokens for a context of %d tokens\n", __func__, 2*n_ctx, n_ctx); LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n", __func__, tokens.size()); return false; } std::vector logit_history; std::vector prob_history; if (params.compute_ppl) { logit_history.resize(tokens.size()); prob_history.resize(tokens.size()); } const int n_chunk_max = tokens.size() / n_ctx; const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); const int n_vocab = llama_vocab_n_tokens(vocab); const int n_batch = params.n_batch; int count = 0; double nll = 0.0; double nll2 = 0.0; const int num_batches = (n_ctx + n_batch - 1) / n_batch; const int n_seq = std::max(1, n_batch / n_ctx); GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0); GGML_ASSERT(params.n_ctx == n_seq * n_ctx); llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1); std::vector logits; if (params.compute_ppl && num_batches > 1) { logits.reserve((size_t)n_ctx * n_vocab); } LOG_INF("%s: computing over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq); std::vector workers(std::thread::hardware_concurrency() - 1); for (int i = 0; i < n_chunk; i += n_seq) { const int start = i * n_ctx; const int end = start + n_ctx; const int n_seq_batch = std::min(n_seq, n_chunk - i); const auto t_start = std::chrono::high_resolution_clock::now(); // clear the KV cache llama_memory_clear(llama_get_memory(ctx), true); for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); // clear the batch common_batch_clear(batch); for (int seq = 0; seq < n_seq_batch; seq++) { int seq_start = batch_start + seq*n_ctx; // save original token and restore it after eval const auto token_org = tokens[seq_start]; // add BOS token for the first batch of each chunk if (add_bos && j == 0) { tokens[seq_start] = llama_vocab_bos(vocab); } for (int k = 0; k < batch_size; ++k) { // NOTE: specifying all logits to get activations for the output.weight tensor // and also for the perplexity calculation. // TODO: only get outputs when (params.process_output || params.compute_ppl) // (not possible when this skips FFN computation of the last layer) common_batch_add(batch, tokens[seq_start + k], j*n_batch + k, { seq }, true); } // restore the original token in case it was set to BOS tokens[seq_start] = token_org; } if (llama_decode(ctx, batch)) { LOG_ERR("%s : failed to eval\n", __func__); llama_batch_free(batch); return false; } if (params.compute_ppl && num_batches > 1) { const auto * batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } } if (i == 0) { llama_synchronize(ctx); const auto t_end = std::chrono::high_resolution_clock::now(); const float t_total = std::chrono::duration(t_end - t_start).count(); LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total); int total_seconds = (int)(t_total * n_chunk / n_seq); if (total_seconds >= 60*60) { LOG("%d hours ", total_seconds / (60*60)); total_seconds = total_seconds % (60*60); } LOG("%.2f minutes\n", total_seconds / 60.0); } if (params.compute_ppl) { const int first = n_ctx/2; for (int seq = 0; seq < n_seq_batch; seq++) { const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx); llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first; process_logits(n_vocab, all_logits + first*n_vocab, tokens_data, n_ctx - 1 - first, workers, nll, nll2, logit_history.data() + start + seq*n_ctx + first, prob_history.data() + start + seq*n_ctx + first); count += n_ctx - first - 1; LOG("[%d]%.4lf,", i + seq + 1, std::exp(nll / count)); } fflush(stdout); logits.clear(); } } LOG("\n"); if (params.compute_ppl) { nll2 /= count; nll /= count; const double ppl = exp(nll); nll2 -= nll * nll; if (nll2 > 0) { nll2 = sqrt(nll2/(count-1)); LOG("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl); } else { LOG("Unexpected negative standard deviation of log(prob)\n"); } } llama_batch_free(batch); return true; } static bool show_statistics(const common_params & params) { std::vector ts; if (params.in_files.empty() || params.in_files.size() > 1) { LOG_ERR("\nError: a single imatrix file is required to compute tensor statistics\n\n"); return false; } if (g_collector.load_imatrix(params.in_files[0].c_str())) { for (const auto & [name, stats] :g_collector.get_mstats()) { compute_statistics(ts, name, stats); } } else { LOG_ERR("\nError: %s is not a valid imatrix file\n\n", params.in_files[0].c_str()); return false; } if (!ts.empty()) { compute_cossim(ts); } else { LOG_ERR("Error: cannot compute statistics for %s\n\n", params.in_files[0].c_str()); return false; } struct tensor_comparer { bool operator()(const tensor_statistics & a, const tensor_statistics & b) const { std::string layer, name_a, name_b; ; process_tensor_name(a.tensor, layer, name_a); process_tensor_name(b.tensor, layer, name_b); return name_a < name_b || (name_a == name_b && a.total_sqract > b.total_sqract); } }; std::sort(ts.begin(), ts.end(), tensor_comparer()); struct weighted_stats { float weighted_bias = 0.0f; float weighted_zd = 0.0f; float weighted_cossim = 0.0f; int total_elements = 0; }; std::map ws; LOG_INF("\nComputing statistics for %s (%d tensors)\n", params.in_files[0].c_str(), static_cast(ts.size())); LOG_INF("\n%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n", " Layer", " Tensor", " Σ(Act²)", " Min", " Max", " μ", " σ", " % Active", "N", " Entropy", "E (norm)", "ZD", " CosSim"); LOG_INF( "==============================================================================================================" "===========================================================\n"); for (const auto & tstat : ts) { std::string layer, name; process_tensor_name(tstat.tensor, layer, name); int blk; try { blk = std::stoi(layer); } catch (const std::exception & e) { blk = -1; // not a block layer } LOG_INF("%5s\t%-20s\t%10.2f\t%8.4f\t%11.4f\t%6.2f\t%6.2f\t%8.2f%%\t%6d\t%10.4f\t%6.2f%%\t%10.2f%%\t%8.4f\n", layer.c_str(), name.c_str(), tstat.total_sqract, tstat.min_sqract, tstat.max_sqract, tstat.mean_sqract, tstat.stddev, tstat.active * 100.0f, tstat.elements, tstat.entropy, 100.0f * (tstat.entropy / std::log2(tstat.elements)), 100.0f * tstat.zd, tstat.cossim); const float weighted_bias = tstat.elements * tstat.total_sqract; const float weighted_zd = tstat.elements * tstat.zd; const float weighted_cossim = tstat.elements * tstat.cossim; if (ws.find(blk) != ws.end()) { ws[blk].weighted_bias += weighted_bias; ws[blk].weighted_zd += weighted_zd; ws[blk].weighted_cossim += weighted_cossim; ws[blk].total_elements += tstat.elements; } else { weighted_stats temp_ws; temp_ws.weighted_bias = weighted_bias; temp_ws.weighted_zd = weighted_zd; temp_ws.weighted_cossim = weighted_cossim; temp_ws.total_elements = tstat.elements; ws[blk] = temp_ws; } } const int layers = std::count_if(ws.begin(), ws.end(), [](const auto & kv) { return kv.first >= 0; }); LOG_INF("\nComputing weighted average statistics per layer (%d layers)\n", layers); LOG_INF("\n%s\t%s\t%s\t%s\n", " Layer", " μΣ(Act²)", " μZD", "μCosSim"); LOG_INF("================================================\n"); for (const auto & [first, second] : ws) { const auto & layer = first; const auto & stats = second; if (stats.total_elements == 0) { continue; } if (layer >= 0) { const float bias = stats.weighted_bias / stats.total_elements; const float zd = stats.weighted_zd / stats.total_elements; const float cossim = stats.weighted_cossim / stats.total_elements; LOG_INF("%5d\t%14.2f\t%10.4f%%\t%6.4f\n", layer, bias, 100.0f * zd, cossim); } } LOG_INF("\n"); return true; } int main(int argc, char ** argv) { common_params params; params.out_file = "imatrix.gguf"; params.n_ctx = 512; params.escape = false; if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) { return 1; } if (params.show_statistics) { if (!show_statistics(params)) { return 1; } return 0; } common_init(); const int32_t n_ctx = params.n_ctx; if (n_ctx <= 0) { LOG_ERR("%s: imatrix tool requires '--ctx-size' > 0\n", __func__); return 1; } { const int32_t n_seq = std::max(1, params.n_batch / n_ctx); const int32_t n_kv = n_seq * n_ctx; params.n_parallel = n_seq; params.n_ctx = n_kv; params.n_batch = std::min(params.n_batch, n_kv); } g_collector.set_params(params); for (const auto & in_file : params.in_files) { LOG_INF("%s : loading imatrix from '%s'\n", __func__, in_file.c_str()); if (!g_collector.load_imatrix(in_file.c_str())) { LOG_ERR("%s : failed to load %s\n", __func__, in_file.c_str()); return 1; } } if (params.prompt.empty()) { LOG_INF("No prompt provided; combining precomputed matrices only.\n"); if (params.in_files.empty()) { LOG_ERR("Error: No prompt provided and no precomputed matrices (--in-file) to combine.\n"); return 1; } if (params.in_files.size() == 1) { LOG_INF("%s : saving imatrix to '%s'\n", __func__, params.out_file.c_str()); } else if (params.in_files.size() > 1) { LOG_INF("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str()); } g_collector.save_imatrix(); return 0; } llama_backend_init(); llama_numa_init(params.numa); // pass the callback to the backend scheduler // it will be executed for each node during the graph computation params.cb_eval = ik_collect_imatrix; params.cb_eval_user_data = NULL; params.warmup = false; // init common_init_result llama_init = common_init_from_params(params); llama_model * model = llama_init.model.get(); llama_context * ctx = llama_init.context.get(); if (model == nullptr || ctx == nullptr) { LOG_ERR("%s : failed to init\n", __func__); return 1; } const int n_ctx_train = llama_model_n_ctx_train(model); if (params.n_ctx > n_ctx_train) { LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, params.n_ctx); } // print system information { LOG_INF("\n"); LOG_INF("%s\n", common_params_get_system_info(params).c_str()); } if (!compute_imatrix(ctx, params, n_ctx)) { return 1; } g_collector.save_imatrix(); LOG("\n"); llama_perf_context_print(ctx); llama_backend_free(); return 0; }