#include "clip.h" #include "clip-impl.h" #include "mtmd.h" #include "llama.h" #include #include #include #include #include #include #include struct mtmd_context { struct clip_ctx * ctx_clip; const struct llama_model * text_model; std::vector image_embd_v; // image embedding vector bool print_timings; int n_threads; std::string image_marker; // TODO @ngxson : add timings mtmd_context(const char * mmproj_fname, const llama_model * text_model, const mtmd_context_params & ctx_params) : print_timings(ctx_params.print_timings), n_threads(ctx_params.n_threads), image_marker(ctx_params.image_marker) { clip_context_params ctx_clip_params; ctx_clip_params.use_gpu = ctx_params.use_gpu; ctx_clip_params.verbosity = ctx_params.verbosity; ctx_clip = clip_init(mmproj_fname, ctx_clip_params); if (!ctx_clip) { throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname)); } this->text_model = text_model; } ~mtmd_context() { clip_free(ctx_clip); } }; struct mtmd_image_tokens_data { clip_image_f32_batch batch_f32; // preprocessed image patches }; struct mtmd_image_tokens { uint32_t nx; // number of tokens in x direction uint32_t ny; // number of tokens in y direction uint32_t n_tokens() const { return nx * ny; } clip_image_f32_batch batch_f32; // preprocessed image patches }; mtmd_context * mtmd_init_from_file(const char * mmproj_fname, const struct llama_model * text_model, const struct mtmd_context_params ctx_params) { try { return new mtmd_context(mmproj_fname, text_model, ctx_params); } catch (const std::exception & e) { LOG_ERR("%s: error: %s\n", __func__, e.what()); return nullptr; } } void mtmd_free(mtmd_context * ctx) { if (ctx) { delete ctx; } } // copied from common_tokenize static std::vector mtmd_tokenize_text_internal( const struct llama_vocab * vocab, const std::string & text, bool add_special, bool parse_special) { // upper limit for the number of tokens int n_tokens = text.length() + 2 * add_special; std::vector result(n_tokens); n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); if (n_tokens < 0) { result.resize(-n_tokens); int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); } return result; } mtmd_input_chunks * mtmd_tokenize(mtmd_context * ctx, const mtmd_input_text & text, const std::vector & bitmaps) { mtmd_input_chunks * output = new mtmd_input_chunks; auto vocab = llama_model_get_vocab(ctx->text_model); std::string prompt_modified(text.text); std::string marker_modified(ctx->image_marker); projector_type proj_type = clip_get_projector_type(ctx->ctx_clip); // a bit hacky here, but works for now // for some models, we need to add prefix and suffix to the image embeddings if (proj_type == PROJECTOR_TYPE_GEMMA3) { // ... (image embeddings) ... marker_modified = "" + ctx->image_marker + ""; string_replace_all(prompt_modified, ctx->image_marker, marker_modified); } std::vector parts = string_split_str(text.text, ctx->image_marker); output->clear(); output->reserve(parts.size()); size_t i_img = 0; for (const auto & part : parts) { //printf("tokenizing part: %s\n", part.c_str()); bool add_bos = &parts.front() == ∂ auto tokens = mtmd_tokenize_text_internal(vocab, part, text.add_special && add_bos, text.parse_special); if (tokens.empty()) { continue; } mtmd_input_chunk chunk{ MTMD_INPUT_CHUNK_TYPE_TEXT, std::move(tokens), {}, }; output->emplace_back(std::move(chunk)); if (&parts.back() != &part) { // add image token to middle of 2 parts if (i_img >= bitmaps.size()) { LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size()); return nullptr; } // shim layer clip_image_u8_ptr img_u8(clip_image_u8_init()); img_u8->nx = bitmaps[i_img].nx; img_u8->ny = bitmaps[i_img].ny; img_u8->buf.resize(bitmaps[i_img].data.size()); std::memcpy(img_u8->buf.data(), bitmaps[i_img].data.data(), img_u8->nx * img_u8->ny * 3); // preprocess image clip_image_f32_batch batch_f32; bool ok = clip_image_preprocess(ctx->ctx_clip, img_u8.get(), &batch_f32); if (!ok) { LOG_ERR("Unable to preprocess image\n"); return nullptr; } mtmd_image_tokens * image_tokens = new mtmd_image_tokens; image_tokens->nx = clip_n_patches(ctx->ctx_clip); // TODO @ngxson : use clip_n_patches_by_image image_tokens->ny = 1; // TODO image_tokens->batch_f32 = std::move(batch_f32); mtmd_input_chunk chunk{ MTMD_INPUT_CHUNK_TYPE_IMAGE, {}, image_tokens, }; output->emplace_back(std::move(chunk)); i_img++; } } return output; } void mtmd_input_chunks_free(mtmd_input_chunks * chunks) { for (auto & chunk : *chunks) { if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE && chunk.tokens_image) { delete chunk.tokens_image; } } delete chunks; } int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) { int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip); ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd); bool ok = clip_image_batch_encode( ctx->ctx_clip, ctx->n_threads, &image_tokens->batch_f32, ctx->image_embd_v.data()); return ok ? 0 : 1; } float * mtmd_get_output_embd(mtmd_context * ctx) { return ctx->image_embd_v.data(); } size_t mtmd_helper_get_n_tokens(mtmd_input_chunks * chunks) { size_t n_tokens = 0; for (auto & chunk : *chunks) { if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) { n_tokens += chunk.tokens_text.size(); } else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) { n_tokens += chunk.tokens_image->n_tokens(); } else { GGML_ASSERT(false && "chunk type not supported"); } } return n_tokens; } // helper struct to make working with embd batch easier // note: this will be removed after llama_batch_ext refactoring struct decode_embd_batch { std::vector pos; std::vector n_seq_id; std::vector seq_id_0; std::vector seq_ids; std::vector logits; llama_batch batch; decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) { pos .resize(n_tokens); n_seq_id.resize(n_tokens); seq_ids .resize(n_tokens + 1); logits .resize(n_tokens); seq_id_0.resize(1); seq_id_0[0] = seq_id; seq_ids [n_tokens] = nullptr; batch = { /*n_tokens =*/ n_tokens, /*tokens =*/ nullptr, /*embd =*/ embd, /*pos =*/ pos.data(), /*n_seq_id =*/ n_seq_id.data(), /*seq_id =*/ seq_ids.data(), /*logits =*/ logits.data(), }; for (int i = 0; i < n_tokens; i++) { batch.pos [i] = pos_0 + i; batch.n_seq_id[i] = 1; batch.seq_id [i] = seq_id_0.data(); batch.logits [i] = false; } } }; int32_t mtmd_helper_eval(mtmd_context * ctx, llama_context * lctx, mtmd_input_chunks * chunks, llama_pos pos0, llama_seq_id seq_id, int32_t n_batch) { int32_t ret; llama_pos n_past = pos0; llama_batch text_batch = llama_batch_init(n_batch, 0, 1); for (auto & chunk : *chunks) { bool is_last = &chunk == &chunks->back(); if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) { // TODO @ngxson : may need to split into smaller batches text_batch.n_tokens = chunk.tokens_text.size(); for (size_t i = 0; i < chunk.tokens_text.size(); i++) { text_batch.token [i] = chunk.tokens_text[i]; text_batch.pos [i] = n_past++; text_batch.n_seq_id[i] = 1; text_batch.seq_id [i][0] = seq_id; text_batch.logits [i] = false; } if (is_last) { // always get logits for last input chunk text_batch.logits[text_batch.n_tokens - 1] = true; } ret = llama_decode(lctx, text_batch); if (ret != 0) { LOG_ERR("failed to decode text\n"); llama_batch_free(text_batch); return ret; } } else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) { GGML_ASSERT(!is_last && "logits for last image chunk is not yet support"); GGML_ASSERT(chunk.tokens_image != nullptr); int64_t t0 = ggml_time_ms(); if (ctx->print_timings) { LOG_INF("encoding image...\n"); } ret = mtmd_encode(ctx, chunk.tokens_image); if (ret != 0) { LOG_ERR("failed to encode image\n"); llama_batch_free(text_batch); return ret; } if (ctx->print_timings) { LOG_INF("image encoded in %" PRId64 " ms\n", ggml_time_ms() - t0); } int32_t n_tokens = chunk.tokens_image->n_tokens(); float * embd = mtmd_get_output_embd(ctx); decode_embd_batch batch_img(embd, n_tokens, n_past, 0); int64_t t1 = ggml_time_ms(); ret = llama_decode(lctx, batch_img.batch); if (ret != 0) { LOG_ERR("failed to decode image\n"); llama_batch_free(text_batch); return ret; } if (ctx->print_timings) { LOG_INF("image decoded in %" PRId64 " ms\n", ggml_time_ms() - t1); } n_past += n_tokens; } else { GGML_ASSERT(false && "chunk type not supported"); } } llama_batch_free(text_batch); return 0; } int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output) { clip_image_u8_ptr img_u8(clip_image_u8_init()); bool ok = clip_image_load_from_bytes(buf, len, img_u8.get()); if (!ok) { LOG_ERR("Unable to load image from buffer\n"); return 1; } unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny); output.data.resize(output.nx * output.ny * 3); std::memcpy(output.data.data(), data, output.nx * output.ny * 3); return 0; } int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output) { clip_image_u8_ptr img_u8(clip_image_u8_init()); bool ok = clip_image_load_from_file(fname, img_u8.get()); if (!ok) { LOG_ERR("Unable to load image %s\n", fname); return 1; } unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny); output.data.resize(output.nx * output.ny * 3); std::memcpy(output.data.data(), data, output.nx * output.ny * 3); return 0; }