#include "rope.hpp" #include "ggml-sycl/common.hpp" #include "ggml.h" struct rope_corr_dims { float v[2]; }; struct mrope_sections { int v[4]; }; static float rope_yarn_ramp(const float low, const float high, const int i0) { const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low); return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y)); } // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. static void rope_yarn( float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale, float * cos_theta, float * sin_theta) { // Get n-d rotational scaling corrected for extrapolation float theta_interp = freq_scale * theta_extrap; float theta = theta_interp; if (ext_factor != 0.0f) { float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor; theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; // Get n-d magnitude scaling corrected for interpolation mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale); } *cos_theta = sycl::cos(theta) * mscale; *sin_theta = sycl::sin(theta) * mscale; } template static void rope_norm(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims, const int32_t * pos, float freq_scale, float ext_factor, float attn_factor, const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors, const sycl::nd_item<3> & item_ct1) { const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + item_ct1.get_local_id(1)); if (i0 >= ne0) { return; } const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); const int row0 = row % ne1; const int channel0 = row / ne1; const int i = row * ne0 + i0; const int i2 = channel0 * s2 + row0 * s1 + i0; if (i0 >= n_dims) { *reinterpret_cast *>(dst + i) = *reinterpret_cast *>(x + i2); return; } const float theta_base = pos[channel0] * sycl::pow(theta_scale, i0 / 2.0f); const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f; float cos_theta; float sin_theta; rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); const float x0 = x[i2 + 0]; const float x1 = x[i2 + 1]; dst[i + 0] = x0 * cos_theta - x1 * sin_theta; dst[i + 1] = x0 * sin_theta + x1 * cos_theta; } template static void rope_neox(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims, const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors, const sycl::nd_item<3> & item_ct1) { const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + item_ct1.get_local_id(1)); if (i0 >= ne0) { return; } const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); const int row0 = row % ne1; const int channel0 = row / ne1; const int i = row * ne0 + i0 / 2; const int i2 = channel0 * s2 + row0 * s1 + i0 / 2; if (i0 >= n_dims) { *reinterpret_cast *>(dst + i + i0 / 2) = *reinterpret_cast *>(x + i2 + i0 / 2); return; } const float theta_base = pos[channel0] * sycl::pow(theta_scale, i0 / 2.0f); const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f; float cos_theta; float sin_theta; rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); const float x0 = x[i2 + 0]; const float x1 = x[i2 + n_dims / 2]; dst[i + 0] = x0 * cos_theta - x1 * sin_theta; dst[i + n_dims / 2] = x0 * sin_theta + x1 * cos_theta; } template static void rope_multi(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1, const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors, const mrope_sections sections, const sycl::nd_item<3> & item_ct1) { // get index pos const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1)); if (i0 >= ne0) { return; } const int row_dst = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2); const int row_x = row_dst % ne1; const int channel_x = row_dst / ne1; const int idst = (row_dst * ne0) + (i0 / 2); const size_t ix = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2); if (i0 >= n_dims) { *reinterpret_cast *>(dst + idst + i0 / 2) = *reinterpret_cast *>(x + i0 / 2 + ix); return; } const int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3]; const int sec_w = sections.v[1] + sections.v[0]; const int sector = (i0 / 2) % sect_dims; float theta_base = 0.0; if (sector < sections.v[0]) { theta_base = pos[channel_x]*sycl::pow(theta_scale, i0/2.0f); } else if (sector >= sections.v[0] && sector < sec_w) { theta_base = pos[channel_x + ne2 * 1]*sycl::pow(theta_scale, i0/2.0f); } else if (sector >= sec_w && sector < sec_w + sections.v[2]) { theta_base = pos[channel_x + ne2 * 2]*sycl::pow(theta_scale, i0/2.0f); } else if (sector >= sec_w + sections.v[2]) { theta_base = pos[channel_x + ne2 * 3]*sycl::pow(theta_scale, i0/2.0f); } const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f; float cos_theta; float sin_theta; rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); const float x0 = x[ix + 0]; const float x1 = x[ix + n_dims/2]; // store results in dst dst[idst + 0] = x0 * cos_theta - x1 * sin_theta; dst[idst + n_dims/2] = x0 * sin_theta + x1 * cos_theta; } template static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1, const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors, const mrope_sections sections, const sycl::nd_item<3> & item_ct1) { // get index pos const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1)); if (i0 >= ne0) { return; } const int row_dst = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2); const int row_x = row_dst % ne1; const int channel_x = row_dst / ne1; const int idst = (row_dst * ne0) + (i0 / 2); const size_t ix = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2); const int sect_dims = sections.v[0] + sections.v[1]; const int sector = (i0 / 2) % sect_dims; float theta_base = 0.0f; if (sector < sections.v[0]) { const int p = sector; theta_base = pos[channel_x] * sycl::pow(theta_scale, (float) p); } else { // Simplified from CUDA backend code: if (sector >= sections.v[0] && sector < sec_w) which is just sector >= sections.v[0] const int p = sector - sections.v[0]; theta_base = pos[channel_x + ne2] * sycl::pow(theta_scale, (float) p); } const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f; float cos_theta; float sin_theta; rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); const float x0 = x[ix + 0]; const float x1 = x[ix + n_dims]; // store results in dst dst[idst + 0] = x0 * cos_theta - x1 * sin_theta; dst[idst + n_dims] = x0 * sin_theta + x1 * cos_theta; } template static void rope_norm_sycl(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims, int nr, const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) { GGML_ASSERT(ne0 % 2 == 0); const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE)); const sycl::range<3> block_nums(1, num_blocks_x, nr); const float theta_scale = powf(freq_base, -2.0f / n_dims); dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 }); if (freq_factors == nullptr) { /* DPCT1049:40: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { rope_norm(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims, theta_scale, freq_factors, item_ct1); }); } else { /* DPCT1049:41: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { rope_norm(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims, theta_scale, freq_factors, item_ct1); }); } } template static void rope_neox_sycl(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims, const int nr, const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) { GGML_ASSERT(ne0 % 2 == 0); const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE)); const sycl::range<3> block_nums(1, num_blocks_x, nr); const float theta_scale = powf(freq_base, -2.0f / n_dims); dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 }); if (freq_factors == nullptr) { sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { rope_neox(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims, theta_scale, freq_factors, item_ct1); }); } else { sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { rope_neox(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims, theta_scale, freq_factors, item_ct1); }); } } template static void rope_multi_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1, const size_t s2, const int n_dims, const int nr, const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors, const mrope_sections sections, queue_ptr stream) { GGML_ASSERT(ne0 % 2 == 0); const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE)); const sycl::range<3> grid_dims(1, n_blocks_y, nr); const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims); const float theta_scale = std::pow(freq_base, -2.0f / n_dims); // Add FP16 capability check if T could be sycl::half if constexpr (std::is_same_v) { dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 }); } // launch kernel if (freq_factors == nullptr) { sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) { rope_multi(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims, theta_scale, freq_factors, sections, item_ct1); }); } else { sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) { rope_multi(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims, theta_scale, freq_factors, sections, item_ct1); }); } } // rope vision template static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1, const size_t s2, const int n_dims, const int nr, const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors, const mrope_sections sections, queue_ptr stream) { GGML_ASSERT(ne0 % 2 == 0); const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE)); const sycl::range<3> grid_dims(1, n_blocks_y, nr); const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims); const float theta_scale = std::pow(freq_base, -2.0f / n_dims); // Add FP16 capability check if T could be sycl::half if constexpr (std::is_same_v) { dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 }); } // launch kernel if (freq_factors == nullptr) { sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) { rope_vision(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims, theta_scale, freq_factors, sections, item_ct1); }); } else { sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) { rope_vision(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims, theta_scale, freq_factors, sections, item_ct1); }); } } inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) { GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); GGML_ASSERT(dst->src[0]->type == dst->type); const int64_t ne00 = dst->src[0]->ne[0]; // head dims const int64_t ne01 = dst->src[0]->ne[1]; // num heads const int64_t ne02 = dst->src[0]->ne[2]; // num heads const int64_t nr = ggml_nrows(dst->src[0]); const size_t s01 = dst->src[0]->nb[1] / ggml_type_size(dst->src[0]->type); const size_t s02 = dst->src[0]->nb[2] / ggml_type_size(dst->src[0]->type); //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; //const int n_ctx = ((int32_t *) dst->op_params)[3]; const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; mrope_sections sections; // RoPE alteration for extended context float freq_base; float freq_scale; float ext_factor; float attn_factor; float beta_fast; float beta_slow; memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); memcpy(§ions.v, (int32_t *) dst->op_params + 11, sizeof(int)*4); const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; const bool is_vision = mode == GGML_ROPE_TYPE_VISION; if (is_mrope) { GGML_ASSERT(sections.v[0] > 0 || sections.v[1] > 0 || sections.v[2] > 0); } if (is_vision) { GGML_ASSERT(n_dims == ne00/2); } const int32_t * pos = (const int32_t *) dst->src[1]->data; const float * freq_factors = nullptr; if (dst->src[2] != nullptr) { freq_factors = (const float *) dst->src[2]->data; } rope_corr_dims corr_dims; ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); // compute if (is_neox) { GGML_SYCL_DEBUG("%s: neox path\n", __func__); if (dst->src[0]->type == GGML_TYPE_F32) { rope_neox_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, s01, s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream); } else if (dst->src[0]->type == GGML_TYPE_F16) { rope_neox_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, s01, s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream); } else { GGML_ABORT("fatal error"); } } else if (is_mrope && !is_vision) { GGML_SYCL_DEBUG("%s: mrope path\n", __func__); if (dst->src[0]->type == GGML_TYPE_F16) { rope_multi_sycl((const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream); } else if (dst->src[0]->type == GGML_TYPE_F32) { rope_multi_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream); } else { GGML_ABORT("Fatal error: Tensor type unsupported!"); } } else if (is_vision) { GGML_SYCL_DEBUG("%s: vision path\n", __func__); if (dst->src[0]->type == GGML_TYPE_F16) { rope_vision_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream); } else if (dst->src[0]->type == GGML_TYPE_F32) { rope_vision_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream); } else { GGML_ABORT("Fatal error: Tensor type unsupported!"); } } else { GGML_SYCL_DEBUG("%s: norm path\n", __func__); if (dst->src[0]->type == GGML_TYPE_F32) { rope_norm_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, s01, s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream); } else if (dst->src[0]->type == GGML_TYPE_F16) { rope_norm_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, s01, s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream); } else { GGML_ABORT("fatal error"); } } } void ggml_sycl_rope(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/3); ggml_sycl_op_rope(ctx, dst); }