#include "arg.h" #include "common.h" #include "log.h" #include "llama.h" #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif int main(int argc, char ** argv) { common_params params; params.escape = false; if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_FINETUNE)) { return 1; } if (params.use_mmap) { LOG_INF("%s: force disabling memory mapping because it would result in-read-only pointers to the weights\n", __func__); params.use_mmap = false; } if (params.cache_type_k != GGML_TYPE_F32) { LOG_INF("%s: force changing k cache type to f32 due to a lack of f16 support for OUT_PROD\n", __func__); params.cache_type_k = GGML_TYPE_F32; } if (params.cache_type_v != GGML_TYPE_F32) { LOG_INF("%s: force changing v cache type to f32 due to a lack of f16 support for OUT_PROD\n", __func__); params.cache_type_v = GGML_TYPE_F32; } common_init(); llama_backend_init(); llama_numa_init(params.numa); // load the model and apply lora adapter, if any common_init_result llama_init = common_init_from_params(params); llama_model_ptr & model = llama_init.model; llama_context_ptr & ctx = llama_init.context; if (model == NULL) { LOG_ERR("%s: unable to load model\n", __func__); return 1; } // print system information { LOG_INF("\n"); LOG_INF("%s\n", common_params_get_system_info(params).c_str()); } std::vector tokens = common_tokenize(ctx.get(), params.prompt, true); ggml_opt_dataset_t dataset = common_opt_dataset_init(ctx.get(), tokens, llama_n_ctx(ctx.get()) / 2); struct lr_opt & lr = params.lr; LOG_INF("-optimizer %s -lr0 %.2g -wd %.2g -lr-min %.2g -min-epochs %.2g -epochs %d -period %.2g -val %.2g\n", ggml_opt_optimizer_name(params.optimizer), (double) lr.lr0, (double) lr.wd, (double) lr.lr_min, (double) lr.decay_epochs, (unsigned) lr.epochs, (double) params.n_batch / params.n_ubatch, (double) params.val_split); struct llama_opt_params lopt_params{ /*n_ctx_train =*/0, /*param_filter =*/llama_opt_param_filter_all, /*param_filter_ud =*/nullptr, /*get_opt_pars =*/common_opt_lr_pars, /*get_opt_pars_ud =*/¶ms.lr, /*optimizer_type =*/params.optimizer, }; llama_opt_init(ctx.get(), model.get(), lopt_params); const int64_t idata_split = ggml_opt_dataset_ndata(dataset) * (1.0f - params.val_split); ggml_opt_result_t result_train = ggml_opt_result_init(); ggml_opt_result_t result_eval = ggml_opt_result_init(); for (lr.epoch = 0; lr.epoch < lr.epochs; ++lr.epoch) { llama_opt_epoch(ctx.get(), dataset, result_train, result_eval, idata_split, ggml_opt_epoch_callback_progress_bar, ggml_opt_epoch_callback_progress_bar); fprintf(stderr, "\n"); ggml_opt_result_reset(result_train); ggml_opt_result_reset(result_eval); } ggml_opt_result_free(result_train); ggml_opt_result_free(result_eval); llama_model_save_to_file(model.get(), params.out_file.c_str()); llama_backend_free(); return 0; }