# Granite Vision Download the model and point your `GRANITE_MODEL` environment variable to the path. ```bash $ git clone https://huggingface.co/ibm-granite/granite-vision-3.1-2b-preview $ export GRANITE_MODEL=./granite-vision-3.1-2b-preview ``` ### 1. Running llava surgery v2. First, we need to run the llava surgery script as shown below: `python llava_surgery_v2.py -C -m $GRANITE_MODEL` You should see two new files (`llava.clip` and `llava.projector`) written into your model's directory, as shown below. ```bash $ ls $GRANITE_MODEL | grep -i llava llava.clip llava.projector ``` We should see that the projector and visual encoder get split out into the llava files. Quick check to make sure they aren't empty: ```python import os import torch MODEL_PATH = os.getenv("GRANITE_MODEL") if not MODEL_PATH: raise ValueError("env var GRANITE_MODEL is unset!") encoder_tensors = torch.load(os.path.join(MODEL_PATH, "llava.clip")) projector_tensors = torch.load(os.path.join(MODEL_PATH, "llava.projector")) assert len(encoder_tensors) > 0 assert len(projector_tensors) > 0 ``` If you actually inspect the `.keys()` of the loaded tensors, you should see a lot of `vision_model` tensors in the `encoder_tensors`, and 5 tensors (`'multi_modal_projector.linear_1.bias'`, `'multi_modal_projector.linear_1.weight'`, `'multi_modal_projector.linear_2.bias'`, `'multi_modal_projector.linear_2.weight'`, `'image_newline'`) in the multimodal `projector_tensors`. ### 2. Creating the Visual Component GGUF To create the GGUF for the visual components, we need to write a config for the visual encoder; make sure the config contains the correct `image_grid_pinpoints` Note: we refer to this file as `$VISION_CONFIG` later on. ```json { "_name_or_path": "siglip-model", "architectures": [ "SiglipVisionModel" ], "image_grid_pinpoints": [ [384,768], [384,1152], [384,1536], [384,1920], [384,2304], [384,2688], [384,3072], [384,3456], [384,3840], [768,384], [768,768], [768,1152], [768,1536], [768,1920], [1152,384], [1152,768], [1152,1152], [1536,384], [1536,768], [1920,384], [1920,768], [2304,384], [2688,384], [3072,384], [3456,384], [3840,384] ], "mm_patch_merge_type": "spatial_unpad", "hidden_size": 1152, "image_size": 384, "intermediate_size": 4304, "model_type": "siglip_vision_model", "num_attention_heads": 16, "num_hidden_layers": 27, "patch_size": 14, "layer_norm_eps": 1e-6, "hidden_act": "gelu_pytorch_tanh", "projection_dim": 0, "vision_feature_layer": [-24, -20, -12, -1] } ``` Create a new directory to hold the visual components, and copy the llava.clip/projector files, as well as the vision config into it. ```bash $ ENCODER_PATH=$PWD/visual_encoder $ mkdir $ENCODER_PATH $ cp $GRANITE_MODEL/llava.clip $ENCODER_PATH/pytorch_model.bin $ cp $GRANITE_MODEL/llava.projector $ENCODER_PATH/ $ cp $VISION_CONFIG $ENCODER_PATH/config.json ``` At which point you should have something like this: ```bash $ ls $ENCODER_PATH config.json llava.projector pytorch_model.bin ``` Now convert the components to GGUF; Note that we also override the image mean/std dev to `[.5,.5,.5]` since we use the siglip visual encoder - in the transformers model, you can find these numbers in the [preprocessor_config.json](https://huggingface.co/ibm-granite/granite-vision-3.1-2b-preview/blob/main/preprocessor_config.json). ```bash $ python convert_image_encoder_to_gguf.py \ -m $ENCODER_PATH \ --llava-projector $ENCODER_PATH/llava.projector \ --output-dir $ENCODER_PATH \ --clip-model-is-vision \ --clip-model-is-siglip \ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 ``` this will create the first GGUF file at `$ENCODER_PATH/mmproj-model-f16.gguf`; we will refer to the abs path of this file as the `$VISUAL_GGUF_PATH.` ### 3. Creating the LLM GGUF. The granite vision model contains a granite LLM as its language model. For now, the easiest way to get the GGUF for LLM is by loading the composite model in `transformers` and exporting the LLM so that it can be directly converted with the normal conversion path. First, set the `LLM_EXPORT_PATH` to the path to export the `transformers` LLM to. ``` $ export LLM_EXPORT_PATH=$PWD/granite_vision_llm ``` ```python import os import transformers MODEL_PATH = os.getenv("GRANITE_MODEL") if not MODEL_PATH: raise ValueError("env var GRANITE_MODEL is unset!") LLM_EXPORT_PATH = os.getenv("LLM_EXPORT_PATH") if not MODEL_PATH: raise ValueError("env var LLM_EXPORT_PATH is unset!") tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL_PATH) # NOTE: granite vision support was added to transformers very recently (4.49); # if you get size mismatches, your version is too old. # If you are running with an older version, set `ignore_mismatched_sizes=True` # as shown below; it won't be loaded correctly, but the LLM part of the model that # we are exporting will be loaded correctly. model = transformers.AutoModelForImageTextToText.from_pretrained(MODEL_PATH, ignore_mismatched_sizes=True) tokenizer.save_pretrained(LLM_EXPORT_PATH) model.language_model.save_pretrained(LLM_EXPORT_PATH) ``` Now you can convert the exported LLM to GGUF with the normal converter in the root of the llama cpp project. ```bash $ LLM_GGUF_PATH=$LLM_EXPORT_PATH/granite_llm.gguf ... $ python convert_hf_to_gguf.py --outfile $LLM_GGUF_PATH $LLM_EXPORT_PATH ``` ### 4. Running the Model in Llama cpp Build llama cpp normally; you should have a target binary named `llama-llava-cli`, which you can pass two binaries to. Sample usage: Note - the test image shown below can be found [here](https://github-production-user-asset-6210df.s3.amazonaws.com/10740300/415512792-d90d5562-8844-4f34-a0a5-77f62d5a58b5.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20250221%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250221T054145Z&X-Amz-Expires=300&X-Amz-Signature=86c60be490aa49ef7d53f25d6c973580a8273904fed11ed2453d0a38240ee40a&X-Amz-SignedHeaders=host). ```bash $ ./build/bin/llama-llava-cli -m $LLM_GGUF_PATH \ --mmproj $VISUAL_GGUF_PATH \ --image cherry_blossom.jpg \ -c 16384 \ -p "<|system|>\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n<|user|>\n\\nWhat type of flowers are in this picture?\n<|assistant|>\n" \ --temp 0 ``` Sample response: `The flowers in the picture are cherry blossoms, which are known for their delicate pink petals and are often associated with the beauty of spring.`