#include "llama-context.h" #include "llama-impl.h" #include "llama-mmap.h" #include "llama-io.h" #include #include #include #include #include // // llama_context // llama_context::llama_context( const llama_model & model, const llama_context_params & params) : model (model), t_start_us(model.t_start_us), t_load_us (model.t_load_us) { const auto & hparams = model.hparams; cparams.n_seq_max = std::max(1u, params.n_seq_max); cparams.n_threads = params.n_threads; cparams.n_threads_batch = params.n_threads_batch; cparams.yarn_ext_factor = params.yarn_ext_factor; cparams.yarn_attn_factor = params.yarn_attn_factor; cparams.yarn_beta_fast = params.yarn_beta_fast; cparams.yarn_beta_slow = params.yarn_beta_slow; cparams.defrag_thold = params.defrag_thold; cparams.embeddings = params.embeddings; cparams.offload_kqv = params.offload_kqv; cparams.flash_attn = params.flash_attn; cparams.no_perf = params.no_perf; cparams.pooling_type = params.pooling_type; cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx; cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base; cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale; // with causal attention, the batch size is limited by the context size cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch; // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext) // ref: https://github.com/ggerganov/llama.cpp/pull/5021 if (cparams.n_batch < GGML_KQ_MASK_PAD) { LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD); cparams.n_batch = GGML_KQ_MASK_PAD; } cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch); cparams.n_ctx_orig_yarn = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx : hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn : hparams.n_ctx_train; cparams.cb_eval = params.cb_eval; cparams.cb_eval_user_data = params.cb_eval_user_data; auto rope_scaling_type = params.rope_scaling_type; if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) { rope_scaling_type = hparams.rope_scaling_type_train; } if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) { cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none } if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set' cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f; } cparams.yarn_attn_factor *= hparams.rope_attn_factor; if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { cparams.pooling_type = LLAMA_POOLING_TYPE_NONE; } else { cparams.pooling_type = hparams.pooling_type; } } if (params.attention_type == LLAMA_ATTENTION_TYPE_UNSPECIFIED) { cparams.causal_attn = hparams.causal_attn; } else { cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL; } const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max; LLAMA_LOG_INFO("%s: n_seq_max = %u\n", __func__, cparams.n_seq_max); LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx); LLAMA_LOG_INFO("%s: n_ctx_per_seq = %u\n", __func__, n_ctx_per_seq); LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch); LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch); LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn); LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base); LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale); if (n_ctx_per_seq < hparams.n_ctx_train) { LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) < n_ctx_train (%u) -- the full capacity of the model will not be utilized\n", __func__, n_ctx_per_seq, hparams.n_ctx_train); } if (n_ctx_per_seq > hparams.n_ctx_train) { LLAMA_LOG_WARN("%s: n_ctx_pre_seq (%u) > n_ctx_train (%u) -- possible training context overflow\n", __func__, n_ctx_per_seq, hparams.n_ctx_train); } logits_all = params.logits_all; if (!hparams.vocab_only) { // GPU backends for (auto * dev : model.devices) { ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); if (backend == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(dev)); throw std::runtime_error("failed to initialize backend"); } backends.emplace_back(backend); } // add ACCEL backends (such as BLAS) for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { ggml_backend_dev_t dev = ggml_backend_dev_get(i); if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) { ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); if (backend == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(dev)); throw std::runtime_error("failed to initialize backend"); } backends.emplace_back(backend); } } // add CPU backend backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr); if (backend_cpu == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__); throw std::runtime_error("failed to initialize CPU backend"); } backends.emplace_back(backend_cpu); // create a list of the set_n_threads functions in the backends for (auto & backend : backends) { ggml_backend_dev_t dev = ggml_backend_get_device(backend.get()); ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr; if (reg) { auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads"); if (ggml_backend_set_n_threads_fn) { set_n_threads_fns.emplace_back(backend.get(), ggml_backend_set_n_threads_fn); } } } llama_set_abort_callback(this, params.abort_callback, params.abort_callback_data); // graph outputs buffer { // resized during inference when a batch uses more outputs if ((uint32_t) output_reserve(params.n_seq_max) < params.n_seq_max) { LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__); throw std::runtime_error("failed to reserve initial output buffer"); } LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name (buf_output.get()), ggml_backend_buffer_get_size(buf_output.get()) / 1024.0 / 1024.0); } } } llama_context::~llama_context() = default; void llama_context::init() { const auto & hparams = model.hparams; if (hparams.vocab_only) { LLAMA_LOG_WARN("%s: model is vocab-only -- no computation will be performed\n", __func__); return; } // buffer types used for the compute buffer of each backend std::vector backend_buft; std::vector backend_ptrs; for (auto & backend : backends) { auto * buft = ggml_backend_get_default_buffer_type(backend.get()); auto backend_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get())); if (backend_type == GGML_BACKEND_DEVICE_TYPE_CPU && !model.devices.empty()) { // use the host buffer of the first device CPU for faster transfer of the intermediate state auto * dev = model.devices[0]; auto * host_buft = ggml_backend_dev_host_buffer_type(dev); if (host_buft) { buft = host_buft; } } backend_buft.push_back(buft); backend_ptrs.push_back(backend.get()); } const size_t max_nodes = this->max_nodes(); // buffer used to store the computation graph and the tensor meta data // TODO: move to base class buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false)); // TODO: move these checks to ggml_backend_sched // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary bool pipeline_parallel = model.n_devices() > 1 && model.params.n_gpu_layers > (int) model.hparams.n_layer && model.params.split_mode == LLAMA_SPLIT_MODE_LAYER && cparams.offload_kqv; // pipeline parallelism requires support for async compute and events in all devices if (pipeline_parallel) { for (auto & backend : backends) { auto dev_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get())); if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU) { // ignore CPU backend continue; } auto * dev = ggml_backend_get_device(backend.get()); ggml_backend_dev_props props; ggml_backend_dev_get_props(dev, &props); if (!props.caps.async || !props.caps.events) { // device does not support async compute or events pipeline_parallel = false; break; } } } sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, pipeline_parallel)); if (pipeline_parallel) { LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(sched.get())); } // initialize scheduler with the worst-case graph { uint32_t n_seqs = 1; // TODO: worst-case number of sequences uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch); llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph int n_splits_pp = -1; int n_nodes_pp = -1; int n_splits_tg = -1; int n_nodes_tg = -1; // reserve pp graph first so that buffers are only allocated once { llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; auto * gf = graph_init(); graph_build(ctx_compute.get(), gf, ubatch_pp, true); if (!ggml_backend_sched_reserve(sched.get(), gf)) { LLAMA_LOG_ERROR("%s: failed to allocate compute pp buffers\n", __func__); throw std::runtime_error("failed to allocate compute buffers"); } n_splits_pp = ggml_backend_sched_get_n_splits(sched.get()); n_nodes_pp = ggml_graph_n_nodes(gf); } // reserve with tg graph to get the number of splits and nodes { llama_ubatch ubatch_tg = { true, 1, 1, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; auto * gf = graph_init(); graph_build(ctx_compute.get(), gf, ubatch_tg, true); if (!ggml_backend_sched_reserve(sched.get(), gf)) { LLAMA_LOG_ERROR("%s: failed to allocate compute tg buffers\n", __func__); throw std::runtime_error("failed to allocate compute buffers"); } n_splits_tg = ggml_backend_sched_get_n_splits(sched.get()); n_nodes_tg = ggml_graph_n_nodes(gf); } // reserve again with pp graph to avoid ggml-alloc reallocations during inference { llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; auto * gf = graph_init(); graph_build(ctx_compute.get(), gf, ubatch_pp, true); if (!ggml_backend_sched_reserve(sched.get(), gf)) { LLAMA_LOG_ERROR("%s: failed to allocate compute pp buffers\n", __func__); throw std::runtime_error("failed to allocate compute buffers"); } } for (size_t i = 0; i < backend_ptrs.size(); ++i) { ggml_backend_t backend = backend_ptrs[i]; ggml_backend_buffer_type_t buft = backend_buft[i]; size_t size = ggml_backend_sched_get_buffer_size(sched.get(), backend); if (size > 1) { LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__, ggml_backend_buft_name(buft), size / 1024.0 / 1024.0); } } if (n_nodes_pp == n_nodes_tg) { LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, n_nodes_pp); } else { LLAMA_LOG_INFO("%s: graph nodes = %d (with bs=%d), %d (with bs=1)\n", __func__, n_nodes_pp, n_tokens, n_nodes_tg); } if (n_splits_pp == n_splits_tg) { LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits_pp); } else { LLAMA_LOG_INFO("%s: graph splits = %d (with bs=%d), %d (with bs=1)\n", __func__, n_splits_pp, n_tokens, n_splits_tg); } } } const llama_model & llama_context::get_model() const { return model; } const llama_cparams & llama_context::get_cparams() const { return cparams; } uint32_t llama_context::n_ctx() const { return cparams.n_ctx; } uint32_t llama_context::n_ctx_per_seq() const { return cparams.n_ctx / cparams.n_seq_max; } uint32_t llama_context::n_batch() const { return cparams.n_batch; } uint32_t llama_context::n_ubatch() const { return cparams.n_ubatch; } uint32_t llama_context::n_threads() const { return cparams.n_threads; } uint32_t llama_context::n_threads_batch() const { return cparams.n_threads_batch; } int32_t llama_context::max_nodes() const { return std::max(8192, 5*model.n_tensors()); } enum llama_pooling_type llama_context::pooling_type() const { return cparams.pooling_type; } float * llama_context::get_logits() { // reorder logits for backward compatibility output_reorder(); return logits; } float * llama_context::get_logits_ith(int32_t i) { int32_t j = -1; try { if (logits == nullptr) { throw std::runtime_error("no logits"); } if (i < 0) { j = n_outputs + i; if (j < 0) { throw std::runtime_error(format("negative index out of range [0, %d)", n_outputs)); } } else if ((size_t) i >= output_ids.size()) { throw std::runtime_error(format("out of range [0, %zu)", output_ids.size())); } else { j = output_ids[i]; } if (j < 0) { throw std::runtime_error(format("batch.logits[%d] != true", i)); } if (j >= n_outputs) { // This should not happen throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, n_outputs)); } return logits + j*model.vocab.n_tokens(); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what()); #ifndef NDEBUG GGML_ABORT("fatal error"); #else return nullptr; #endif } } float * llama_context::get_embeddings() { // reorder embeddings for backward compatibility output_reorder(); return embd; } float * llama_context::get_embeddings_ith(int32_t i) { int32_t j = -1; try { if (embd == nullptr) { throw std::runtime_error("no embeddings"); } if (i < 0) { j = n_outputs + i; if (j < 0) { throw std::runtime_error(format("negative index out of range [0, %d)", n_outputs)); } } else if ((size_t) i >= output_ids.size()) { throw std::runtime_error(format("out of range [0, %zu)", output_ids.size())); } else { j = output_ids[i]; } if (j < 0) { throw std::runtime_error(format("batch.logits[%d] != true", i)); } if (j >= n_outputs) { // This should not happen throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, n_outputs)); } return embd + j*model.hparams.n_embd; } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what()); #ifndef NDEBUG GGML_ABORT("fatal error"); #else return nullptr; #endif } } float * llama_context::get_embeddings_seq(llama_seq_id seq_id) { auto it = embd_seq.find(seq_id); if (it == embd_seq.end()) { return nullptr; } return it->second.data(); } int64_t llama_context::n_pos_per_token() const { return model.arch == LLM_ARCH_QWEN2VL ? 4 : 1; } void llama_context::attach_threadpool( ggml_threadpool_t threadpool, ggml_threadpool_t threadpool_batch) { this->threadpool = threadpool; this->threadpool_batch = threadpool_batch ? threadpool_batch : threadpool; } void llama_context::detach_threadpool() { this->threadpool = nullptr; this->threadpool_batch = nullptr; } void llama_context::set_n_threads(int32_t n_threads, int32_t n_threads_batch) { cparams.n_threads = n_threads; cparams.n_threads_batch = n_threads_batch; } void llama_context::set_abort_callback(bool (*abort_callback)(void * data), void * abort_callback_data) { this->abort_callback = abort_callback; this->abort_callback_data = abort_callback_data; for (auto & backend : backends) { auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend.get())); auto * set_abort_callback_fn = (ggml_backend_set_abort_callback_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_abort_callback"); if (set_abort_callback_fn) { set_abort_callback_fn(backend.get(), this->abort_callback, this->abort_callback_data); } } } void llama_context::set_embeddings(bool value) { cparams.embeddings = value; } void llama_context::set_causal_attn(bool value) { cparams.causal_attn = value; } void llama_context::set_adapter_lora( struct llama_adapter_lora * adapter, float scale) { loras[adapter] = scale; } bool llama_context::rm_adapter_lora( struct llama_adapter_lora * adapter) { auto pos = loras.find(adapter); if (pos != loras.end()) { loras.erase(pos); return true; } return false; } void llama_context::clear_adapter_lora() { loras.clear(); } bool llama_context::apply_adapter_cvec( const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) { return cvec.apply(model, data, len, n_embd, il_start, il_end); } void llama_context::synchronize() { ggml_backend_sched_synchronize(sched.get()); // FIXME: if multiple single tokens are evaluated without a synchronization, // the stats will be added to the prompt evaluation stats // this should only happen when using batch size 1 to evaluate a batch // add the evaluation to the stats if (n_queued_tokens == 1) { if (!cparams.no_perf) { t_eval_us += ggml_time_us() - t_compute_start_us; } n_eval++; } else if (n_queued_tokens > 1) { if (!cparams.no_perf) { t_p_eval_us += ggml_time_us() - t_compute_start_us; } n_p_eval += n_queued_tokens; } // get a more accurate load time, upon first eval if (n_queued_tokens > 0 && !has_evaluated_once) { t_load_us = ggml_time_us() - t_start_us; has_evaluated_once = true; } n_queued_tokens = 0; t_compute_start_us = 0; } ggml_cgraph * llama_context::graph_init() { inp_tokens = nullptr; inp_embd = nullptr; inp_pos = nullptr; inp_out_ids = nullptr; inp_mean = nullptr; inp_cls = nullptr; struct ggml_init_params params = { /*.mem_size =*/ buf_compute_meta.size(), /*.mem_buffer =*/ buf_compute_meta.data(), /*.no_alloc =*/ true, }; ctx_compute.reset(ggml_init(params)); return ggml_new_graph_custom(ctx_compute.get(), max_nodes(), false); } llama_graph_result llama_context::graph_build( ggml_context * ctx, ggml_cgraph * gf, const llama_ubatch & ubatch, bool worst_case) { return model.build_graph(ctx, gf, this, cparams, ubatch, worst_case); } enum ggml_status llama_context::graph_compute( ggml_cgraph * gf, bool batched) { int n_threads = batched ? cparams.n_threads_batch : cparams.n_threads; ggml_threadpool_t tp = batched ? threadpool_batch : threadpool; if (backend_cpu != nullptr) { auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend_cpu)); auto * set_threadpool_fn = (decltype(ggml_backend_cpu_set_threadpool) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_set_threadpool"); set_threadpool_fn(backend_cpu, tp); } // set the number of threads for all the backends for (const auto & set_n_threads_fn : set_n_threads_fns) { set_n_threads_fn.second(set_n_threads_fn.first, n_threads); } auto status = ggml_backend_sched_graph_compute_async(sched.get(), gf); if (status != GGML_STATUS_SUCCESS) { LLAMA_LOG_ERROR("%s: ggml_backend_sched_graph_compute_async failed with error %d\n", __func__, status); } // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(sched)); return status; } void llama_context::input_set(const llama_ubatch & ubatch) { const llama_hparams & hparams = model.hparams; if (ubatch.token) { const int64_t n_tokens = ubatch.n_tokens; ggml_backend_tensor_set(inp_tokens, ubatch.token, 0, n_tokens*ggml_element_size(inp_tokens)); } if (ubatch.embd) { const int64_t n_embd = hparams.n_embd; const int64_t n_tokens = ubatch.n_tokens; ggml_backend_tensor_set(inp_embd, ubatch.embd, 0, n_tokens*n_embd*ggml_element_size(inp_embd)); } if (ubatch.pos && inp_pos) { const int64_t n_tokens = ubatch.n_tokens; ggml_backend_tensor_set(inp_pos, ubatch.pos, 0, n_tokens*n_pos_per_token()*ggml_element_size(inp_pos)); } if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) { //GGML_ASSERT(inp_out_ids && "every model that can must skip unused outputs"); if (!inp_out_ids) { LLAMA_LOG_WARN("%s: 'inp_out_ids' is not created\n", __func__); } else { const int64_t n_tokens = ubatch.n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(inp_out_ids->buffer)); int32_t * data = (int32_t *) inp_out_ids->data; if (n_outputs == n_tokens) { for (int i = 0; i < n_tokens; ++i) { data[i] = i; } } else if (ubatch.output) { int32_t n_outputs = 0; for (int i = 0; i < n_tokens; ++i) { if (ubatch.output[i]) { data[n_outputs++] = i; } } // the graph needs to have been passed the correct number of outputs GGML_ASSERT(n_outputs == n_outputs); } else if (n_outputs == 1) { // only keep last output data[0] = n_tokens - 1; } else { GGML_ASSERT(n_outputs == 0); } } } if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) { const int64_t n_tokens = ubatch.n_tokens; const int64_t n_seq_tokens = ubatch.n_seq_tokens; const int64_t n_seqs = ubatch.n_seqs; GGML_ASSERT(inp_mean); GGML_ASSERT(ggml_backend_buffer_is_host(inp_mean->buffer)); float * data = (float *) inp_mean->data; memset(inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(inp_mean)); std::vector sum(n_tokens, 0); for (int s = 0; s < n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; // TODO: adapt limits to n_seqs when ubatch.equal_seqs is true GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN"); sum[seq_id] += ubatch.n_seq_tokens; } std::vector div(n_tokens, 0.0f); for (int i = 0; i < n_tokens; ++i) { const uint64_t s = sum[i]; if (s > 0) { div[i] = 1.0f/float(s); } } for (int s = 0; s < n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; for (int i = 0; i < n_seq_tokens; ++i) { data[seq_id*n_tokens + s*n_seq_tokens + i] = div[seq_id]; } } } if (cparams.embeddings && ( cparams.pooling_type == LLAMA_POOLING_TYPE_CLS || cparams.pooling_type == LLAMA_POOLING_TYPE_RANK)) { const int64_t n_tokens = ubatch.n_tokens; const int64_t n_seq_tokens = ubatch.n_seq_tokens; const int64_t n_seqs = ubatch.n_seqs; GGML_ASSERT(inp_cls); GGML_ASSERT(ggml_backend_buffer_is_host(inp_cls->buffer)); uint32_t * data = (uint32_t *) inp_cls->data; memset(inp_cls->data, 0, n_tokens * ggml_element_size(inp_cls)); for (int s = 0; s < n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; // TODO: adapt limits to n_seqs when ubatch.equal_seqs is true GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS or RANK"); for (int i = 0; i < n_seq_tokens; ++i) { const llama_pos pos = ubatch.pos[s*n_seq_tokens + i]; if (pos == 0) { data[seq_id] = s*n_seq_tokens + i; } } } } if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) { const int64_t n_tokens = ubatch.n_tokens; const int64_t n_seq_tokens = ubatch.n_seq_tokens; const int64_t n_seqs = ubatch.n_seqs; GGML_ASSERT(inp_cls); GGML_ASSERT(ggml_backend_buffer_is_host(inp_cls->buffer)); uint32_t * data = (uint32_t *) inp_cls->data; memset(inp_cls->data, 0, n_tokens * ggml_element_size(inp_cls)); std::vector last_pos(n_tokens, -1); std::vector last_row(n_tokens, -1); for (int s = 0; s < n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; // TODO: adapt limits to n_seqs when ubatch.equal_seqs is true GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST"); for (int i = 0; i < n_seq_tokens; ++i) { const llama_pos pos = ubatch.pos[s*n_seq_tokens + i]; if (pos >= last_pos[seq_id]) { last_pos[seq_id] = pos; last_row[seq_id] = s*n_seq_tokens + i; } } } for (int i = 0; i < n_tokens; ++i) { if (last_row[i] >= 0) { data[i] = last_row[i]; } } } GGML_ASSERT( // (!a || b) is a logical implication (a -> b) // !hparams.causal_attn -> !cparams.causal_attn (hparams.causal_attn || !cparams.causal_attn) && "causal attention is not supported by this model" ); } int32_t llama_context::output_reserve(int32_t n_outputs) { const auto & hparams = model.hparams; const auto & vocab = model.vocab; const int64_t n_outputs_max = std::max(n_outputs, cparams.n_seq_max); const auto n_batch = cparams.n_batch; const auto n_vocab = vocab.n_tokens(); const auto n_embd = hparams.n_embd; // TODO: use a per-batch flag for logits presence instead const bool has_logits = !cparams.embeddings; const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE); logits_size = has_logits ? n_vocab*n_outputs_max : 0; embd_size = has_embd ? n_embd*n_outputs_max : 0; if (output_ids.empty()) { // init, never resized afterwards output_ids.resize(n_batch); } const size_t prev_size = buf_output ? ggml_backend_buffer_get_size(buf_output.get()) : 0; const size_t new_size = (logits_size + embd_size) * sizeof(float); // alloc only when more than the current capacity is required // TODO: also consider shrinking the buffer if (!buf_output || prev_size < new_size) { if (buf_output) { #ifndef NDEBUG // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark) LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); #endif buf_output = nullptr; logits = nullptr; embd = nullptr; } auto * buft = ggml_backend_cpu_buffer_type(); // try to use the host buffer of the device where the output tensor is allocated for faster transfer to system memory auto * output_dev = model.dev_output(); auto * output_dev_host_buft = output_dev ? ggml_backend_dev_host_buffer_type(output_dev) : nullptr; if (output_dev_host_buft) { buft = output_dev_host_buft; } buf_output.reset(ggml_backend_buft_alloc_buffer(buft, new_size)); if (buf_output == nullptr) { LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0)); return 0; } } float * output_base = (float *) ggml_backend_buffer_get_base(buf_output.get()); logits = has_logits ? output_base : nullptr; embd = has_embd ? output_base + logits_size : nullptr; output_size = n_outputs_max; // set all ids as invalid (negative) std::fill(output_ids.begin(), output_ids.end(), -1); ggml_backend_buffer_clear(buf_output.get(), 0); n_outputs = 0; return n_outputs_max; } void llama_context::output_reorder() { auto & out_ids = sbatch.out_ids; if (!out_ids.empty()) { const uint32_t n_vocab = model.vocab.n_tokens(); const uint32_t n_embd = model.hparams.n_embd; GGML_ASSERT((size_t) n_outputs == out_ids.size()); // TODO: is there something more efficient which also minimizes swaps? // selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort) for (int32_t i = 0; i < n_outputs - 1; ++i) { int32_t j_min = i; for (int32_t j = i + 1; j < n_outputs; ++j) { if (out_ids[j] < out_ids[j_min]) { j_min = j; } } if (j_min == i) { continue; } std::swap(out_ids[i], out_ids[j_min]); if (logits_size > 0) { for (uint32_t k = 0; k < n_vocab; k++) { std::swap(logits[i*n_vocab + k], logits[j_min*n_vocab + k]); } } if (embd_size > 0) { for (uint32_t k = 0; k < n_embd; k++) { std::swap(embd[i*n_embd + k], embd[j_min*n_embd + k]); } } } std::fill(output_ids.begin(), output_ids.end(), -1); for (int32_t i = 0; i < n_outputs; ++i) { output_ids[out_ids[i]] = i; } out_ids.clear(); } } void llama_context::build_cb( ggml_tensor * cur, const char * name, const llama_ubatch & ubatch, int il) { if (il >= 0) { ggml_format_name(cur, "%s-%d", name, il); } else { ggml_set_name(cur, name); } if (!cparams.offload_kqv) { if (strcmp(name, "kqv_merged_cont") == 0) { // all nodes between the KV store and the attention output are run on the CPU ggml_backend_sched_set_tensor_backend(sched.get(), cur, backend_cpu); } } // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends // FIXME: fix in ggml_backend_sched const bool full_offload = model.params.n_gpu_layers > (int) model.hparams.n_layer; if (ubatch.n_tokens < 32 || full_offload) { if (il != -1 && strcmp(name, "norm") == 0) { const auto & dev_layer = model.dev_layer(il); for (auto & backend : backends) { if (ggml_backend_get_device(backend.get()) == dev_layer) { if (ggml_backend_supports_op(backend.get(), cur)) { ggml_backend_sched_set_tensor_backend(sched.get(), cur, backend.get()); } } } } } } llama_perf_context_data llama_context::perf_get_data() const { llama_perf_context_data data = {}; data.t_start_ms = 1e-3 * t_start_us; data.t_load_ms = 1e-3 * t_load_us; data.t_p_eval_ms = 1e-3 * t_p_eval_us; data.t_eval_ms = 1e-3 * t_eval_us; data.n_p_eval = std::max(1, n_p_eval); data.n_eval = std::max(1, n_eval); return data; } ggml_tensor * llama_context::build_cvec( ggml_context * ctx0, ggml_tensor * cur, int il) { return cvec.apply_to(ctx0, cur, il); } ggml_tensor * llama_context::build_lora_mm( ggml_context * ctx0, ggml_tensor * w, ggml_tensor * cur) { struct ggml_tensor * res = ggml_mul_mat(ctx0, w, cur); for (const auto & lora : loras) { struct llama_adapter_lora_weight * lw = lora.first->get_weight(w); if (lw == nullptr) { continue; } const float adapter_scale = lora.second; const float scale = lw->get_scale(lora.first->alpha, adapter_scale); struct ggml_tensor * ab_cur = ggml_mul_mat( ctx0, lw->b, ggml_mul_mat(ctx0, lw->a, cur) ); ab_cur = ggml_scale(ctx0, ab_cur, scale); res = ggml_add(ctx0, res, ab_cur); } return res; } ggml_tensor * llama_context::build_lora_mm_id( ggml_context * ctx0, ggml_tensor * w, ggml_tensor * cur, ggml_tensor * ids) { struct ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids); for (const auto & lora : loras) { struct llama_adapter_lora_weight * lw = lora.first->get_weight(w); if (lw == nullptr) { continue; } const float alpha = lora.first->alpha; const float rank = (float) lw->b->ne[0]; const float scale = alpha ? lora.second * alpha / rank : lora.second; struct ggml_tensor * ab_cur = ggml_mul_mat_id( ctx0, lw->b, ggml_mul_mat_id(ctx0, lw->a, cur, ids), ids ); ab_cur = ggml_scale(ctx0, ab_cur, scale); res = ggml_add(ctx0, res, ab_cur); } return res; } ggml_tensor * llama_context::build_rope_factors(int il) { const auto & hparams = model.hparams; // choose long/short freq factors based on the context size const auto n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max; if (model.layers[il].rope_freqs != nullptr) { return model.layers[il].rope_freqs; } if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) { return model.layers[il].rope_long; } return model.layers[il].rope_short; } ggml_tensor * llama_context::build_rope_shift( ggml_context * ctx0, ggml_tensor * cur, ggml_tensor * shift, ggml_tensor * factors, ggml_backend_buffer * bbuf) { const auto & n_ctx_orig = cparams.n_ctx_orig_yarn; const auto & freq_base = cparams.rope_freq_base; const auto & freq_scale = cparams.rope_freq_scale; const auto & yarn_ext_factor = cparams.yarn_ext_factor; const auto & yarn_attn_factor = cparams.yarn_attn_factor; const auto & yarn_beta_fast = cparams.yarn_beta_fast; const auto & yarn_beta_slow = cparams.yarn_beta_slow; const auto & n_rot = model.hparams.n_rot; const auto & rope_type = model.hparams.rope_type; struct ggml_tensor * tmp; if (ggml_is_quantized(cur->type)) { // dequantize to f32 -> RoPE -> quantize back tmp = ggml_cast(ctx0, cur, GGML_TYPE_F32); if (bbuf) { for (auto & backend : backends) { // Figure out which backend KV cache belongs to if (ggml_backend_supports_buft(backend.get(), ggml_backend_buffer_get_type(bbuf))) { ggml_backend_sched_set_tensor_backend(sched.get(), tmp, backend.get()); break; } } } tmp = ggml_rope_ext_inplace(ctx0, tmp, shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); tmp = ggml_cpy(ctx0, tmp, cur); } else { // we rotate only the first n_rot dimensions tmp = ggml_rope_ext_inplace(ctx0, cur, shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); } return tmp; } ggml_tensor * llama_context::build_inp_embd( ggml_context * ctx0, ggml_tensor * tok_embd, const llama_ubatch & ubatch) { const auto & hparams = model.hparams; const int64_t n_embd = hparams.n_embd; struct ggml_tensor * inpL; if (ubatch.token) { inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens); //cb(inp_tokens, "inp_tokens", -1); ggml_set_input(inp_tokens); inpL = ggml_get_rows(ctx0, tok_embd, inp_tokens); // apply lora for embedding tokens if needed for (const auto & lora : loras) { struct llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd); if (lw == nullptr) { continue; } const float adapter_scale = lora.second; const float scale = lw->get_scale(lora.first->alpha, adapter_scale); struct ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat( ctx0, lw->b, // non-transposed lora_b ggml_get_rows(ctx0, lw->a, inp_tokens) ), scale); inpL = ggml_add(ctx0, inpL, inpL_delta); } } else { inp_embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens); inpL = inp_embd; ggml_set_input(inp_embd); } // For Granite architecture if (hparams.f_embedding_scale != 0.0f) { inpL = ggml_scale(ctx0, inpL, hparams.f_embedding_scale); } //cb(inpL, "inp_embd", -1); return inpL; } ggml_tensor * llama_context::build_inp_pos( ggml_context * ctx0, int32_t n_tokens) { inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens*n_pos_per_token()); ggml_set_input(inp_pos); return inp_pos; } ggml_tensor * llama_context::build_inp_out_ids( ggml_context * ctx0, int32_t n_tokens, bool worst_case) { const int32_t n_out_ids = worst_case ? n_tokens : n_outputs; inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_out_ids); ggml_set_input(inp_out_ids); return inp_out_ids; } ggml_tensor * llama_context::build_inp_mean( ggml_context * ctx0, int32_t n_tokens) { inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens); ggml_set_input(inp_mean); return inp_mean; } ggml_tensor * llama_context::build_inp_cls( ggml_context * ctx0, int32_t n_tokens) { inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); ggml_set_input(inp_cls); return inp_cls; } // // state // class llama_io_write_dummy : public llama_io_write_i { public: llama_io_write_dummy() = default; void write(const void * /* src */, size_t size) override { size_written += size; } void write_tensor(const ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override { size_written += size; } size_t n_bytes() override { return size_written; } private: size_t size_written = 0; }; class llama_io_write_buffer : public llama_io_write_i { public: llama_io_write_buffer( uint8_t * p, size_t len) : ptr(p), buf_size(len) {} void write(const void * src, size_t size) override { if (size > buf_size) { throw std::runtime_error("unexpectedly reached end of buffer"); } memcpy(ptr, src, size); ptr += size; size_written += size; buf_size -= size; } void write_tensor(const ggml_tensor * tensor, size_t offset, size_t size) override { if (size > buf_size) { throw std::runtime_error("unexpectedly reached end of buffer"); } ggml_backend_tensor_get(tensor, ptr, offset, size); ptr += size; size_written += size; buf_size -= size; } size_t n_bytes() override { return size_written; } private: uint8_t * ptr; size_t buf_size = 0; size_t size_written = 0; }; class llama_io_read_buffer : public llama_io_read_i { public: llama_io_read_buffer(const uint8_t * p, size_t len) : ptr(p), buf_size(len) {} const uint8_t * read(size_t size) override { const uint8_t * base_ptr = ptr; if (size > buf_size) { throw std::runtime_error("unexpectedly reached end of buffer"); } ptr += size; size_read += size; buf_size -= size; return base_ptr; } void read_to(void * dst, size_t size) override { memcpy(dst, read(size), size); } size_t n_bytes() override { return size_read; } private: const uint8_t * ptr; size_t buf_size = 0; size_t size_read = 0; }; class llama_io_write_file : public llama_io_write_i { public: llama_io_write_file(llama_file * f) : file(f) {} void write(const void * src, size_t size) override { file->write_raw(src, size); size_written += size; } void write_tensor(const ggml_tensor * tensor, size_t offset, size_t size) override { temp_buffer.resize(size); ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size); write(temp_buffer.data(), temp_buffer.size()); } size_t n_bytes() override { return size_written; } private: llama_file * file; size_t size_written = 0; std::vector temp_buffer; }; class llama_io_read_file : public llama_io_read_i { public: llama_io_read_file(llama_file * f) : file(f) {} void read_to(void * dst, size_t size) override { file->read_raw(dst, size); size_read += size; } const uint8_t * read(size_t size) override { temp_buffer.resize(size); read_to(temp_buffer.data(), size); return temp_buffer.data(); } size_t n_bytes() override { return size_read; } private: llama_file * file; size_t size_read = 0; std::vector temp_buffer; }; size_t llama_context::state_get_size() { llama_io_write_dummy io; try { return state_get_data(io); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what()); return 0; } } size_t llama_context::state_get_data(uint8_t * dst, size_t size) { llama_io_write_buffer io(dst, size); try { return state_get_data(io); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what()); return 0; } } size_t llama_context::state_set_data(const uint8_t * src, size_t size) { llama_io_read_buffer io(src, size); try { return state_set_data(io); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what()); return 0; } } size_t llama_context::state_seq_get_size(llama_seq_id seq_id) { llama_io_write_dummy io; try { return state_seq_get_data(io, seq_id); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what()); return 0; } } size_t llama_context::state_seq_get_data(llama_seq_id seq_id, uint8_t * dst, size_t size) { llama_io_write_buffer io(dst, size); try { return state_seq_get_data(io, seq_id); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what()); return 0; } } size_t llama_context::state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size) { llama_io_read_buffer io(src, size); try { return state_seq_set_data(io, seq_id); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what()); return 0; } } bool llama_context::state_load_file(const char * filepath, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { llama_file file(filepath, "rb"); // sanity checks { const uint32_t magic = file.read_u32(); const uint32_t version = file.read_u32(); if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) { LLAMA_LOG_ERROR("%s: unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version); return false; } } // load the prompt { const uint32_t n_token_count = file.read_u32(); if (n_token_count > n_token_capacity) { LLAMA_LOG_ERROR("%s: token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); return false; } file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); *n_token_count_out = n_token_count; } // restore the context state { const size_t n_state_size_cur = file.size() - file.tell(); llama_io_read_file io( &file); const size_t n_read = state_set_data(io); if (n_read != n_state_size_cur) { LLAMA_LOG_ERROR("%s: did not read all of the session file data! size %zu, got %zu\n", __func__, n_state_size_cur, n_read); return false; } } return true; } bool llama_context::state_save_file(const char * filepath, const llama_token * tokens, size_t n_token_count) { llama_file file(filepath, "wb"); file.write_u32(LLAMA_SESSION_MAGIC); file.write_u32(LLAMA_SESSION_VERSION); // save the prompt file.write_u32((uint32_t) n_token_count); file.write_raw(tokens, sizeof(llama_token) * n_token_count); // save the context state using stream saving llama_io_write_file io(&file); state_get_data(io); return true; } size_t llama_context::state_seq_load_file(llama_seq_id seq_id, const char * filepath, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { llama_file file(filepath, "rb"); // version checks { const uint32_t magic = file.read_u32(); const uint32_t version = file.read_u32(); if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) { LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version); return 0; } } // load the prompt { const uint32_t n_token_count = file.read_u32(); if (n_token_count > n_token_capacity) { LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); return 0; } file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); *n_token_count_out = n_token_count; } // restore the context state { const size_t state_size = file.size() - file.tell(); llama_io_read_file io(&file); const size_t nread = state_seq_set_data(io, seq_id); if (!nread) { LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__); return 0; } GGML_ASSERT(nread <= state_size); GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell()); } return file.tell(); } size_t llama_context::state_seq_save_file(llama_seq_id seq_id, const char * filepath, const llama_token * tokens, size_t n_token_count) { llama_file file(filepath, "wb"); file.write_u32(LLAMA_STATE_SEQ_MAGIC); file.write_u32(LLAMA_STATE_SEQ_VERSION); // save the prompt file.write_u32((uint32_t) n_token_count); file.write_raw(tokens, sizeof(llama_token) * n_token_count); // save the context state using stream saving llama_io_write_file io(&file); state_seq_get_data(io, seq_id); const size_t res = file.tell(); GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + io.n_bytes()); return res; } size_t llama_context::state_get_data(llama_io_write_i & io) { // write model info { const std::string arch_str = llm_arch_name(model.arch); io.write_string(arch_str); // TODO: add more model-specific info which should prevent loading the session file if not identical } // write output ids { output_reorder(); const auto n_outputs = this->n_outputs; const auto & output_ids = this->output_ids; std::vector w_output_pos; GGML_ASSERT(n_outputs <= output_size); w_output_pos.resize(n_outputs); // build a more compact representation of the output ids for (size_t i = 0; i < n_batch(); ++i) { // map an output id to a position in the batch int32_t pos = output_ids[i]; if (pos >= 0) { GGML_ASSERT(pos < n_outputs); w_output_pos[pos] = i; } } io.write(&n_outputs, sizeof(n_outputs)); if (n_outputs) { io.write(w_output_pos.data(), n_outputs * sizeof(int32_t)); } } // write logits { const uint64_t logits_size = std::min((uint64_t) this->logits_size, (uint64_t) n_outputs * model.vocab.n_tokens()); io.write(&logits_size, sizeof(logits_size)); if (logits_size) { io.write(logits, logits_size * sizeof(float)); } } // write embeddings { const uint64_t embd_size = std::min((uint64_t) this->embd_size, (uint64_t) n_outputs * model.hparams.n_embd); io.write(&embd_size, sizeof(embd_size)); if (embd_size) { io.write(embd, embd_size * sizeof(float)); } } return io.n_bytes(); } size_t llama_context::state_set_data(llama_io_read_i & io) { // read model info { const std::string cur_arch_str = llm_arch_name(model.arch); std::string arch_str; io.read_string(arch_str); if (cur_arch_str != arch_str) { throw std::runtime_error(format("wrong model arch: '%s' instead of '%s'", arch_str.c_str(), cur_arch_str.c_str())); } // TODO: add more info which needs to be identical but which is not verified otherwise } // read output ids { auto n_outputs = this->n_outputs; io.read_to(&n_outputs, sizeof(n_outputs)); if (n_outputs > output_reserve(n_outputs)) { throw std::runtime_error("could not reserve outputs"); } std::vector output_pos; if (n_outputs) { output_pos.resize(n_outputs); io.read_to(output_pos.data(), n_outputs * sizeof(int32_t)); for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) { int32_t id = output_pos[i]; if ((uint32_t) id >= n_batch()) { throw std::runtime_error(format("invalid output id, %d does not fit in batch size of %u", id, n_batch())); } this->output_ids[id] = i; } this->n_outputs = n_outputs; } } // read logits { uint64_t logits_size; io.read_to(&logits_size, sizeof(logits_size)); if (this->logits_size < logits_size) { throw std::runtime_error("logits buffer too small"); } if (logits_size) { io.read_to(this->logits, logits_size * sizeof(float)); } } // read embeddings { uint64_t embd_size; io.read_to(&embd_size, sizeof(embd_size)); if (this->embd_size < embd_size) { throw std::runtime_error("embeddings buffer too small"); } if (embd_size) { io.read_to(this->embd, embd_size * sizeof(float)); } } return io.n_bytes(); } size_t llama_context::state_seq_get_data(llama_io_write_i & io, llama_seq_id seq_id) { GGML_UNUSED(seq_id); return io.n_bytes(); } size_t llama_context::state_seq_set_data(llama_io_read_i & io, llama_seq_id seq_id) { GGML_UNUSED(seq_id); return io.n_bytes(); } void llama_context::perf_reset() { t_start_us = ggml_time_us(); t_eval_us = n_eval = 0; t_p_eval_us = n_p_eval = 0; } // // llama_context_kv_self // llama_context_kv_self::llama_context_kv_self( const llama_model & model, const llama_context_params & params) : llama_context(model, params), kv_self(model.hparams) { const auto & hparams = model.hparams; LLAMA_LOG_DEBUG("%s: n_ctx = %u\n", __func__, cparams.n_ctx); cparams.n_ctx = GGML_PAD(cparams.n_ctx, get_ctx_padding(cparams)); LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx); // build worst-case graph for encoder if a model contains encoder is_encoding = llama_model_has_encoder(&model); // TODO: model.has_encoder() uint32_t kv_size = cparams.n_ctx; ggml_type type_k = params.type_k; ggml_type type_v = params.type_v; // Mamba only needs a constant number of KV cache cells per sequence if (llama_model_is_recurrent(&model)) { // Mamba needs at least as many KV cells as there are sequences kept at any time kv_size = std::max((uint32_t) 1, params.n_seq_max); // it's probably best to keep as much precision as possible for the states type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states } GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0); GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0); if (!hparams.vocab_only) { if (!kv_self.init(model, cparams, type_k, type_v, kv_size, cparams.offload_kqv)) { LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__); throw std::runtime_error("failed to initialize self-attention cache"); } { const size_t memory_size_k = kv_self.size_k_bytes(); const size_t memory_size_v = kv_self.size_v_bytes(); LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); } } } llama_context_kv_self::~llama_context_kv_self() = default; uint32_t llama_context_kv_self::n_seq_max() const { // TODO: add notion of n_seq_max to llama_kv_cache and use it here return kv_self.size; } llama_kv_cache * llama_context_kv_self::get_kv_self() { return &kv_self; } const llama_kv_cache * llama_context_kv_self::get_kv_self() const { return &kv_self; } ggml_cgraph * llama_context_kv_self::graph_init() { inp_KQ_mask = nullptr; inp_KQ_mask_cnv = nullptr; inp_KQ_mask_swa = nullptr; inp_KQ_mask_swa_cnv = nullptr; inp_KQ_mask_cross = nullptr; inp_k_shift = nullptr; inp_s_copy = nullptr; inp_s_mask = nullptr; inp_embd_enc = nullptr; inp_pos_bucket = nullptr; return llama_context::graph_init(); } int llama_context_kv_self::encode(llama_batch & inp_batch) { is_encoding = true; if (inp_batch.n_tokens == 0) { LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__); return -1; } // temporary allocate memory for the input batch if needed // TODO: this is incorrect for multiple sequences because pos_max() is the maximum across all sequences llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : pos_max() + 1); const llama_batch & batch = batch_allocr.batch; const int32_t n_tokens = batch.n_tokens; const auto & hparams = model.hparams; GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT if (batch.token) { for (int32_t i = 0; i < n_tokens; ++i) { if (batch.token[i] < 0 || (uint32_t) batch.token[i] >= model.vocab.n_tokens()) { LLAMA_LOG_ERROR("%s: invalid token[%d] = %d\n", __func__, i, batch.token[i]); return -1; } } } // micro-batching is not possible for non-causal encoding, so we process the batch in a single shot GGML_ASSERT(cparams.n_ubatch >= (uint32_t) n_tokens && "encoder requires n_ubatch >= n_tokens"); if (t_compute_start_us == 0) { t_compute_start_us = ggml_time_us(); } n_queued_tokens += n_tokens; const int64_t n_embd = hparams.n_embd; sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true); const llama_ubatch ubatch = sbatch.split_simple(n_tokens); // reserve output buffer if (output_reserve(n_tokens) < n_tokens) { LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_tokens); return -2; }; for (int32_t i = 0; i < n_tokens; ++i) { output_ids[i] = i; } inp_embd_enc = NULL; n_outputs = n_tokens; //batch_manager->prepare(ubatch); // TODO: do reserve GGML_ASSERT(need_reserve == false); ggml_backend_sched_reset(sched.get()); ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data); auto * gf = graph_init(); auto res = graph_build(ctx_compute.get(), gf, ubatch, false); ggml_backend_sched_alloc_graph(sched.get(), gf); input_set(ubatch); const auto compute_status = graph_compute(gf, n_tokens > 1); switch (compute_status) { case GGML_STATUS_SUCCESS: break; case GGML_STATUS_ABORTED: return 2; case GGML_STATUS_ALLOC_FAILED: return -2; case GGML_STATUS_FAILED: default: return -3; } auto * t_embd = res.t_embd_pooled ? res.t_embd_pooled : res.t_embd; // extract embeddings if (t_embd) { ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd); GGML_ASSERT(backend_embd != nullptr); if (llama_model_has_decoder(&model)) { embd_enc.resize(n_tokens*n_embd); float * embd_out = embd_enc.data(); ggml_backend_tensor_get_async(backend_embd, t_embd, embd_out, 0, n_tokens*n_embd*sizeof(float)); GGML_ASSERT(!ubatch.equal_seqs); // TODO: handle equal splits // remember the sequence ids used during the encoding - needed for cross attention later seq_ids_enc.resize(n_tokens); for (int32_t i = 0; i < n_tokens; i++) { for (int s = 0; s < ubatch.n_seq_id[i]; s++) { llama_seq_id seq_id = ubatch.seq_id[i][s]; seq_ids_enc[i].insert(seq_id); } } } else { GGML_ASSERT(embd != nullptr); switch (cparams.pooling_type) { case LLAMA_POOLING_TYPE_NONE: { // extract token embeddings GGML_ASSERT(embd != nullptr); float * embd_out = embd; GGML_ASSERT(n_tokens*n_embd <= (int64_t) embd_size); ggml_backend_tensor_get_async(backend_embd, t_embd, embd_out, 0, n_tokens*n_embd*sizeof(float)); } break; case LLAMA_POOLING_TYPE_MEAN: case LLAMA_POOLING_TYPE_CLS: case LLAMA_POOLING_TYPE_LAST: { // extract sequence embeddings auto & embd_seq_out = embd_seq; embd_seq_out.clear(); GGML_ASSERT(!ubatch.equal_seqs); // TODO: handle equal splits for (int32_t i = 0; i < n_tokens; i++) { const llama_seq_id seq_id = ubatch.seq_id[i][0]; if (embd_seq_out.find(seq_id) != embd_seq_out.end()) { continue; } embd_seq_out[seq_id].resize(n_embd); ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float)); } } break; case LLAMA_POOLING_TYPE_RANK: { // TODO: this likely should be the same logic as in llama_decoder_internal, but better to // wait for an encoder model that requires this pooling type in order to test it // https://github.com/ggerganov/llama.cpp/pull/9510 GGML_ABORT("RANK pooling not implemented yet"); } case LLAMA_POOLING_TYPE_UNSPECIFIED: { GGML_ABORT("unknown pooling type"); } } } } // Reset state for the next token before backend sync, to allow the CPU activities in the reset to // overlap with device computation. ggml_backend_sched_reset(sched.get()); return 0; } int llama_context_kv_self::decode(llama_batch & inp_batch) { is_encoding = false; if (inp_batch.n_tokens == 0) { LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__); return -1; } // temporary allocate memory for the input batch if needed // TODO: this is incorrect for multiple sequences because pos_max() is the maximum across all sequences llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : pos_max() + 1); const llama_batch & batch = batch_allocr.batch; const auto & vocab = model.vocab; const auto & hparams = model.hparams; const int32_t n_vocab = vocab.n_tokens(); const int64_t n_tokens_all = batch.n_tokens; const int64_t n_embd = hparams.n_embd; // TODO: remove this stuff class batch_guard { public: batch_guard(llama_kv_cache & kv_self) : kv_slot_restorer(kv_self) { } ~batch_guard() { if (!is_done) { kv_slot_restorer.restore(); } } void done() { is_done = true; } void save(const llama_kv_cache_slot_info & slot_info) { kv_slot_restorer.save(slot_info); } private: bool is_done = false; llama_kv_slot_restorer kv_slot_restorer; }; batch_guard bg(kv_self); GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT if (batch.token) { for (int64_t i = 0; i < n_tokens_all; ++i) { if (batch.token[i] < 0 || (uint32_t) batch.token[i] >= model.vocab.n_tokens()) { LLAMA_LOG_ERROR("%s: invalid token[%" PRId64 "] = %d\n", __func__, i, batch.token[i]); throw std::runtime_error("invalid token"); } } } GGML_ASSERT(n_tokens_all <= cparams.n_batch); GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens"); if (t_compute_start_us == 0) { t_compute_start_us = ggml_time_us(); } n_queued_tokens += n_tokens_all; // this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE; embd_seq.clear(); int64_t n_outputs_all = 0; // count outputs if (batch.logits && !embd_pooled) { for (uint32_t i = 0; i < n_tokens_all; ++i) { n_outputs_all += batch.logits[i] != 0; } } else if (logits_all || embd_pooled) { n_outputs_all = n_tokens_all; } else { // keep last output only n_outputs_all = 1; } const bool logits_all = n_outputs_all == n_tokens_all; sbatch.from_batch(batch, n_embd, /* simple_split */ !kv_self.recurrent, /* logits_all */ logits_all); // reserve output buffer // TODO: move to batch manager? if (output_reserve(n_outputs_all) < n_outputs_all) { LLAMA_LOG_ERROR("%s: could not reserve space for batch with %" PRId64 " outputs\n", __func__, n_outputs_all); return -2; }; int64_t n_outputs_prev = 0; while (sbatch.n_tokens > 0) { llama_ubatch ubatch = llama_ubatch(); const auto & n_ubatch = cparams.n_ubatch; const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE; if (kv_self.recurrent) { if (embd_pooled) { // Pooled embeddings cannot be split across ubatches (yet) ubatch = sbatch.split_seq(n_ubatch); } else { // recurrent model architectures are easier to implement // with equal-length sequences ubatch = sbatch.split_equal(n_ubatch); } } else { ubatch = sbatch.split_simple(n_ubatch); } // count the outputs in this u_batch { int32_t n_outputs_new = 0; if (n_outputs_all == n_tokens_all) { n_outputs_new = ubatch.n_tokens; } else { GGML_ASSERT(ubatch.output); for (uint32_t i = 0; i < ubatch.n_tokens; i++) { n_outputs_new += (int32_t) (ubatch.output[i] != 0); } } // needs to happen before the graph is built n_outputs = n_outputs_new; } // non-causal masks do not use the KV cache if (hparams.causal_attn) { kv_self_update(); // if we have enough unused cells before the current head -> // better to start searching from the beginning of the cache, hoping to fill it if (kv_self.head > kv_self.used + 2*ubatch.n_tokens) { kv_self.head = 0; } const auto slot_info = kv_self.find_slot(ubatch); if (!slot_info) { LLAMA_LOG_ERROR("%s: failed to prepare ubatch\n", __func__); return -3; } bg.save(slot_info); if (!kv_self.recurrent) { // a heuristic, to avoid attending the full cache if it is not yet utilized // after enough generations, the benefit from this heuristic disappears // if we start defragmenting the cache, the benefit from this will be more important const uint32_t pad = kv_self.get_padding(cparams); kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(kv_self.cell_max(), pad))); //kv_self.n = llama_kv_cache_cell_max(kv_self); } } //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head); // reserve a worst case graph if needed if (need_reserve) { LLAMA_LOG_DEBUG("%s: reserving a worst case graph\n", __func__); // build worst-case graph uint32_t n_seqs = 1; // TODO: worst-case number of sequences uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch); llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; auto * gf = graph_init(); graph_build(ctx_compute.get(), gf, ubatch, true); // initialize scheduler with the worst-case graph ggml_backend_sched_reset(sched.get()); if (!ggml_backend_sched_reserve(sched.get(), gf)) { LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); } need_reserve = false; } ggml_backend_sched_reset(sched.get()); ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data); auto * gf = graph_init(); auto res = graph_build(ctx_compute.get(), gf, ubatch, false); // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); ggml_backend_sched_alloc_graph(sched.get(), gf); input_set(ubatch); const auto compute_status = graph_compute(gf, ubatch.n_tokens > 1); if (compute_status != GGML_STATUS_SUCCESS) { switch (compute_status) { case GGML_STATUS_ABORTED: return 2; case GGML_STATUS_ALLOC_FAILED: return -2; case GGML_STATUS_FAILED: default: return -3; } } // update the kv ring buffer { kv_self.head += ubatch.n_tokens; // Ensure kv cache head points to a valid index. if (kv_self.head >= kv_self.size) { kv_self.head = 0; } } // plot the computation graph in dot format (for debugging purposes) //if (n_past%100 == 0) { // ggml_graph_dump_dot(gf, NULL, "llama.dot"); //} auto * t_logits = cparams.embeddings ? nullptr : res.t_logits; auto * t_embd = cparams.embeddings ? res.t_embd : nullptr; if (t_embd && res.t_embd_pooled) { t_embd = res.t_embd_pooled; } // extract logits if (t_logits && n_outputs > 0) { ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(sched.get(), t_logits); GGML_ASSERT(backend_res != nullptr); GGML_ASSERT(logits != nullptr); float * logits_out = logits + n_outputs_prev*n_vocab; if (n_outputs) { GGML_ASSERT( n_outputs_prev + n_outputs <= n_outputs_all); GGML_ASSERT((n_outputs_prev + n_outputs)*n_vocab <= (int64_t) logits_size); ggml_backend_tensor_get_async(backend_res, t_logits, logits_out, 0, n_outputs*n_vocab*sizeof(float)); } } // extract embeddings if (t_embd && n_outputs > 0) { ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd); GGML_ASSERT(backend_embd != nullptr); switch (cparams.pooling_type) { case LLAMA_POOLING_TYPE_NONE: { // extract token embeddings GGML_ASSERT(embd != nullptr); float * embd_out = embd + n_outputs_prev*n_embd; if (n_outputs) { GGML_ASSERT( n_outputs_prev + n_outputs <= n_outputs_all); GGML_ASSERT((n_outputs_prev + n_outputs)*n_embd <= (int64_t) embd_size); ggml_backend_tensor_get_async(backend_embd, t_embd, embd_out, 0, n_outputs*n_embd*sizeof(float)); } } break; case LLAMA_POOLING_TYPE_MEAN: case LLAMA_POOLING_TYPE_CLS: case LLAMA_POOLING_TYPE_LAST: { // extract sequence embeddings (cleared before processing each batch) auto & embd_seq_out = embd_seq; for (uint32_t s = 0; s < ubatch.n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; if (embd_seq_out.find(seq_id) != embd_seq_out.end()) { continue; } embd_seq_out[seq_id].resize(n_embd); ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float)); } } break; case LLAMA_POOLING_TYPE_RANK: { // extract the rerank score - a single float per sequence auto & embd_seq_out = embd_seq; for (uint32_t s = 0; s < ubatch.n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; if (embd_seq_out.find(seq_id) != embd_seq_out.end()) { continue; } embd_seq_out[seq_id].resize(1); ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (seq_id)*sizeof(float), sizeof(float)); } } break; case LLAMA_POOLING_TYPE_UNSPECIFIED: { GGML_ABORT("unknown pooling type"); } } } n_outputs_prev += n_outputs; } // finalize the batch processing bg.done(); // set output mappings { bool sorted_output = true; GGML_ASSERT(sbatch.out_ids.size() == (size_t) n_outputs_all); for (int64_t i = 0; i < n_outputs_all; ++i) { int64_t out_id = sbatch.out_ids[i]; output_ids[out_id] = i; if (out_id != i) { sorted_output = false; } } if (sorted_output) { sbatch.out_ids.clear(); } } // set to total number of outputs in the batch, for use in llama_get_logits_ith n_outputs = n_outputs_all; // wait for the computation to finish (automatically done when obtaining the model output) //synchronize(); // decide if we need to defrag the kv cache if (cparams.causal_attn && cparams.defrag_thold > 0.0f) { // - do not defrag small contexts (i.e. < 2048 tokens) // - count the padding towards the number of used tokens const float fragmentation = kv_self.n >= 2048 ? std::max(0.0f, 1.0f - float(kv_self.used + get_ctx_padding(cparams))/float(kv_self.n)) : 0.0f; // queue defragmentation for next llama_kv_cache_update if (fragmentation > cparams.defrag_thold) { LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation); kv_self.defrag(); } } // Reset state for the next token before backend sync, to allow the CPU activities in the reset to // overlap with device computation. ggml_backend_sched_reset(sched.get()); return 0; } llama_pos llama_context_kv_self::pos_max() const { return kv_self.pos_max(); } uint32_t llama_context_kv_self::get_ctx_padding(const llama_cparams & cparams) const { return kv_self.get_padding(cparams); } // llama input void llama_context_kv_self::input_set(const llama_ubatch & ubatch) { const llama_hparams & hparams = model.hparams; if (inp_k_shift) { assert(ggml_backend_buffer_is_host(inp_k_shift->buffer)); int32_t * data = (int32_t *) inp_k_shift->data; for (uint32_t i = 0; i < kv_self.size; ++i) { data[i] = kv_self.cells[i].delta; } // the K-shift graph requires just this input return; } // call base functionality llama_context::input_set(ubatch); if (inp_KQ_mask || inp_KQ_mask_swa) { // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache. if (cparams.causal_attn && !is_encoding) { const int64_t n_kv = kv_self.n; const int64_t n_tokens = ubatch.n_tokens; const int64_t n_seq_tokens = ubatch.n_seq_tokens; const int64_t n_seqs = ubatch.n_seqs; float * data = nullptr; float * data_swa = nullptr; if (inp_KQ_mask) { GGML_ASSERT(ggml_backend_buffer_is_host(inp_KQ_mask->buffer)); data = (float *) inp_KQ_mask->data; } if (inp_KQ_mask_swa) { GGML_ASSERT(ggml_backend_buffer_is_host(inp_KQ_mask_swa->buffer)); data_swa = (float *) inp_KQ_mask_swa->data; } // For causal attention, use only the previous KV cells // of the correct sequence for each token of the ubatch. // It's assumed that if a token in the batch has multiple sequences, they are equivalent. for (int h = 0; h < 1; ++h) { for (int s = 0; s < n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; for (int j = 0; j < n_seq_tokens; ++j) { const llama_pos pos = ubatch.pos[s*n_seq_tokens + j]; for (int i = 0; i < n_kv; ++i) { float f; if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { f = -INFINITY; } else { if (hparams.use_alibi) { f = -std::abs(kv_self.cells[i].pos - pos); } else { f = 0.0f; } } if (data) { data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f; } // may need to cut off old tokens for sliding window if (data_swa) { if (pos - kv_self.cells[i].pos >= (int32_t)hparams.n_swa) { f = -INFINITY; } data_swa[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f; } } } } if (data) { for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { for (int j = 0; j < n_kv; ++j) { data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY; } } } if (data_swa) { for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { for (int j = 0; j < n_kv; ++j) { data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY; } } } } } else { const int64_t n_tokens = ubatch.n_tokens; const int64_t n_seq_tokens = ubatch.n_seq_tokens; const int64_t n_seqs = ubatch.n_seqs; // when using kv cache, the mask needs to match the kv cache size const int64_t n_stride = hparams.causal_attn && !is_encoding ? kv_self.n : n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(inp_KQ_mask->buffer)); float * data = (float *) inp_KQ_mask->data; for (int h = 0; h < 1; ++h) { for (int s1 = 0; s1 < n_seqs; ++s1) { const llama_seq_id seq_id = ubatch.seq_id[s1][0]; for (int j = 0; j < n_seq_tokens; ++j) { const int32_t tj = s1*n_seq_tokens + j; for (int s0 = 0; s0 < n_seqs; ++s0) { for (int i = 0; i < n_seq_tokens; ++i) { const int32_t ti = s0*n_seq_tokens + i; float f = -INFINITY; for (int s = 0; s < ubatch.n_seq_id[s0]; ++s) { if (ubatch.seq_id[s0][s] == seq_id) { if (hparams.use_alibi) { f = -std::abs(ubatch.pos[ti] - ubatch.pos[tj]); } else { f = 0.0f; } break; } } data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f; } } for (int i = n_tokens; i < n_stride; ++i) { data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY; } } } } } } if (kv_self.recurrent) { const int64_t n_kv = kv_self.n; if (inp_s_mask) { GGML_ASSERT(ggml_backend_buffer_is_host(inp_s_mask->buffer)); float * data = (float *) inp_s_mask->data; // clear unused states for (int i = 0; i < n_kv; ++i) { const uint32_t cell_id = i + kv_self.head; llama_kv_cell & kv_cell = kv_self.cells[cell_id]; data[i] = (float) (kv_cell.src >= 0); // TODO: do not mutate the KV cache // only clear once if (kv_cell.src < 0) { kv_cell.src = cell_id; } } } if (inp_s_copy) { GGML_ASSERT(ggml_backend_buffer_is_host(inp_s_copy->buffer)); int32_t * data = (int32_t *) inp_s_copy->data; // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n for (uint32_t i = 0; i < n_kv; ++i) { const uint32_t cell_id = i + kv_self.head; llama_kv_cell & kv_cell = kv_self.cells[cell_id]; // prevent out-of-bound sources if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self.size) { kv_cell.src = cell_id; } data[i] = kv_cell.src; // TODO: do not mutate the KV cache // ensure copy only happens once if (kv_cell.src != (int32_t) cell_id) { kv_cell.src = cell_id; } } } } if (inp_pos_bucket) { const int64_t n_tokens = ubatch.n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(inp_pos_bucket->buffer)); GGML_ASSERT(!ubatch.equal_seqs); // TODO: use ubatch.n_seqs instead of failing static const auto relative_position_bucket = [](llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) { // TODO move to hparams if a T5 variant appears that uses a different value const int64_t max_distance = 128; if (bidirectional) { n_buckets >>= 1; } const int64_t max_exact = n_buckets >> 1; int32_t relative_position = x - y; int32_t relative_bucket = 0; if (bidirectional) { relative_bucket += (relative_position > 0) * n_buckets; relative_position = abs(relative_position); } else { relative_position = -std::min(relative_position, 0); } int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact)); relative_position_if_large = std::min(relative_position_if_large, n_buckets - 1); relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large); return relative_bucket; }; int32_t * data = (int32_t *) inp_pos_bucket->data; if (!is_encoding) { const int64_t n_kv = kv_self.n; for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { for (int i = 0; i < n_kv; ++i) { data[h*(n_kv*n_tokens) + j*n_kv + i] = relative_position_bucket(kv_self.cells[i].pos, ubatch.pos[j], hparams.n_rel_attn_bkts, is_encoding); } } } } else { for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { for (int i = 0; i < n_tokens; ++i) { data[h*(n_tokens*n_tokens) + j*n_tokens + i] = relative_position_bucket(ubatch.pos[i], ubatch.pos[j], hparams.n_rel_attn_bkts, is_encoding); } } } } } if (!is_encoding && inp_embd_enc) { assert(inp_embd_enc->type == GGML_TYPE_F32); assert((size_t) ggml_nelements(inp_embd_enc) == embd_enc.size()); ggml_backend_tensor_set(inp_embd_enc, embd_enc.data(), 0, ggml_nbytes(inp_embd_enc)); } if (!is_encoding && inp_KQ_mask_cross) { const int64_t n_output_enc = embd_enc.size() / hparams.n_embd; const int64_t n_tokens = ubatch.n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(inp_KQ_mask_cross->buffer)); GGML_ASSERT(!ubatch.equal_seqs); // TODO: use ubatch.n_seqs instead of failing float * data = (float *) inp_KQ_mask_cross->data; for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { for (int i = 0; i < n_output_enc; ++i) { float f = -INFINITY; for (int s = 0; s < ubatch.n_seq_id[j]; ++s) { const llama_seq_id seq_id = ubatch.seq_id[j][s]; if (seq_ids_enc[i].find(seq_id) != seq_ids_enc[i].end()) { f = 0.0f; } } data[h*(n_output_enc*n_tokens) + j*n_output_enc + i] = f; } } for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { for (int j = 0; j < n_output_enc; ++j) { data[h*(n_output_enc*n_tokens) + i*n_output_enc + j] = -INFINITY; } } } } } void llama_context_kv_self::kv_self_update() { auto & kv = kv_self; if (kv.has_shift) { if (!kv.can_shift) { GGML_ABORT("The current context does not support K-shift"); } // apply K-shift if needed if (model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE) { ggml_backend_sched_reset(sched.get()); auto * gf = graph_init(); build_kv_self_shift(ctx_compute.get(), gf); ggml_backend_sched_alloc_graph(sched.get(), gf); input_set({}); graph_compute(gf, false); need_reserve = true; } { kv.has_shift = false; for (uint32_t i = 0; i < kv.size; ++i) { kv.cells[i].delta = 0; } } } // defragment the KV cache if needed if (kv.do_defrag) { ggml_backend_sched_reset(sched.get()); auto * gf = graph_init(); build_kv_self_defrag(ctx_compute.get(), gf); ggml_backend_sched_alloc_graph(sched.get(), gf); // no input //input_set({}); graph_compute(gf, false); kv.do_defrag = false; need_reserve = true; } } ggml_tensor * llama_context_kv_self::build_inp_k_shift(ggml_context * ctx0) { inp_k_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx()); ggml_set_input(inp_k_shift); return inp_k_shift; } void llama_context_kv_self::build_attn_inp( ggml_context * ctx0, int32_t n_tokens, bool causal, bool swa, bool worst_case) { const auto & hparams = model.hparams; const auto n_kv = worst_case ? kv_self.size : kv_self.n; inp_KQ_mask = causal ? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)) : ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); //cb(inp_KQ_mask, "KQ_mask", -1); ggml_set_input(inp_KQ_mask); inp_KQ_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp_KQ_mask, GGML_TYPE_F16) : inp_KQ_mask; if (swa) { GGML_ASSERT(hparams.n_swa > 0); inp_KQ_mask_swa = causal ? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)) : ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); //cb(inp_KQ_mask_swa, "KQ_mask_swa", -1); ggml_set_input(inp_KQ_mask_swa); inp_KQ_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp_KQ_mask_swa, GGML_TYPE_F16) : inp_KQ_mask_swa; } } void llama_context_kv_self::build_attn_kv_store( ggml_context * ctx0, ggml_cgraph * graph, ggml_tensor * k_cur, ggml_tensor * v_cur, int32_t n_tokens, int64_t il, bool worst_case) { const auto & hparams = model.hparams; const auto & n_ctx = cparams.n_ctx; const auto kv_head = worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head; const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); GGML_ASSERT(kv_self.size == n_ctx); struct ggml_tensor * k_cache_view = ggml_view_1d(ctx0, kv_self.k_l[il], n_tokens*n_embd_k_gqa, ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa)*kv_head); //cb(k_cache_view, "k_cache_view", il); // note: storing RoPE-ed version of K in the KV cache ggml_build_forward_expand(graph, ggml_cpy(ctx0, k_cur, k_cache_view)); assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens); struct ggml_tensor * v_cache_view = nullptr; if (cparams.flash_attn) { v_cache_view = ggml_view_1d(ctx0, kv_self.v_l[il], n_tokens*n_embd_v_gqa, ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa)*kv_head); } else { // note: the V cache is transposed when not using flash attention v_cache_view = ggml_view_2d(ctx0, kv_self.v_l[il], n_tokens, n_embd_v_gqa, ( n_ctx)*ggml_element_size(kv_self.v_l[il]), (kv_head)*ggml_element_size(kv_self.v_l[il])); v_cur = ggml_transpose(ctx0, v_cur); } //cb(v_cache_view, "v_cache_view", il); ggml_build_forward_expand(graph, ggml_cpy(ctx0, v_cur, v_cache_view)); } ggml_tensor * llama_context_kv_self::build_attn_qkv( ggml_context * ctx0, ggml_cgraph * graph, ggml_tensor * wo, ggml_tensor * wo_b, ggml_tensor * q_cur, int32_t n_tokens, float kq_scale, int il, bool worst_case) { const auto & hparams = model.hparams; const auto & n_ctx = cparams.n_ctx; const auto & n_embd_head_k = hparams.n_embd_head_k; const auto & n_embd_head_v = hparams.n_embd_head_v; // TODO: improve bool is_sliding = false; switch (model.arch) { case LLM_ARCH_COHERE2: { const int32_t sliding_window_pattern = 4; is_sliding = il % sliding_window_pattern < (sliding_window_pattern - 1); } break; case LLM_ARCH_GEMMA2: { const int32_t sliding_window_pattern = 2; is_sliding = il % sliding_window_pattern < (sliding_window_pattern - 1); } break; case LLM_ARCH_PHI3: { is_sliding = hparams.n_swa > 0; } break; default: { is_sliding = false; } }; const auto & kq_mask = is_sliding ? inp_KQ_mask_swa_cnv : inp_KQ_mask_cnv; const auto n_kv = worst_case ? kv_self.size : kv_self.n; const int64_t n_head = hparams.n_head(il); const int64_t n_head_kv = hparams.n_head_kv(il); const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); struct ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3); //cb(q, "q", il); struct ggml_tensor * k = ggml_view_3d(ctx0, kv_self.k_l[il], n_embd_head_k, n_kv, n_head_kv, ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k), 0); //cb(k, "k", il); struct ggml_tensor * cur; if (cparams.flash_attn) { GGML_UNUSED(model); GGML_UNUSED(n_ctx); // split cached v into n_head heads (not transposed) struct ggml_tensor * v = ggml_view_3d(ctx0, kv_self.v_l[il], n_embd_head_v, n_kv, n_head_kv, ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa), ggml_row_size(kv_self.v_l[il]->type, n_embd_head_v), 0); //cb(v, "v", il); cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias, hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f); ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32); cur = ggml_reshape_2d(ctx0, cur, n_embd_head_v*n_head, n_tokens); } else { struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); //cb(kq, "kq", il); // note: this op tends to require high floating point range // while for some models F16 is enough, for others it is not, so we default to F32 here ggml_mul_mat_set_prec(kq, GGML_PREC_F32); if (model.arch == LLM_ARCH_GROK) { // need to do the following: // multiply by attn_output_multiplyer of 0.08838834764831845 // and then : // kq = 30 * tanh(kq / 30) // before the softmax below kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, 0.08838834764831845f/30.0f)); kq = ggml_scale(ctx0, kq, 30); } if (hparams.attn_soft_cap) { kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping); kq = ggml_tanh(ctx0, kq); kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping); } kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias); //cb(kq, "kq_soft_max_ext", il); GGML_ASSERT(kv_self.size == n_ctx); // split cached v into n_head heads struct ggml_tensor * v = ggml_view_3d(ctx0, kv_self.v_l[il], n_kv, n_embd_head_v, n_head_kv, ggml_element_size(kv_self.v_l[il])*n_ctx, ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v, 0); //cb(v, "v", il); struct ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq); //cb(kqv, "kqv", il); struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3); //cb(kqv_merged, "kqv_merged", il); cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens); //cb(cur, "kqv_merged_cont", il); if (!cparams.offload_kqv) { // all nodes between the KV store and the attention output are run on the CPU ggml_backend_sched_set_tensor_backend(sched.get(), cur, backend_cpu); } } ggml_build_forward_expand(graph, cur); if (wo) { cur = build_lora_mm(ctx0, wo, cur); } if (wo_b) { //cb(cur, "kqv_wo", il); } if (wo_b) { cur = ggml_add(ctx0, cur, wo_b); } return cur; } ggml_tensor * llama_context_kv_self::build_attn_soft_max( ggml_context * ctx0, ggml_tensor * kq, float kq_scale) { const auto & hparams = model.hparams; return ggml_soft_max_ext(ctx0, kq, inp_KQ_mask_cnv, kq_scale, hparams.f_max_alibi_bias); } void llama_context_kv_self::build_kv_self_shift( ggml_context * ctx0, ggml_cgraph * gf) { const auto & hparams = model.hparams; const auto & n_layer = hparams.n_layer; const auto & n_embd_head_k = hparams.n_embd_head_k; //const auto & n_embd_head_v = hparams.n_embd_head_v; //GGML_ASSERT(kv_self.size == n_ctx); ggml_tensor * inp_k_shift = build_inp_k_shift(ctx0); for (uint32_t il = 0; il < n_layer; ++il) { const int64_t n_head_kv = hparams.n_head_kv(il); const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); struct ggml_tensor * rope_factors = build_rope_factors(il); struct ggml_tensor * k = ggml_view_3d(ctx0, kv_self.k_l[il], n_embd_head_k, n_head_kv, kv_self.size, ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k), ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), 0); ggml_tensor * cur = build_rope_shift(ctx0, k, inp_k_shift, rope_factors, kv_self.k_l[il]->buffer); ggml_build_forward_expand(gf, cur); } } void llama_context_kv_self::build_kv_self_defrag( ggml_context * ctx0, ggml_cgraph * gf) { const auto & hparams = model.hparams; const uint32_t n_layer = hparams.n_layer; const uint32_t n_kv = kv_self.cell_max(); const uint32_t n_used = kv_self.used; assert(n_used <= n_kv); //const int64_t t_start = ggml_time_us(); // number of cells moved uint32_t n_moves = 0; // each move requires 6*n_layer tensors (see build_kv_self_defrag) // - source view, destination view, copy operation // - x2 for keys and values //const uint32_t max_moves = max_nodes()/(6*n_layer); // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516 const uint32_t max_moves = (max_nodes() - 2*n_layer)/(6*n_layer); // determine which KV cells to move where // // cell i moves to ids[i] // // if ids[i] == i || ids[i] == n_kv, then cell i is not moved // std::vector ids(n_kv, n_kv); for (uint32_t i0 = 0; i0 < n_used; ++i0) { const auto & cell0 = kv_self.cells[i0]; if (!cell0.is_empty()) { ids[i0] = i0; continue; } // found a hole - fill it with data from the end of the cache uint32_t nh = 1; // determine the size of the hole while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) { nh++; } uint32_t nf = 0; uint32_t is = n_kv - 1; // starting from the end, find nh non-empty cells for (; is > i0; --is) { const auto & cell1 = kv_self.cells[is]; if (cell1.is_empty() || ids[is] != n_kv) { continue; } // non-empty cell which is not yet moved nf++; if (nf == nh) { break; } } // this can only happen if `n_used` is not accurate, which would be a bug GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh"); nf = 0; uint32_t i1 = is; // are we moving a continuous block of memory? bool cont = false; // should we stop searching for the next move? bool stop = false; // go back and move the nf cells to the hole for (; i1 < n_kv; ++i1) { auto & cell1 = kv_self.cells[i1]; if (cell1.is_empty() || ids[i1] != n_kv) { if (n_moves == max_moves) { stop = true; break; } cont = false; continue; } // this cell goes to (i0 + nf) ids[i1] = i0 + nf; // move the cell meta data kv_self.cells[i0 + nf] = cell1; // clear the old cell and move the head there cell1 = llama_kv_cell(); kv_self.head = n_used; if (!cont) { n_moves++; cont = true; } nf++; if (nf == nh) { break; } } if (stop || n_moves == max_moves) { break; } //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh); i0 += nh - 1; } if (n_moves == 0) { return; } //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves); //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer); #if 0 // CPU defrag // // TODO: optimizations are possible: // - multiple threads // - avoid copying to the host memory when already there // // likely not worth the effort, as we have ggml_graph based defrag // const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); const uint32_t kv_size = size; std::vector buf_k; std::vector buf_v; for (uint32_t il = 0; il < n_layer; ++il) { const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size); const size_t v_size_el = ggml_type_size(v_l[il]->type); const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size); buf_k.resize(k_size); buf_v.resize(v_size); ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size()); ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size()); // batch move [i, i+nm) to [id, id+nm) // note: cells can move only to a lower index for (uint32_t i = 0; i < n_kv; ++i) { const uint32_t id = ids[i]; if (i == id || id == n_kv) { continue; } uint32_t nm = 1; while (i + nm < n_kv && ids[i + nm] == id + nm) { nm++; } // move keys { const int64_t os = i*k_size_row; const int64_t od = id*k_size_row; memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row); } // move values (note: they are transposed) { const int64_t os = i; const int64_t od = id; for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el); } } i += nm - 1; } ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size()); ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size()); } #else for (uint32_t i = 0; i < ids.size(); ++i) { const uint32_t id = ids[i]; if (i == id || id == ids.size()) { continue; } uint32_t nm = 1; while (i + nm < ids.size() && ids[i + nm] == id + nm) { nm++; } for (uint32_t il = 0; il < n_layer; ++il) { // NOLINT const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il], n_embd_k_gqa, nm, ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i)); ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il], n_embd_k_gqa, nm, ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id)); ggml_tensor * view_v_src; ggml_tensor * view_v_dst; if (cparams.flash_attn) { // NOTE: the V cache is not transposed when using flash attention view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il], n_embd_v_gqa, nm, ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa), ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i)); view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il], n_embd_v_gqa, nm, ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa), ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id)); } else { view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il], nm, n_embd_v_gqa, ggml_row_size(kv_self.v_l[il]->type, kv_self.size), ggml_row_size(kv_self.v_l[il]->type, i)); view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il], nm, n_embd_v_gqa, ggml_row_size(kv_self.v_l[il]->type, kv_self.size), ggml_row_size(kv_self.v_l[il]->type, id)); } ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst)); } i += nm - 1; } //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes); #endif } ggml_tensor * llama_context_kv_self::build_inp_embd_enc( ggml_context * ctx0, int32_t n_tokens, bool worst_case) { const auto & hparams = model.hparams; const int64_t n_embd = hparams.n_embd; // TODO: not sure if this is correct const int32_t n_outputs_enc = worst_case ? n_tokens : embd_enc.size() / n_embd; inp_embd_enc = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_outputs_enc); ggml_set_input(inp_embd_enc); return inp_embd_enc; } ggml_tensor * llama_context_kv_self::build_inp_KQ_mask_cross( ggml_context * ctx0, int32_t n_tokens, bool worst_case) { const auto & hparams = model.hparams; const int64_t n_embd = hparams.n_embd; // TODO: not sure if this is correct const int32_t n_outputs_enc = worst_case ? n_tokens : embd_enc.size() / n_embd; inp_KQ_mask_cross = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_outputs_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); ggml_set_input(inp_KQ_mask_cross); return inp_KQ_mask_cross; } ggml_tensor * llama_context_kv_self::build_inp_s_copy( ggml_context * ctx0, bool worst_case) { const auto n_kv = worst_case ? kv_self.size : kv_self.n; inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_kv); //cb(inp_s_copy, "inp_s_copy", -1); ggml_set_input(inp_s_copy); return inp_s_copy; } ggml_tensor * llama_context_kv_self::build_inp_s_mask( ggml_context * ctx0, bool worst_case) { const auto n_kv = worst_case ? kv_self.size : kv_self.n; inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv); //cb(inp_s_mask, "inp_s_mask", -1); ggml_set_input(inp_s_mask); return inp_s_mask; } ggml_tensor * llama_context_kv_self::build_copy_mask_state( ggml_context * ctx0, ggml_cgraph * gf, ggml_tensor * s, ggml_tensor * state_copy, ggml_tensor * state_mask, int32_t n_tokens, int32_t n_state, int32_t n_seqs, bool worst_case) { const auto n_kv = worst_case ? kv_self.size : kv_self.n; const auto kv_head = worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head; struct ggml_tensor * states = ggml_reshape_2d(ctx0, s, n_state, kv_self.size); // copy states // NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv // this shrinks the tensors's ne[1] to n_kv states = ggml_get_rows(ctx0, states, state_copy); // clear states of sequences which are starting at the beginning of this batch // FIXME: zero-out NANs? states = ggml_mul(ctx0, states, state_mask); // copy states which won't be changed further (between n_seqs and n_kv) ggml_build_forward_expand(gf, ggml_cpy(ctx0, ggml_view_1d(ctx0, states, n_state*(n_kv - n_seqs), (n_seqs )*n_state*ggml_element_size(states)), ggml_view_1d(ctx0, s, n_state*(n_kv - n_seqs), (kv_head + n_seqs)*n_state*ggml_element_size(s)))); // the part of the states that will be used and modified return ggml_view_2d(ctx0, states, n_state, n_seqs, states->nb[1], 0); } // TODO: split ggml_tensor * llama_context_kv_self::build_mamba_layer( ggml_context * ctx0, ggml_cgraph * gf, ggml_tensor * cur, ggml_tensor * state_copy, ggml_tensor * state_mask, const llama_ubatch & ubatch, int il, bool worst_case) { const auto & hparams = model.hparams; const auto & n_tokens = ubatch.n_tokens; const auto kv_head = worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head; const int64_t d_conv = hparams.ssm_d_conv; const int64_t d_inner = hparams.ssm_d_inner; const int64_t d_state = hparams.ssm_d_state; const int64_t dt_rank = hparams.ssm_dt_rank; const int64_t n_seqs = ubatch.n_seqs; // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers) const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms; // Use the same RMS norm as the final layer norm const float norm_rms_eps = hparams.f_norm_rms_eps; const int64_t n_seq_tokens = ubatch.n_seq_tokens; GGML_ASSERT(n_seqs != 0); GGML_ASSERT(ubatch.equal_seqs); GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs); struct ggml_tensor * conv_states_all = kv_self.k_l[il]; struct ggml_tensor * ssm_states_all = kv_self.v_l[il]; // (ab)using the KV cache to store the states struct ggml_tensor * conv = build_copy_mask_state( ctx0, gf, conv_states_all, state_copy, state_mask, n_tokens, hparams.n_embd_k_s(), n_seqs, worst_case); conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs); struct ggml_tensor * ssm = build_copy_mask_state( ctx0, gf, ssm_states_all, state_copy, state_mask, n_tokens, hparams.n_embd_v_s(), n_seqs, worst_case); ssm = ggml_reshape_3d(ctx0, ssm, d_state, d_inner, n_seqs); // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs} cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs); // {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs} struct ggml_tensor * xz = build_lora_mm(ctx0, model.layers[il].ssm_in, cur); // split the above in two // => {d_inner, n_seq_tokens, n_seqs} struct ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0); struct ggml_tensor * z = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz)); // conv { // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs} struct ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0); // copy last (d_conv - 1) columns back into the state cache struct ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0])); ggml_build_forward_expand(gf, ggml_cpy(ctx0, last_conv, ggml_view_1d(ctx0, conv_states_all, (d_conv - 1)*(d_inner)*(n_seqs), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all)))); // 1D convolution // The equivalent is to make a self-overlapping view of conv_x // over d_conv columns at each stride in the 3rd dimension, // then element-wise multiply that with the conv1d weight, // then sum the elements of each row, // (the last two steps are a dot product over rows (also doable with mul_mat)) // then permute away the ne[0] dimension, // and then you're left with the resulting x tensor. // For simultaneous sequences, all sequences need to have the same length. x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d); // bias x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b); x = ggml_silu(ctx0, x); } // ssm { // {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs} struct ggml_tensor * x_db = build_lora_mm(ctx0, model.layers[il].ssm_x, x); // split struct ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0); struct ggml_tensor * B = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank); struct ggml_tensor * C = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state)); // Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers if (ssm_dt_b_c_rms) { dt = ggml_rms_norm(ctx0, dt, norm_rms_eps); B = ggml_rms_norm(ctx0, B, norm_rms_eps); C = ggml_rms_norm(ctx0, C, norm_rms_eps); } // {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs} dt = build_lora_mm(ctx0, model.layers[il].ssm_dt, dt); dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b); // Custom operator to optimize the parallel associative scan // as described in the Annex D of the Mamba paper. // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs} struct ggml_tensor * y_ssm = ggml_ssm_scan(ctx0, ssm, x, dt, model.layers[il].ssm_a, B, C); // store last states ggml_build_forward_expand(gf, ggml_cpy(ctx0, ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]), ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all)))); struct ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0); // TODO: skip computing output earlier for unused tokens // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs} y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d)); y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z))); // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs} cur = build_lora_mm(ctx0, model.layers[il].ssm_out, y); } // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens} cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs); //cb(cur, "mamba_out", il); return cur; } ggml_tensor * llama_context_kv_self::build_rwkv_token_shift_load( ggml_context * ctx0, ggml_cgraph * gf, ggml_tensor * state_copy, ggml_tensor * state_mask, const llama_ubatch & ubatch, int il, bool worst_case) { const auto & hparams = model.hparams; const auto token_shift_count = hparams.token_shift_count; const auto & n_tokens = ubatch.n_tokens; const int64_t n_seqs = ubatch.n_seqs; struct ggml_tensor * token_shift_all = kv_self.k_l[il]; struct ggml_tensor * token_shift = build_copy_mask_state( ctx0, gf, token_shift_all, state_copy, state_mask, n_tokens, hparams.n_embd_k_s(), n_seqs, worst_case); token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs); return token_shift; } ggml_tensor * llama_context_kv_self::build_rwkv_token_shift_store( ggml_context * ctx0, ggml_tensor * token_shift, const llama_ubatch & ubatch, int il, bool worst_case) { const auto & hparams = model.hparams; const auto token_shift_count = hparams.token_shift_count; const auto n_embd = hparams.n_embd; const auto & n_tokens = ubatch.n_tokens; const int64_t n_seqs = ubatch.n_seqs; const auto kv_head = worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head; return ggml_cpy( ctx0, ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0), ggml_view_1d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s() * n_seqs, hparams.n_embd_k_s() * kv_head * ggml_element_size(kv_self.k_l[il])) ); } ggml_tensor * llama_context_kv_self::build_rwkv6_time_mix( ggml_context * ctx0, ggml_cgraph * gf, ggml_tensor * cur, ggml_tensor * x_prev, ggml_tensor * state_copy, ggml_tensor * state_mask, const llama_ubatch & ubatch, int il, bool worst_case) { const auto & hparams = model.hparams; const auto n_tokens = ubatch.n_tokens; const auto n_seqs = ubatch.n_seqs; const auto n_embd = hparams.n_embd; const auto head_size = hparams.wkv_head_size; const auto n_head = n_embd / head_size; const auto n_head_kv = hparams.n_head_kv(il); const auto kv_head = worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head; const auto & layer = model.layers[il]; bool is_qrwkv = layer.time_mix_first == nullptr; struct ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur); struct ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_x), cur); xxx = ggml_reshape_4d( ctx0, ggml_tanh( ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xxx) ), layer.time_mix_w1->ne[1] / 5, 1, 5, n_tokens ); xxx = ggml_cont(ctx0, ggml_permute(ctx0, xxx, 0, 1, 3, 2)); xxx = ggml_mul_mat( ctx0, ggml_reshape_4d( ctx0, layer.time_mix_w2, layer.time_mix_w2->ne[0], layer.time_mix_w2->ne[1], 1, 5 ), xxx ); struct ggml_tensor *xw, *xk, *xv, *xr, *xg; if (layer.time_mix_lerp_fused) { // fusing these weights makes some performance improvement sx = ggml_reshape_3d(ctx0, sx, n_embd, 1, n_tokens); cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens); xxx = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xxx, layer.time_mix_lerp_fused), sx), cur); xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0); xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float)); xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float)); xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float)); xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float)); } else { // for backward compatibility xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0); xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float)); xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float)); xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float)); xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float)); xw = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xw, layer.time_mix_lerp_w), sx), cur); xk = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xk, layer.time_mix_lerp_k), sx), cur); xv = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xv, layer.time_mix_lerp_v), sx), cur); xr = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xr, layer.time_mix_lerp_r), sx), cur); xg = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xg, layer.time_mix_lerp_g), sx), cur); } struct ggml_tensor * r = build_lora_mm(ctx0, layer.time_mix_receptance, xr); struct ggml_tensor * k = build_lora_mm(ctx0, layer.time_mix_key, xk); struct ggml_tensor * v = build_lora_mm(ctx0, layer.time_mix_value, xv); if (layer.time_mix_receptance_b) { r = ggml_add(ctx0, r, layer.time_mix_receptance_b); } if (layer.time_mix_key_b) { k = ggml_add(ctx0, k, layer.time_mix_key_b); } if (layer.time_mix_value_b) { v = ggml_add(ctx0, v, layer.time_mix_value_b); } struct ggml_tensor * g = build_lora_mm(ctx0, layer.time_mix_gate, xg); if (is_qrwkv) { g = ggml_sigmoid(ctx0, g); } else { g = ggml_silu(ctx0, g); } if (n_head_kv != 0 && n_head_kv != n_head) { GGML_ASSERT(n_head % n_head_kv == 0); k = ggml_reshape_4d(ctx0, k, head_size, 1, n_head_kv, n_tokens); v = ggml_reshape_4d(ctx0, v, head_size, 1, n_head_kv, n_tokens); struct ggml_tensor * tmp = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_size, n_head / n_head_kv, n_head_kv, n_tokens); k = ggml_repeat(ctx0, k, tmp); v = ggml_repeat(ctx0, v, tmp); } k = ggml_reshape_3d(ctx0, k, head_size, n_head, n_tokens); v = ggml_reshape_3d(ctx0, v, head_size, n_head, n_tokens); r = ggml_reshape_3d(ctx0, r, head_size, n_head, n_tokens); struct ggml_tensor * w = ggml_mul_mat( ctx0, layer.time_mix_decay_w2, ggml_tanh( ctx0, ggml_mul_mat(ctx0, layer.time_mix_decay_w1, xw) ) ); w = ggml_add(ctx0, w, layer.time_mix_decay); w = ggml_exp(ctx0, ggml_neg(ctx0, ggml_exp(ctx0, w))); w = ggml_reshape_3d(ctx0, w, head_size, n_head, n_tokens); if (is_qrwkv) { // k = k * (1 - w) k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w)); } struct ggml_tensor * wkv_state = build_copy_mask_state( ctx0, gf, kv_self.v_l[il], state_copy, state_mask, n_tokens, hparams.n_embd_v_s(), n_seqs, worst_case); struct ggml_tensor * wkv_output; if (is_qrwkv) { wkv_output = ggml_gated_linear_attn(ctx0, k, v, r, w, wkv_state, pow(head_size, -0.5f)); } else { wkv_output = ggml_rwkv_wkv6(ctx0, k, v, r, layer.time_mix_first, w, wkv_state); } cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0); wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float)); ggml_build_forward_expand( gf, ggml_cpy( ctx0, wkv_state, ggml_view_1d( ctx0, kv_self.v_l[il], hparams.n_embd_v_s() * n_seqs, hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self.v_l[il]) ) ) ); if (!is_qrwkv) { // group norm with head_count groups cur = ggml_reshape_3d(ctx0, cur, n_embd / n_head, n_head, n_tokens); cur = ggml_norm(ctx0, cur, 64e-5f); // Convert back to regular vectors. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b); } else { cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens); } cur = ggml_mul(ctx0, cur, g); cur = build_lora_mm(ctx0, layer.time_mix_output, cur); return cur; } // state save/load size_t llama_context_kv_self::state_get_data(llama_io_write_i & io) { llama_context::state_get_data(io); kv_self.state_write(io); return io.n_bytes(); } size_t llama_context_kv_self::state_set_data(llama_io_read_i & io) { llama_context::state_set_data(io); kv_self.state_read(io); return io.n_bytes(); } size_t llama_context_kv_self::state_seq_get_data(llama_io_write_i & io, llama_seq_id seq_id) { llama_context::state_seq_get_data(io, seq_id); kv_self.state_write(io, seq_id); return io.n_bytes(); } size_t llama_context_kv_self::state_seq_set_data(llama_io_read_i & io, llama_seq_id seq_id) { llama_context::state_seq_set_data(io, seq_id); kv_self.state_read(io, seq_id); return io.n_bytes(); } // // interface implementation // void llama_free(struct llama_context * ctx) { delete ctx; } uint32_t llama_n_ctx(const struct llama_context * ctx) { return ctx->n_ctx(); } uint32_t llama_n_batch(const struct llama_context * ctx) { return ctx->n_batch(); } uint32_t llama_n_ubatch(const struct llama_context * ctx) { return ctx->n_ubatch(); } uint32_t llama_n_seq_max(const struct llama_context * ctx) { return ctx->n_seq_max(); } const llama_model * llama_get_model(const llama_context * ctx) { return &ctx->get_model(); } llama_kv_cache * llama_get_kv_self(llama_context * ctx) { return ctx->get_kv_self(); } void llama_kv_self_update(llama_context * ctx) { ctx->kv_self_update(); } enum llama_pooling_type llama_pooling_type(const llama_context * ctx) { return ctx->pooling_type(); } void llama_attach_threadpool( struct llama_context * ctx, ggml_threadpool_t threadpool, ggml_threadpool_t threadpool_batch) { ctx->attach_threadpool(threadpool, threadpool_batch); } void llama_detach_threadpool(struct llama_context * ctx) { ctx->detach_threadpool(); } void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch) { ctx->set_n_threads(n_threads, n_threads_batch); } int32_t llama_n_threads(struct llama_context * ctx) { return ctx->n_threads(); } int32_t llama_n_threads_batch(struct llama_context * ctx) { return ctx->n_threads_batch(); } void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) { ctx->set_abort_callback(abort_callback, abort_callback_data); } void llama_set_embeddings(struct llama_context * ctx, bool embeddings) { ctx->set_embeddings(embeddings); } void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) { ctx->set_causal_attn(causal_attn); } void llama_synchronize(struct llama_context * ctx) { ctx->synchronize(); } float * llama_get_logits(struct llama_context * ctx) { ctx->synchronize(); return ctx->get_logits(); } float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) { ctx->synchronize(); return ctx->get_logits_ith(i); } float * llama_get_embeddings(struct llama_context * ctx) { ctx->synchronize(); return ctx->get_embeddings(); } float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) { ctx->synchronize(); return ctx->get_embeddings_ith(i); } float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) { ctx->synchronize(); return ctx->get_embeddings_seq(seq_id); } // llama adapter API int32_t llama_set_adapter_lora( struct llama_context * ctx, struct llama_adapter_lora * adapter, float scale) { ctx->set_adapter_lora(adapter, scale); return 0; } int32_t llama_rm_adapter_lora( struct llama_context * ctx, struct llama_adapter_lora * adapter) { bool res = ctx->rm_adapter_lora(adapter); return res ? 0 : -1; } void llama_clear_adapter_lora(struct llama_context * ctx) { ctx->clear_adapter_lora(); } int32_t llama_apply_adapter_cvec( struct llama_context * ctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) { bool res = ctx->apply_adapter_cvec(data, len, n_embd, il_start, il_end); return res ? 0 : -1; } // // kv cache view // struct llama_kv_cache_view llama_kv_cache_view_init(const llama_context * ctx, int32_t n_seq_max) { return llama_kv_cache_view_init(*ctx->get_kv_self(), n_seq_max); } void llama_kv_cache_view_update(const llama_context * ctx, llama_kv_cache_view * view) { llama_kv_cache_view_update(view, *ctx->get_kv_self()); } // // kv cache // // deprecated int32_t llama_get_kv_cache_token_count(const llama_context * ctx) { return llama_kv_self_n_tokens(ctx); } int32_t llama_kv_self_n_tokens(const llama_context * ctx) { return llama_kv_cache_n_tokens(ctx->get_kv_self()); } // deprecated int32_t llama_get_kv_cache_used_cells(const llama_context * ctx) { return llama_kv_self_used_cells(ctx); } int32_t llama_kv_self_used_cells(const llama_context * ctx) { return llama_kv_cache_used_cells(ctx->get_kv_self()); } // deprecated void llama_kv_cache_clear(llama_context * ctx) { llama_kv_self_clear(ctx); } void llama_kv_self_clear(llama_context * ctx) { llama_kv_cache_clear(ctx->get_kv_self()); } // deprecated bool llama_kv_cache_seq_rm( llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) { return llama_kv_self_seq_rm(ctx, seq_id, p0, p1); } bool llama_kv_self_seq_rm( llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) { return llama_kv_cache_seq_rm(ctx->get_kv_self(), seq_id, p0, p1); } // deprecated void llama_kv_cache_seq_cp( llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { return llama_kv_self_seq_cp(ctx, seq_id_src, seq_id_dst, p0, p1); } void llama_kv_self_seq_cp( llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { return llama_kv_cache_seq_cp(ctx->get_kv_self(), seq_id_src, seq_id_dst, p0, p1); } // deprecated void llama_kv_cache_seq_keep( llama_context * ctx, llama_seq_id seq_id) { return llama_kv_self_seq_keep(ctx, seq_id); } void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) { return llama_kv_cache_seq_keep(ctx->get_kv_self(), seq_id); } // deprecated void llama_kv_cache_seq_add( llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { return llama_kv_self_seq_add(ctx, seq_id, p0, p1, delta); } void llama_kv_self_seq_add( llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { return llama_kv_cache_seq_add(ctx->get_kv_self(), seq_id, p0, p1, delta); } // deprecated void llama_kv_cache_seq_div( llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { return llama_kv_self_seq_div(ctx, seq_id, p0, p1, d); } void llama_kv_self_seq_div( llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { return llama_kv_cache_seq_div(ctx->get_kv_self(), seq_id, p0, p1, d); } // deprecated llama_pos llama_kv_cache_seq_pos_max(llama_context * ctx, llama_seq_id seq_id) { return llama_kv_self_seq_pos_max(ctx, seq_id); } llama_pos llama_kv_self_seq_pos_max(llama_context * ctx, llama_seq_id seq_id) { return llama_kv_cache_seq_pos_max(ctx->get_kv_self(), seq_id); } // deprecated void llama_kv_cache_defrag(llama_context * ctx) { return llama_kv_self_defrag(ctx); } void llama_kv_self_defrag(llama_context * ctx) { return llama_kv_cache_defrag(ctx->get_kv_self()); } // deprecated bool llama_kv_cache_can_shift(const llama_context * ctx) { return llama_kv_self_can_shift(ctx); } bool llama_kv_self_can_shift(const llama_context * ctx) { return llama_kv_cache_can_shift(ctx->get_kv_self()); } // deprecated void llama_kv_cache_update(llama_context * ctx) { llama_kv_self_update(ctx); } // llama state API // deprecated size_t llama_get_state_size(struct llama_context * ctx) { return llama_state_get_size(ctx); } // deprecated size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) { return llama_state_get_data(ctx, dst, -1); } // deprecated size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) { return llama_state_set_data(ctx, src, -1); } // deprecated bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); } // deprecated bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { return llama_state_save_file(ctx, path_session, tokens, n_token_count); } // Returns the *actual* size of the state. // Intended to be used when saving to state to a buffer. size_t llama_state_get_size(struct llama_context * ctx) { return ctx->state_get_size(); } size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst, size_t size) { ctx->synchronize(); return ctx->state_get_data(dst, size); } // Sets the state reading from the specified source address size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src, size_t size) { ctx->synchronize(); return ctx->state_set_data(src, size); } bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { ctx->synchronize(); try { return ctx->state_load_file(path_session, tokens_out, n_token_capacity, n_token_count_out); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error loading session file: %s\n", __func__, err.what()); return false; } } bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { ctx->synchronize(); try { return ctx->state_save_file(path_session, tokens, n_token_count); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error saving session file: %s\n", __func__, err.what()); return false; } } size_t llama_state_seq_get_size(struct llama_context * ctx, llama_seq_id seq_id) { return ctx->state_seq_get_size(seq_id); } size_t llama_state_seq_get_data(struct llama_context * ctx, uint8_t * dst, size_t size, llama_seq_id seq_id) { ctx->synchronize(); return ctx->state_seq_get_data(seq_id, dst, size); } size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, size_t size, llama_seq_id seq_id) { ctx->synchronize(); return ctx->state_seq_set_data(seq_id, src, size); } size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) { ctx->synchronize(); try { return ctx->state_seq_save_file(seq_id, filepath, tokens, n_token_count); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error saving sequence state file: %s\n", __func__, err.what()); return 0; } } size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { ctx->synchronize(); try { return ctx->state_seq_load_file(dest_seq_id, filepath, tokens_out, n_token_capacity, n_token_count_out); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error loading sequence state file: %s\n", __func__, err.what()); return 0; } } /// int32_t llama_encode( struct llama_context * ctx, struct llama_batch batch) { const int ret = ctx->encode(batch); if (ret != 0) { LLAMA_LOG_ERROR("%s: failed to encode, ret = %d\n", __func__, ret); } return ret; } int32_t llama_decode( struct llama_context * ctx, struct llama_batch batch) { const int ret = ctx->decode(batch); if (ret != 0) { LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); } return ret; } const std::vector> & llama_internal_get_tensor_map( struct llama_context * ctx ) { return ctx->get_model().tensors_by_name; }