#include "mtmd.h" #include "llama.h" #include #include #include #define LOG_INF(...) fprintf(stdout, __VA_ARGS__) #define LOG_ERR(...) fprintf(stderr, __VA_ARGS__) size_t mtmd_helper_get_n_tokens(const mtmd_input_chunks * chunks) { size_t n_tokens = 0; for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) { auto chunk = mtmd_input_chunks_get(chunks, i); n_tokens += mtmd_input_chunk_get_n_tokens(chunk); } return n_tokens; } llama_pos mtmd_helper_get_n_pos(const mtmd_input_chunks * chunks) { llama_pos n_pos = 0; for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) { auto chunk = mtmd_input_chunks_get(chunks, i); n_pos += mtmd_input_chunk_get_n_pos(chunk); } return n_pos; } // helper struct to make working with embd batch easier // note: this will be removed after llama_batch_ext refactoring struct decode_embd_batch { int n_pos_per_embd; int n_mmproj_embd; std::vector pos; std::vector pos_view; // used by mrope std::vector n_seq_id; std::vector seq_id_0; std::vector seq_ids; std::vector logits; llama_batch batch; decode_embd_batch(float * embd, int32_t n_tokens, int n_pos_per_embd, int n_mmproj_embd) : n_pos_per_embd(n_pos_per_embd), n_mmproj_embd(n_mmproj_embd) { pos .resize(n_tokens * n_pos_per_embd); n_seq_id.resize(n_tokens); seq_ids .resize(n_tokens + 1); logits .resize(n_tokens); seq_id_0.resize(1); seq_ids [n_tokens] = nullptr; batch = { /*n_tokens =*/ n_tokens, /*tokens =*/ nullptr, /*embd =*/ embd, /*pos =*/ pos.data(), /*n_seq_id =*/ n_seq_id.data(), /*seq_id =*/ seq_ids.data(), /*logits =*/ logits.data(), }; } void set_position_normal(llama_pos pos_0, llama_seq_id seq_id) { seq_id_0[0] = seq_id; for (int i = 0; i < batch.n_tokens; i++) { batch.pos [i] = pos_0 + i; batch.n_seq_id[i] = 1; batch.seq_id [i] = seq_id_0.data(); batch.logits [i] = false; } } void set_position_mrope(llama_pos pos_0, int nx, int ny, llama_seq_id seq_id) { GGML_ASSERT(n_pos_per_embd == 4); seq_id_0[0] = seq_id; for (int y = 0; y < ny; y++) { for (int x = 0; x < nx; x++) { int i = y * nx + x; pos[i ] = pos_0; pos[i + batch.n_tokens ] = pos_0 + y; pos[i + batch.n_tokens * 2] = pos_0 + x; pos[i + batch.n_tokens * 3] = 0; // last pos dim is unused } } for (int i = 0; i < batch.n_tokens; i++) { batch.n_seq_id[i] = 1; batch.seq_id [i] = seq_id_0.data(); batch.logits [i] = false; } } llama_batch get_view(int offset, int n_tokens) { llama_pos * pos_ptr; pos_view.clear(); pos_view.reserve(n_tokens * n_pos_per_embd); if (n_pos_per_embd > 1) { // mrope // for example, with layout of src: 1234...1234...1234...1234... // offset 2 will give us dst: 34...34...34...34... for (int i = 0; i < n_pos_per_embd; i++) { // assume n_tokens is less than or equal to batch.n_tokens // batch.n_tokens is number of **total** tokens // n_tokens is number of viewed token size_t src_idx = i * batch.n_tokens + offset; pos_view.insert(pos_view.end(), pos.data() + src_idx, pos.data() + src_idx + n_tokens); } pos_ptr = pos_view.data(); } else { // normal pos_ptr = pos.data() + offset; } return { /*n_tokens =*/ n_tokens, /*tokens =*/ nullptr, /*embd =*/ batch.embd + offset * n_mmproj_embd, /*pos =*/ pos_ptr, /*n_seq_id =*/ batch.n_seq_id + offset, /*seq_id =*/ batch.seq_id + offset, /*logits =*/ batch.logits + offset, }; } }; // Helper function for decoding an image whose embeddings have already been calculated int32_t mtmd_helper_decode_image_chunk( mtmd_context * ctx, struct llama_context * lctx, const mtmd_input_chunk * chunk, float * encoded_embd, llama_pos n_past, llama_seq_id seq_id, int32_t n_batch, llama_pos * new_n_past) { auto chunk_type = mtmd_input_chunk_get_type(chunk); const char * name = chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE ? "image" : "audio"; if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) { LOG_ERR("failed to decode chunk: input chunk not of image/audio type\n"); return -1; } const llama_model * model = llama_get_model(lctx); int n_mmproj_embd = llama_model_n_embd(model); int n_pos_per_embd = mtmd_decode_use_mrope(ctx) ? 4 : 1; int32_t n_tokens = mtmd_input_chunk_get_n_tokens(chunk); int32_t i_batch = 0; int32_t n_img_batches = GGML_PAD(n_tokens, n_batch) / n_batch; decode_embd_batch batch_embd(encoded_embd, n_tokens, n_pos_per_embd, n_mmproj_embd); if (mtmd_decode_use_mrope(ctx)) { const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk); if (chunk_type != MTMD_INPUT_CHUNK_TYPE_IMAGE) { LOG_ERR("failed to decode chunk: M-RoPE only accepts image chunk\n"); return -1; } if (!image_tokens) { LOG_ERR("failed to decode chunk: image tokens are null\n"); return -1; } const int nx = mtmd_image_tokens_get_nx(image_tokens); const int ny = mtmd_image_tokens_get_ny(image_tokens); batch_embd.set_position_mrope(n_past, nx, ny, seq_id); } else { batch_embd.set_position_normal(n_past, seq_id); } if (mtmd_decode_use_non_causal(ctx)) { llama_set_causal_attn(lctx, false); // TODO @ngxson : need to make sure only one image is processed at a time, and n_ubatch must be enough to hold the image } while (i_batch < n_img_batches) { // split into batches int pos_offset = i_batch*n_batch; int n_tokens_batch = std::min(n_batch, n_tokens - pos_offset); llama_batch batch_embd_view = batch_embd.get_view(pos_offset, n_tokens_batch); LOG_INF("decoding %s batch %d/%d, n_tokens_batch = %d\n", name, i_batch+1, n_img_batches, n_tokens_batch); int64_t t1 = ggml_time_ms(); int32_t ret = llama_decode(lctx, batch_embd_view); if (ret != 0) { LOG_ERR("failed to decode %s\n", name); llama_set_causal_attn(lctx, true); // restore causal attn return ret; } LOG_INF("%s decoded (batch %d/%d) in %" PRId64 " ms\n", name, i_batch+1, n_img_batches, ggml_time_ms() - t1); i_batch++; } n_past += mtmd_input_chunk_get_n_pos(chunk); *new_n_past = n_past; if (mtmd_decode_use_non_causal(ctx)) { llama_set_causal_attn(lctx, true); } return 0; } int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx, struct llama_context * lctx, const mtmd_input_chunk * chunk, llama_pos n_past, llama_seq_id seq_id, int32_t n_batch, bool logits_last, llama_pos * new_n_past) { int32_t ret; llama_batch text_batch = llama_batch_init(n_batch, 0, 1); auto chunk_type = mtmd_input_chunk_get_type(chunk); if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) { size_t n_tokens; const auto tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens); // LOG_INF("decoding text chunk, n_tokens = %zu\n", n_tokens); size_t i = 0; while (i < n_tokens) { // split into batches text_batch.n_tokens = 0; // clear the batch for (; i < n_tokens && text_batch.n_tokens < n_batch; i++) { int32_t j = text_batch.n_tokens; text_batch.token [j] = tokens[i]; text_batch.pos [j] = n_past++; text_batch.n_seq_id[j] = 1; text_batch.seq_id [j][0] = seq_id; text_batch.logits [j] = false; text_batch.n_tokens++; } bool is_last_token = (i == n_tokens); if (logits_last && is_last_token) { text_batch.logits[text_batch.n_tokens - 1] = true; } ret = llama_decode(lctx, text_batch); if (ret != 0) { LOG_ERR("failed to decode text\n"); llama_batch_free(text_batch); return ret; } *new_n_past += text_batch.n_tokens; } } else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE || chunk_type == MTMD_INPUT_CHUNK_TYPE_AUDIO) { const char * name = chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE ? "image" : "audio"; int64_t t0 = ggml_time_ms(); LOG_INF("encoding %s slice...\n", name); ret = mtmd_encode_chunk(ctx, chunk); if (ret != 0) { LOG_ERR("failed to encode %s slice\n", name); llama_batch_free(text_batch); return ret; } LOG_INF("%s slice encoded in %" PRId64 " ms\n", name, ggml_time_ms() - t0); float * embd = mtmd_get_output_embd(ctx); ret = mtmd_helper_decode_image_chunk(ctx, lctx, chunk, embd, n_past, seq_id, n_batch, new_n_past); if (ret != 0) { LOG_ERR("failed to decode %s\n", name); llama_batch_free(text_batch); return ret; } } else { GGML_ABORT("chunk type not supported"); } return 0; } int32_t mtmd_helper_eval_chunks(mtmd_context * ctx, struct llama_context * lctx, const mtmd_input_chunks * chunks, llama_pos n_past, llama_seq_id seq_id, int32_t n_batch, bool logits_last, llama_pos * new_n_past) { size_t n_chunks = mtmd_input_chunks_size(chunks); if (n_chunks == 0) { LOG_ERR("no chunks to eval\n"); return 0; } for (size_t i = 0; i < n_chunks; i++) { bool chunk_logits_last = (i == n_chunks - 1) && logits_last; auto chunk = mtmd_input_chunks_get(chunks, i); int32_t res = mtmd_helper_eval_chunk_single(ctx, lctx, chunk, n_past, seq_id, n_batch, chunk_logits_last, &n_past); if (res != 0) { LOG_ERR("failed to eval chunk %zu\n", i); return res; } *new_n_past = n_past; } return 0; }