#include "clip.h" #include "clip-impl.h" #include "mtmd.h" #include "mtmd-audio.h" #include "llama.h" #include #include #include #include #include #include #include // represents raw image data, layout is RGBRGBRGB... // length of data must be nx * ny * 3 struct mtmd_bitmap { uint32_t nx; uint32_t ny; std::vector data; std::string id; // optional user-defined id, for ex: can be set to image hash, useful for KV cache tracking bool is_audio = false; // true if the bitmap is audio }; struct mtmd_image_tokens { uint32_t nx; // number of tokens in x direction uint32_t ny; // number of tokens in y direction bool use_mrope_pos = false; // use M-RoPE position counting (the whole image is 1 temporal position) uint32_t n_tokens() const { return nx * ny; } clip_image_f32_batch batch_f32; // preprocessed image patches std::string id; // optional user-defined ID, useful for KV cache tracking mtmd_image_tokens clone() { return mtmd_image_tokens{ nx, ny, use_mrope_pos, batch_f32.clone(), id }; } }; using mtmd_image_tokens_ptr = std::unique_ptr; struct mtmd_audio_tokens { uint32_t n_tokens; // number of tokens clip_image_f32_batch batch_f32; // preprocessed image patches std::string id; // optional user-defined ID, useful for KV cache tracking mtmd_audio_tokens clone() { return mtmd_audio_tokens{ n_tokens, batch_f32.clone(), id }; } }; using mtmd_audio_tokens_ptr = std::unique_ptr; struct mtmd_input_chunk { mtmd_input_chunk_type type; std::vector tokens_text; mtmd_image_tokens_ptr tokens_image; mtmd_audio_tokens_ptr tokens_audio; }; struct mtmd_input_chunks { std::vector entries; }; // slice template, used by some llava-uhd models to correctly place the special tokens around image embeddings // models not having it (llava-1.6) will process embeddings without any special tokens in-between enum mtmd_slice_tmpl { MTMD_SLICE_TMPL_NONE, MTMD_SLICE_TMPL_MINICPMV_2_5, MTMD_SLICE_TMPL_MINICPMV_2_6, MTMD_SLICE_TMPL_LLAMA4, // TODO @ngxson : add support for idefics (SmolVLM) }; const char * mtmd_default_marker() { return "<__media__>"; } mtmd_context_params mtmd_context_params_default() { mtmd_context_params params; params.use_gpu = true; params.print_timings = true; params.n_threads = 4; params.verbosity = GGML_LOG_LEVEL_INFO; params.image_marker = MTMD_DEFAULT_IMAGE_MARKER; params.media_marker = mtmd_default_marker(); return params; } struct mtmd_context { struct clip_ctx * ctx_clip; const struct llama_model * text_model; std::vector image_embd_v; // image embedding vector bool print_timings; int n_threads; std::string media_marker; bool has_vision; bool has_audio; // for llava-uhd style models, we need special tokens in-between slices // minicpmv calls them "slices", llama 4 calls them "tiles" mtmd_slice_tmpl slice_tmpl = MTMD_SLICE_TMPL_NONE; llama_token tok_ov_img_start = LLAMA_TOKEN_NULL; // overview image llama_token tok_ov_img_end = LLAMA_TOKEN_NULL; // overview image llama_token tok_slices_start = LLAMA_TOKEN_NULL; // start of all slices llama_token tok_slices_end = LLAMA_TOKEN_NULL; // end of all slices llama_token tok_sli_img_start = LLAMA_TOKEN_NULL; // single slice start llama_token tok_sli_img_end = LLAMA_TOKEN_NULL; // single slice end llama_token tok_sli_img_mid = LLAMA_TOKEN_NULL; // between 2 slices llama_token tok_row_end = LLAMA_TOKEN_NULL; // end of row bool tok_row_end_trail = false; bool ov_img_first = false; bool use_mrope = false; // for Qwen2VL, we need to use M-RoPE // for whisper, we pre-calculate the mel filter bank whisper_preprocessor::whisper_filters w_filters; // TODO @ngxson : add timings mtmd_context(const char * mmproj_fname, const llama_model * text_model, const mtmd_context_params & ctx_params) : text_model (text_model), print_timings(ctx_params.print_timings), n_threads (ctx_params.n_threads), media_marker (ctx_params.media_marker) { if (std::string(ctx_params.image_marker) != MTMD_DEFAULT_IMAGE_MARKER) { throw std::runtime_error("custom image_marker is not supported anymore, use media_marker instead"); } clip_context_params ctx_clip_params; ctx_clip_params.use_gpu = ctx_params.use_gpu; ctx_clip_params.verbosity = ctx_params.verbosity; ctx_clip = clip_init(mmproj_fname, ctx_clip_params); if (!ctx_clip) { throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname)); } if (llama_model_n_embd(text_model) != clip_n_mmproj_embd(ctx_clip)) { throw std::runtime_error(string_format( "mismatch between text model (n_embd = %d) and mmproj (n_embd = %d)\n" "hint: you may be using wrong mmproj\n", llama_model_n_embd(text_model), clip_n_mmproj_embd(ctx_clip))); } has_vision = clip_has_vision_encoder(ctx_clip); has_audio = clip_has_audio_encoder(ctx_clip); use_mrope = clip_is_qwen2vl(ctx_clip); projector_type proj = clip_get_projector_type(ctx_clip); int minicpmv_version = clip_is_minicpmv(ctx_clip); if (minicpmv_version == 2) { // minicpmv 2.5 format: // (overview) (slice) (slice) \n ... slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_5; tok_ov_img_start = lookup_token(""); tok_ov_img_end = lookup_token(""); tok_slices_start = lookup_token(""); tok_slices_end = lookup_token(""); tok_sli_img_start = tok_ov_img_start; tok_sli_img_end = tok_ov_img_end; tok_row_end = lookup_token("\n"); tok_row_end_trail = false; // no trailing end-of-row token ov_img_first = true; } else if (minicpmv_version == 3 || minicpmv_version == 4) { // minicpmv 2.6 format: // (overview) (slice) (slice) \n ... slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_6; tok_ov_img_start = lookup_token(""); tok_ov_img_end = lookup_token(""); tok_sli_img_start = lookup_token(""); tok_sli_img_end = lookup_token(""); tok_row_end = lookup_token("\n"); tok_row_end_trail = false; // no trailing end-of-row token ov_img_first = true; } else if (minicpmv_version != 0) { GGML_ASSERT(false && "unsupported minicpmv version"); } else if (proj == PROJECTOR_TYPE_LLAMA4) { // llama 4 format: // <|image_start|> // (slice) <|tile_x_separator|> (slice) <|tile_x_separator|> ... <|tile_y_separator|> // (slice) <|tile_x_separator|> (slice) <|tile_x_separator|> ... <|tile_y_separator|> // ... <|tile_y_separator|> <-- trailing end-of-row token // <|image|> (overview) <-- overview image is last // <|image_end|> slice_tmpl = MTMD_SLICE_TMPL_LLAMA4; tok_ov_img_start = lookup_token("<|image|>"); tok_sli_img_mid = lookup_token("<|tile_x_separator|>"); tok_row_end = lookup_token("<|tile_y_separator|>"); tok_row_end_trail = true; // add trailing end-of-row token ov_img_first = false; // overview image is last } if (clip_has_whisper_encoder(ctx_clip)) { // TODO @ngxson : check if model n_mel is 128 or 80 w_filters = whisper_precalc_filters::get_128_bins(); } // warning messages if (proj == PROJECTOR_TYPE_LLAMA4) { LOG_WRN("%s: llama 4 vision is known to have degraded quality:\n" " https://github.com/ggml-org/llama.cpp/pull/13282\n", __func__); } if (has_audio) { LOG_WRN("%s: audio input is in experimental stage and may have reduced quality:\n" " https://github.com/ggml-org/llama.cpp/discussions/13759\n", __func__); } } ~mtmd_context() { clip_free(ctx_clip); } private: llama_token lookup_token(const std::string & token_text) { const llama_vocab * vocab = llama_model_get_vocab(text_model); const int n_vocab = llama_vocab_n_tokens(vocab); for (int i = 0; i < n_vocab; i++) { if (token_to_piece(vocab, i, true) == token_text) { return i; } } return LLAMA_TOKEN_NULL; } std::string token_to_piece(const llama_vocab * vocab, llama_token token, bool special) { std::string piece; piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n' const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special); if (n_chars < 0) { piece.resize(-n_chars); int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special); GGML_ASSERT(check == -n_chars); } else { piece.resize(n_chars); } return piece; } }; mtmd_context * mtmd_init_from_file(const char * mmproj_fname, const struct llama_model * text_model, const struct mtmd_context_params ctx_params) { try { return new mtmd_context(mmproj_fname, text_model, ctx_params); } catch (const std::exception & e) { LOG_ERR("%s: error: %s\n", __func__, e.what()); return nullptr; } } void mtmd_free(mtmd_context * ctx) { if (ctx) { delete ctx; } } // copied from common_tokenize static std::vector mtmd_tokenize_text_internal( const struct llama_vocab * vocab, const std::string & text, bool add_special, bool parse_special) { // upper limit for the number of tokens int n_tokens = text.length() + 2 * add_special; std::vector result(n_tokens); n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); if (n_tokens < 0) { result.resize(-n_tokens); int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); } return result; } int32_t mtmd_tokenize(mtmd_context * ctx, mtmd_input_chunks * output, const mtmd_input_text * text, const mtmd_bitmap ** bitmaps, size_t n_bitmaps) { auto vocab = llama_model_get_vocab(ctx->text_model); std::string prompt_modified(text->text); std::string marker_modified(ctx->media_marker); projector_type proj_type = clip_get_projector_type(ctx->ctx_clip); // for compatibility, we convert image marker to media marker string_replace_all(prompt_modified, MTMD_DEFAULT_IMAGE_MARKER, ctx->media_marker); // a bit hacky here, but works for now // for some models, we need to add prefix and suffix to the image embeddings if (clip_is_gemma3(ctx->ctx_clip)) { // gemma 3 // ... (image embeddings) ... marker_modified = "" + ctx->media_marker + ""; string_replace_all(prompt_modified, ctx->media_marker, marker_modified); } else if (proj_type == PROJECTOR_TYPE_IDEFICS3) { // https://github.com/huggingface/transformers/blob/a42ba80fa520c784c8f11a973ca9034e5f859b79/src/transformers/models/idefics3/processing_idefics3.py#L192-L215 marker_modified = "" + ctx->media_marker + ""; string_replace_all(prompt_modified, ctx->media_marker, marker_modified); } else if (proj_type == PROJECTOR_TYPE_PIXTRAL) { // https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md marker_modified = ctx->media_marker + "[IMG_END]"; string_replace_all(prompt_modified, ctx->media_marker, marker_modified); } else if (proj_type == PROJECTOR_TYPE_QWEN2VL || proj_type == PROJECTOR_TYPE_QWEN25VL) { // <|vision_start|> ... (image embeddings) ... <|vision_end|> marker_modified = "<|vision_start|>" + ctx->media_marker + "<|vision_end|>"; string_replace_all(prompt_modified, ctx->media_marker, marker_modified); } else if (proj_type == PROJECTOR_TYPE_LLAMA4) { // (more details in mtmd_context constructor) marker_modified = "<|image_start|>" + ctx->media_marker + "<|image_end|>"; string_replace_all(prompt_modified, ctx->media_marker, marker_modified); } else if (proj_type == PROJECTOR_TYPE_INTERNVL) { // ... (image embeddings) ... marker_modified = "" + ctx->media_marker + ""; string_replace_all(prompt_modified, ctx->media_marker, marker_modified); } else if (proj_type == PROJECTOR_TYPE_QWEN2A) { // <|audio_bos|> ... (embeddings) ... <|audio_eos|> marker_modified = "<|audio_bos|>" + ctx->media_marker + "<|audio_eos|>"; string_replace_all(prompt_modified, ctx->media_marker, marker_modified); } // llava-1.5, llava-1.6, Yi-VL, Yi-34B, granite: don't need to add prefix and suffix // for glm-edge, BOI and EOI token's embeddings are not present in the text model std::vector parts = string_split_str(prompt_modified, ctx->media_marker); output->entries.clear(); output->entries.reserve(parts.size()); size_t i_bm = 0; // utility for adding raw tokens auto add_text_chunk = [&output](std::vector && tokens) { mtmd_input_chunk chunk{ MTMD_INPUT_CHUNK_TYPE_TEXT, std::move(tokens), nullptr, // image tokens nullptr, // audio tokens }; output->entries.emplace_back(std::move(chunk)); }; // utility for splitting batch of multiple images into chunks of batch having single images auto split_batch_to_chunk = [&ctx](clip_image_f32_batch && batch_f32, const std::string & id) { std::vector chunks; for (auto & entry : batch_f32.entries) { mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens); image_tokens->nx = clip_n_output_tokens(ctx->ctx_clip, entry.get()); image_tokens->ny = 1; image_tokens->batch_f32.entries.push_back(std::move(entry)); image_tokens->id = id; mtmd_input_chunk chunk{ MTMD_INPUT_CHUNK_TYPE_IMAGE, {}, // text tokens std::move(image_tokens), nullptr, // audio tokens }; chunks.emplace_back(std::move(chunk)); } return chunks; }; for (const auto & part : parts) { // printf("tokenizing part: %s\n", part.c_str()); bool add_bos = &parts.front() == ∂ auto tokens = mtmd_tokenize_text_internal(vocab, part, text->add_special && add_bos, text->parse_special); if (tokens.empty()) { continue; } mtmd_input_chunk chunk{ MTMD_INPUT_CHUNK_TYPE_TEXT, std::move(tokens), nullptr, // image tokens nullptr, // audio tokens }; output->entries.emplace_back(std::move(chunk)); // only add image/audio tokens to middle of 2 parts // therefore, we skip handling image/audio if this is the last part if (&parts.back() == &part) { continue; } if (!bitmaps[i_bm]->is_audio) { // handle image if (i_bm >= n_bitmaps) { LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size()); return 1; } if (!ctx->has_vision) { LOG_ERR("%s: error: model does not support vision input\n", __func__); return 2; } // convert mtmd_bitmap to clip_image_u8 clip_image_u8_ptr img_u8(clip_image_u8_init()); img_u8->nx = bitmaps[i_bm]->nx; img_u8->ny = bitmaps[i_bm]->ny; img_u8->buf.resize(bitmaps[i_bm]->data.size()); std::memcpy(img_u8->buf.data(), bitmaps[i_bm]->data.data(), img_u8->nx * img_u8->ny * 3); // preprocess image clip_image_f32_batch batch_f32; bool ok = clip_image_preprocess(ctx->ctx_clip, img_u8.get(), &batch_f32); if (!ok) { LOG_ERR("Unable to preprocess image\n"); return 2; } // handle llava-uhd style preprocessing if ( ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5 || ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6 || ctx->slice_tmpl == MTMD_SLICE_TMPL_LLAMA4 ) { // split batch into chunks of single images auto chunks = split_batch_to_chunk(std::move(batch_f32), bitmaps[i_bm]->id); GGML_ASSERT(chunks.size() > 0); auto ov_chunk = std::move(chunks.front()); chunks.erase(chunks.begin()); // add overview image (first) if (ctx->ov_img_first) { if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) { add_text_chunk({ctx->tok_ov_img_start}); } output->entries.emplace_back(std::move(ov_chunk)); if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) { add_text_chunk({ctx->tok_ov_img_end}); } } // add slices (or tiles) if (!chunks.empty()) { const int n_col = batch_f32.grid_x; const int n_row = batch_f32.grid_y; if (ctx->tok_slices_start != LLAMA_TOKEN_NULL) { add_text_chunk({ctx->tok_slices_start}); } for (int y = 0; y < n_row; y++) { for (int x = 0; x < n_col; x++) { const bool is_last_in_row = (x == n_col - 1); if (ctx->tok_sli_img_start != LLAMA_TOKEN_NULL) { add_text_chunk({ctx->tok_sli_img_start}); } output->entries.emplace_back(std::move(chunks[y * n_col + x])); if (ctx->tok_sli_img_end != LLAMA_TOKEN_NULL) { add_text_chunk({ctx->tok_sli_img_end}); } if (!is_last_in_row && ctx->tok_sli_img_mid != LLAMA_TOKEN_NULL) { add_text_chunk({ctx->tok_sli_img_mid}); } } if ((y != n_row - 1 || ctx->tok_row_end_trail) && ctx->tok_row_end != LLAMA_TOKEN_NULL) { add_text_chunk({ctx->tok_row_end}); } } if (ctx->tok_slices_end != LLAMA_TOKEN_NULL) { add_text_chunk({ctx->tok_slices_end}); } } // add overview image (last) if (!ctx->ov_img_first) { if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) { add_text_chunk({ctx->tok_ov_img_start}); } output->entries.emplace_back(std::move(ov_chunk)); if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) { add_text_chunk({ctx->tok_ov_img_end}); } } } else { size_t n_tokens = 0; for (const auto & entry : batch_f32.entries) { n_tokens += clip_n_output_tokens(ctx->ctx_clip, entry.get()); } mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens); if (ctx->use_mrope) { // for Qwen2VL, we need this information for M-RoPE decoding positions image_tokens->nx = clip_n_output_tokens_x(ctx->ctx_clip, batch_f32.entries[0].get()); image_tokens->ny = clip_n_output_tokens_y(ctx->ctx_clip, batch_f32.entries[0].get()); image_tokens->use_mrope_pos = true; } else { // other models, we only need the total number of tokens image_tokens->nx = n_tokens; image_tokens->ny = 1; } image_tokens->batch_f32 = std::move(batch_f32); image_tokens->id = bitmaps[i_bm]->id; // optional LOG_DBG("image_tokens->nx = %d\n", image_tokens->nx); LOG_DBG("image_tokens->ny = %d\n", image_tokens->ny); LOG_DBG("batch_f32 size = %d\n", (int)image_tokens->batch_f32.entries.size()); mtmd_input_chunk chunk{ MTMD_INPUT_CHUNK_TYPE_IMAGE, {}, // text tokens std::move(image_tokens), nullptr, // audio tokens }; output->entries.emplace_back(std::move(chunk)); } i_bm++; // move to next image continue; } else { // handle audio if (i_bm >= n_bitmaps) { LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size()); return 1; } if (!ctx->has_audio) { LOG_ERR("%s: error: model does not support audio input\n", __func__); return 2; } if (bitmaps[i_bm]->data.size() == 0) { LOG_ERR("%s: error: empty audio data\n", __func__); return 2; } // preprocess audio GGML_ASSERT(ctx->w_filters.n_mel); // make sure we have filter preloaded std::vector mel_spec_chunks; const float * samples = (const float *)bitmaps[i_bm]->data.data(); size_t n_samples = bitmaps[i_bm]->data.size() / sizeof(float); bool ok = whisper_preprocessor::preprocess_audio(samples, n_samples, ctx->w_filters, mel_spec_chunks); if (!ok) { LOG_ERR("Unable to preprocess audio\n"); return 2; } // consider each mel_spec as a separate audio chunk // TODO: maybe support batching, but this may come with memory cost for (auto & mel_spec : mel_spec_chunks) { clip_image_f32_ptr mel_f32(clip_image_f32_init()); mel_f32->nx = mel_spec.n_len; mel_f32->ny = mel_spec.n_mel; mel_f32->buf = std::move(mel_spec.data); size_t n_tokens = clip_n_output_tokens(ctx->ctx_clip, mel_f32.get()); clip_image_f32_batch batch_f32; batch_f32.is_audio = true; batch_f32.entries.push_back(std::move(mel_f32)); mtmd_audio_tokens_ptr audio_tokens(new mtmd_audio_tokens); audio_tokens->n_tokens = n_tokens; audio_tokens->batch_f32 = std::move(batch_f32); audio_tokens->id = bitmaps[i_bm]->id; // optional LOG_DBG("audio_tokens->n_tokens = %d\n", audio_tokens->n_tokens); mtmd_input_chunk chunk{ MTMD_INPUT_CHUNK_TYPE_AUDIO, {}, // text tokens nullptr, // image tokens std::move(audio_tokens), }; output->entries.emplace_back(std::move(chunk)); } i_bm++; continue; } } return 0; } int32_t mtmd_encode_chunk(mtmd_context * ctx, const mtmd_input_chunk * chunk) { if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) { LOG_WRN("mtmd_encode_chunk has no effect for text chunks\n"); return 0; } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) { return mtmd_encode(ctx, chunk->tokens_image.get()); } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) { int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip); ctx->image_embd_v.resize(chunk->tokens_audio->n_tokens * n_mmproj_embd); bool ok = clip_image_batch_encode( ctx->ctx_clip, ctx->n_threads, &chunk->tokens_audio->batch_f32, ctx->image_embd_v.data()); return ok ? 0 : 1; } LOG_ERR("mtmd_encode_chunk: unknown chunk type %d\n", (int)chunk->type); return 1; } int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) { int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip); ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd); bool ok = false; if (clip_is_llava(ctx->ctx_clip) || clip_is_minicpmv(ctx->ctx_clip) || clip_is_glm(ctx->ctx_clip)) { // TODO @ngxson : llava does not support batched encoding ; this should be fixed inside clip_image_batch_encode() const auto & entries = image_tokens->batch_f32.entries; for (size_t i = 0; i < entries.size(); i++) { int n_tokens_per_image = clip_n_output_tokens(ctx->ctx_clip, entries[i].get()); ok = clip_image_encode( ctx->ctx_clip, ctx->n_threads, entries[i].get(), ctx->image_embd_v.data() + i*n_mmproj_embd*n_tokens_per_image); } } else { ok = clip_image_batch_encode( ctx->ctx_clip, ctx->n_threads, &image_tokens->batch_f32, ctx->image_embd_v.data()); } return ok ? 0 : 1; } float * mtmd_get_output_embd(mtmd_context * ctx) { return ctx->image_embd_v.data(); } bool mtmd_decode_use_non_causal(mtmd_context * ctx) { projector_type proj_type = clip_get_projector_type(ctx->ctx_clip); if (proj_type == PROJECTOR_TYPE_GEMMA3) { return true; } return false; } bool mtmd_decode_use_mrope(mtmd_context * ctx) { return ctx->use_mrope; } bool mtmd_support_vision(mtmd_context * ctx) { return ctx->has_vision; } bool mtmd_support_audio(mtmd_context * ctx) { return ctx->has_audio; } // these 2 helpers below use internal clip_image_u8_ptr, // so unfortunately they cannot moved to mtmd-helper.h // however, in theory, user can decode image file to bitmap using // whichever library they want, and then use mtmd_bitmap_init() to create bitmap mtmd_bitmap * mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len) { if (audio_helpers::is_audio_file((const char *)buf, len)) { std::vector pcmf32; if (!audio_helpers::decode_audio_from_buf(buf, len, COMMON_SAMPLE_RATE, pcmf32)) { LOG_ERR("Unable to read WAV audio file from buffer\n"); return nullptr; } return mtmd_bitmap_init_from_audio(pcmf32.size(), pcmf32.data()); } clip_image_u8_ptr img_u8(clip_image_u8_init()); bool ok = clip_image_load_from_bytes(buf, len, img_u8.get()); if (!ok) { LOG_ERR("Unable to load image from buffer\n"); return nullptr; } uint32_t nx, ny; unsigned char * data = clip_image_u8_get_data(img_u8.get(), &nx, &ny); return mtmd_bitmap_init(nx, ny, data); } mtmd_bitmap * mtmd_helper_bitmap_init_from_file(const char * fname) { std::vector buf; FILE * f = fopen(fname, "rb"); if (!f) { LOG_ERR("Unable to open file %s: %s\n", fname, strerror(errno)); return nullptr; } fseek(f, 0, SEEK_END); long file_size = ftell(f); fseek(f, 0, SEEK_SET); buf.resize(file_size); size_t n_read = fread(buf.data(), 1, file_size, f); fclose(f); if (n_read != (size_t)file_size) { LOG_ERR("Failed to read entire file %s", fname); return nullptr; } return mtmd_helper_bitmap_init_from_buf(buf.data(), buf.size()); } // // public API functions // // mtmd_bitmap mtmd_bitmap * mtmd_bitmap_init(uint32_t nx, uint32_t ny, const unsigned char * data) { mtmd_bitmap * bitmap = new mtmd_bitmap; bitmap->nx = nx; bitmap->ny = ny; size_t data_size = (size_t)nx * ny * 3; bitmap->data.resize(data_size); std::memcpy(bitmap->data.data(), data, data_size); return bitmap; } mtmd_bitmap * mtmd_bitmap_init_from_audio(size_t n_samples, const float * data) { mtmd_bitmap * bitmap = new mtmd_bitmap; bitmap->nx = n_samples; bitmap->ny = 1; bitmap->is_audio = true; size_t data_size = n_samples * sizeof(float); bitmap->data.resize(data_size); std::memcpy(bitmap->data.data(), data, data_size); return bitmap; } uint32_t mtmd_bitmap_get_nx(const mtmd_bitmap * bitmap) { return bitmap->nx; } uint32_t mtmd_bitmap_get_ny(const mtmd_bitmap * bitmap) { return bitmap->ny; } const unsigned char * mtmd_bitmap_get_data(const mtmd_bitmap * bitmap) { return bitmap->data.data(); } size_t mtmd_bitmap_get_n_bytes(const mtmd_bitmap * bitmap) { return bitmap->data.size(); } bool mtmd_bitmap_is_audio(const mtmd_bitmap * bitmap) { return bitmap->is_audio; } const char * mtmd_bitmap_get_id(const mtmd_bitmap * bitmap) { return bitmap->id.c_str(); } void mtmd_bitmap_set_id(mtmd_bitmap * bitmap, const char * id) { if (id) { bitmap->id = std::string(id); } else { bitmap->id.clear(); } } void mtmd_bitmap_free(mtmd_bitmap * bitmap) { if (bitmap) { delete bitmap; } } // mtmd_input_chunks mtmd_input_chunks * mtmd_input_chunks_init() { return new mtmd_input_chunks; } size_t mtmd_input_chunks_size(const mtmd_input_chunks * chunks) { return chunks->entries.size(); } const mtmd_input_chunk * mtmd_input_chunks_get(const mtmd_input_chunks * chunks, size_t idx) { if (idx >= chunks->entries.size()) { return nullptr; } return &chunks->entries[idx]; } void mtmd_input_chunks_free(mtmd_input_chunks * chunks) { if (chunks) { delete chunks; } } // mtmd_input_chunk enum mtmd_input_chunk_type mtmd_input_chunk_get_type(const mtmd_input_chunk * chunk) { return chunk->type; } const llama_token * mtmd_input_chunk_get_tokens_text(const mtmd_input_chunk * chunk, size_t * n_tokens_output) { if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) { *n_tokens_output = chunk->tokens_text.size(); return chunk->tokens_text.data(); } *n_tokens_output = 0; return nullptr; } const mtmd_image_tokens * mtmd_input_chunk_get_tokens_image(const mtmd_input_chunk * chunk) { if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) { return chunk->tokens_image.get(); } return nullptr; } size_t mtmd_input_chunk_get_n_tokens(const mtmd_input_chunk * chunk) { if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) { return chunk->tokens_text.size(); } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) { return mtmd_image_tokens_get_n_tokens(chunk->tokens_image.get()); } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) { return chunk->tokens_audio->n_tokens; } else { GGML_ABORT("invalid chunk type"); } } llama_pos mtmd_input_chunk_get_n_pos(const mtmd_input_chunk * chunk) { if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) { return chunk->tokens_text.size(); } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) { return mtmd_image_tokens_get_n_pos(chunk->tokens_image.get()); } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) { return chunk->tokens_audio->n_tokens; } else { GGML_ABORT("invalid chunk type"); } } const char * mtmd_input_chunk_get_id(const mtmd_input_chunk * chunk) { if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) { return chunk->tokens_image->id.c_str(); } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) { return chunk->tokens_audio->id.c_str(); } return nullptr; } mtmd_input_chunk * mtmd_input_chunk_copy(const mtmd_input_chunk * chunk) { mtmd_input_chunk * copy = new mtmd_input_chunk{ chunk->type, chunk->tokens_text, nullptr, nullptr, }; if (chunk->tokens_image) { // copy the image tokens copy->tokens_image = mtmd_image_tokens_ptr(new mtmd_image_tokens()); *copy->tokens_image = chunk->tokens_image->clone(); } if (chunk->tokens_audio) { // copy the audio tokens copy->tokens_audio = mtmd_audio_tokens_ptr(new mtmd_audio_tokens()); *copy->tokens_audio = chunk->tokens_audio->clone(); } return copy; } void mtmd_input_chunk_free(mtmd_input_chunk * chunk) { if (chunk) { delete chunk; } } // mtmd_image_tokens size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens) { return image_tokens->n_tokens(); } size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens) { return image_tokens->nx; } size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens) { return image_tokens->ny; } const char * mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens) { return image_tokens->id.c_str(); } llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens) { if (image_tokens->use_mrope_pos) { return 1; // for M-RoPE, the whole image is 1 in temporal dimension } return image_tokens->n_tokens(); } // test function mtmd_input_chunks * mtmd_test_create_input_chunks() { mtmd_input_chunks * chunks = mtmd_input_chunks_init(); if (!chunks) { return nullptr; } // create a text chunk std::vector tokens_text = { 1, 2, 3, 4, 5 }; mtmd_input_chunk chunk_text{ MTMD_INPUT_CHUNK_TYPE_TEXT, std::move(tokens_text), nullptr, // image tokens nullptr, // audio tokens }; chunks->entries.emplace_back(std::move(chunk_text)); // create an image chunk mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens); image_tokens->nx = 4; image_tokens->ny = 4; image_tokens->batch_f32.entries.resize(16); image_tokens->id = "image_1"; mtmd_input_chunk chunk_image{ MTMD_INPUT_CHUNK_TYPE_IMAGE, {}, // text tokens std::move(image_tokens), nullptr, // audio tokens }; chunks->entries.emplace_back(std::move(chunk_image)); return chunks; }