#version 450 #extension GL_EXT_shader_explicit_arithmetic_types_int32 : require #include "mul_mat_vec_base.comp" layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; shared FLOAT_TYPE sccache[BLOCK_SIZE/16][2][8]; FLOAT_TYPE temp[NUM_COLS][NUM_ROWS]; void calc_superblock(const uint a_offset, const uint b_offset, const uint ix, const uint itid8, const uint v_im, const uint v_im4, const uint v_in, const uint32_t hm_m[4], const uint q_offset, const uint y_offset, const uint s_shift, const uint i, const uint num_blocks_per_row, const uint first_row, const uint num_rows, const bool all_threads) { const uint y_idx = i * QUANT_K + y_offset; [[unroll]] for (uint n = 0; n < num_rows; ++n) { const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; if (!all_threads) { // when we don't have enough blocks to use all threads barrier(); if (i < num_blocks_per_row) sccache[ix][v_im][itid8] = FLOAT_TYPE(int8_t(((data_a[ib0+i].scales[itid8] >> v_im4) & 0xF) | (((data_a[ib0+i].scales[itid8%4+8] >> s_shift) & 3) << 4)) - 32); barrier(); if (i >= num_blocks_per_row) continue; } const uint32_t hmk = ~(uint32_t(data_a_packed16[ib0 + i].hmask[v_in]) | (uint32_t(data_a_packed16[ib0 + i].hmask[v_in + 8]) << 16)); const vec4 hmk_0 = vec4(unpack8(((hmk & hm_m[0]) >> ( v_im4)) << 2)); const vec4 hmk_1 = vec4(unpack8(((hmk & hm_m[1]) >> (1 + v_im4)) << 2)); const vec4 hmk_2 = vec4(unpack8(((hmk & hm_m[2]) >> (2 + v_im4)) << 2)); const vec4 hmk_3 = vec4(unpack8(((hmk & hm_m[3]) >> (3 + v_im4)) << 2)); // 0, 1, 16, 17 uint32_t qs_u32 = uint32_t(data_a[ib0 + i].qs[q_offset]) | (uint32_t(data_a[ib0 + i].qs[q_offset + 1]) << 8); qs_u32 |= (uint32_t(data_a[ib0 + i].qs[q_offset + 16]) | (uint32_t(data_a[ib0 + i].qs[q_offset + 17]) << 8)) << 16; const vec4 qs_u32_0 = vec4(unpack8(qs_u32 & 0x03030303)); const vec4 qs_u32_2 = vec4(unpack8((qs_u32 >> 2) & 0x03030303)); const vec4 qs_u32_4 = vec4(unpack8((qs_u32 >> 4) & 0x03030303)); const vec4 qs_u32_6 = vec4(unpack8((qs_u32 >> 6) & 0x03030303)); if (all_threads) { barrier(); sccache[ix][v_im][itid8] = FLOAT_TYPE(int8_t(((data_a[ib0+i].scales[itid8] >> v_im4) & 0xF) | (((data_a[ib0+i].scales[itid8%4+8] >> s_shift) & 3) << 4)) - 32); barrier(); } const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { vec2 b0 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0]); vec2 b16 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8]); vec2 b32 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16]); vec2 b48 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24]); vec2 b64 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32]); vec2 b80 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40]); vec2 b96 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48]); vec2 b112 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56]); FLOAT_TYPE sum = FLOAT_TYPE(0.0); [[unroll]] for (int l = 0; l < 2; ++l) { sum = fma(FLOAT_TYPE( b0[l]) * sccache[ix][v_im][0], qs_u32_0[l ] - hmk_0[l ], fma(FLOAT_TYPE( b16[l]) * sccache[ix][v_im][1], qs_u32_0[l+2] - hmk_0[l+2], fma(FLOAT_TYPE( b32[l]) * sccache[ix][v_im][2], qs_u32_2[l ] - hmk_1[l ], fma(FLOAT_TYPE( b48[l]) * sccache[ix][v_im][3], qs_u32_2[l+2] - hmk_1[l+2], fma(FLOAT_TYPE( b64[l]) * sccache[ix][v_im][4], qs_u32_4[l ] - hmk_2[l ], fma(FLOAT_TYPE( b80[l]) * sccache[ix][v_im][5], qs_u32_4[l+2] - hmk_2[l+2], fma(FLOAT_TYPE( b96[l]) * sccache[ix][v_im][6], qs_u32_6[l ] - hmk_3[l ], fma(FLOAT_TYPE(b112[l]) * sccache[ix][v_im][7], qs_u32_6[l+2] - hmk_3[l+2], sum)))))))); } temp[j][n] = fma(d, sum, temp[j][n]); } } } void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); const uint num_blocks_per_row = p.ncols / QUANT_K; // 16 threads are used to process each block const uint it_size = gl_WorkGroupSize.x/16; const uint tid = gl_LocalInvocationID.x; const uint itid = tid%16; // 0...15 const uint ix = tid/16; const uint itid8 = itid%8; const uint v_im = itid/8; // 0 or 1. 0 computes 0..., 1 computes 128... const uint v_im4 = v_im*4; const uint v_in = itid - 8*v_im; // 0...7 const uint32_t m = 0x01010101 << (4 * v_im); uint32_t hm_m[4]; [[unroll]] for (uint j = 0; j < 4; ++j) hm_m[j] = m << j; const uint l0 = 2*v_in; // 0...15 const uint q_offset = 32*v_im + l0; const uint y_offset = 128*v_im + l0; [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { temp[j][i] = FLOAT_TYPE(0); } } const uint s_shift = v_im4 + 2*(itid8/4); const uint nbr_par_th = num_blocks_per_row%it_size; const uint nbr_all_th = num_blocks_per_row - nbr_par_th; uint i0 = 0; [[unroll]] for (; i0 < nbr_all_th; i0 += it_size) calc_superblock(a_offset, b_offset, ix, itid8, v_im, v_im4, v_in, hm_m, q_offset, y_offset, s_shift, i0 + ix, num_blocks_per_row, first_row, num_rows, true); calc_superblock(a_offset, b_offset, ix, itid8, v_im, v_im4, v_in, hm_m, q_offset, y_offset, s_shift, i0 + ix, num_blocks_per_row, first_row, num_rows, false); reduce_result(temp, d_offset, first_row, num_rows, tid); } void main() { const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); // do NUM_ROWS at a time, unless there aren't enough remaining rows if (first_row + NUM_ROWS <= p.stride_d) { compute_outputs(first_row, NUM_ROWS); } else { if (first_row >= p.stride_d) { return; } compute_outputs(first_row, p.stride_d - first_row); } }