#include "ops.h" #include "ggml-cpu.h" #include "ggml-impl.h" #include "binary-ops.h" #include "unary-ops.h" #include "vec.h" #include // ggml_compute_forward_dup static void ggml_compute_forward_dup_same_cont( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == dst->type); const size_t nb0 = ggml_type_size(src0->type); const int ith = params->ith; // thread index const int nth = params->nth; // number of threads // parallelize by blocks const int nk = ggml_nelements(src0)/ggml_blck_size(src0->type); const int dr = (nk + nth - 1) / nth; const int k0 = dr * ith; const int k1 = MIN(k0 + dr, nk); if (k0 < k1) { memcpy( ((char *) dst->data + k0*nb0), ((char *) src0->data + k0*nb0), (k1 - k0) * nb0); } } static void ggml_compute_forward_dup_f16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); GGML_TENSOR_UNARY_OP_LOCALS const int ith = params->ith; // thread index const int nth = params->nth; // number of threads // parallelize by rows const int nr = ne01; // number of rows per thread const int dr = (nr + nth - 1) / nth; // row range for this thread const int ir0 = dr * ith; const int ir1 = MIN(ir0 + dr, nr); if (src0->type == dst->type && ne00 == ne0 && nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) { // copy by rows const size_t rs = ne00*nb00; for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = ir0; i01 < ir1; i01++) { memcpy( ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03), rs); } } } return; } // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy if (ggml_is_contiguous(dst)) { if (nb00 == sizeof(ggml_fp16_t)) { if (dst->type == GGML_TYPE_F16) { size_t id = 0; const size_t rs = ne00 * nb00; char * dst_ptr = (char *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += rs * ir0; for (int i01 = ir0; i01 < ir1; i01++) { const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; memcpy(dst_ptr + id, src0_ptr, rs); id += rs; } id += rs * (ne01 - ir1); } } } else if (dst->type == GGML_TYPE_F32) { size_t id = 0; float * dst_ptr = (float *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += ne00 * ir0; for (int i01 = ir0; i01 < ir1; i01++) { const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); for (int i00 = 0; i00 < ne00; i00++) { dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]); id++; } } id += ne00 * (ne01 - ir1); } } } else if (ggml_get_type_traits_cpu(dst->type)->from_float) { ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float; float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; size_t id = 0; size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type)); char * dst_ptr = (char *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += rs * ir0; for (int i01 = ir0; i01 < ir1; i01++) { const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); for (int i00 = 0; i00 < ne00; i00++) { src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]); } quantize_row_q(src0_f32, dst_ptr + id, ne00); id += rs; } id += rs * (ne01 - ir1); } } } else { GGML_ABORT("fatal error"); // TODO: implement } } else { //printf("%s: this is not optimal - fix me\n", __func__); if (dst->type == GGML_TYPE_F32) { size_t id = 0; float * dst_ptr = (float *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += ne00 * ir0; for (int i01 = ir0; i01 < ir1; i01++) { for (int i00 = 0; i00 < ne00; i00++) { const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr); id++; } } id += ne00 * (ne01 - ir1); } } } else if (dst->type == GGML_TYPE_F16) { size_t id = 0; ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += ne00 * ir0; for (int i01 = ir0; i01 < ir1; i01++) { for (int i00 = 0; i00 < ne00; i00++) { const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); dst_ptr[id] = *src0_ptr; id++; } } id += ne00 * (ne01 - ir1); } } } else { GGML_ABORT("fatal error"); // TODO: implement } } return; } // dst counters int64_t i10 = 0; int64_t i11 = 0; int64_t i12 = 0; int64_t i13 = 0; if (dst->type == GGML_TYPE_F16) { for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { i10 += ne00 * ir0; while (i10 >= ne0) { i10 -= ne0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } for (int64_t i01 = ir0; i01 < ir1; i01++) { for (int64_t i00 = 0; i00 < ne00; i00++) { const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t)); if (++i10 == ne00) { i10 = 0; if (++i11 == ne01) { i11 = 0; if (++i12 == ne02) { i12 = 0; if (++i13 == ne03) { i13 = 0; } } } } } } i10 += ne00 * (ne01 - ir1); while (i10 >= ne0) { i10 -= ne0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } } } } else if (dst->type == GGML_TYPE_F32) { for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { i10 += ne00 * ir0; while (i10 >= ne0) { i10 -= ne0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } for (int64_t i01 = ir0; i01 < ir1; i01++) { for (int64_t i00 = 0; i00 < ne00; i00++) { const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr); if (++i10 == ne0) { i10 = 0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } } } i10 += ne00 * (ne01 - ir1); while (i10 >= ne0) { i10 -= ne0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } } } } else { GGML_ABORT("fatal error"); // TODO: implement } } static void ggml_compute_forward_dup_bf16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); GGML_TENSOR_UNARY_OP_LOCALS const int ith = params->ith; // thread index const int nth = params->nth; // number of threads // parallelize by rows const int nr = ne01; // number of rows per thread const int dr = (nr + nth - 1) / nth; // row range for this thread const int ir0 = dr * ith; const int ir1 = MIN(ir0 + dr, nr); if (src0->type == dst->type && ne00 == ne0 && nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) { // copy by rows const size_t rs = ne00*nb00; for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = ir0; i01 < ir1; i01++) { memcpy( ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03), rs); } } } return; } // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy if (ggml_is_contiguous(dst)) { if (nb00 == sizeof(ggml_bf16_t)) { if (dst->type == GGML_TYPE_BF16) { size_t id = 0; const size_t rs = ne00 * nb00; char * dst_ptr = (char *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += rs * ir0; for (int i01 = ir0; i01 < ir1; i01++) { const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; memcpy(dst_ptr + id, src0_ptr, rs); id += rs; } id += rs * (ne01 - ir1); } } } else if (dst->type == GGML_TYPE_F16) { size_t id = 0; ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += ne00 * ir0; for (int i01 = ir0; i01 < ir1; i01++) { const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); for (int i00 = 0; i00 < ne00; i00++) { dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00])); id++; } } id += ne00 * (ne01 - ir1); } } } else if (dst->type == GGML_TYPE_F32) { size_t id = 0; float * dst_ptr = (float *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += ne00 * ir0; for (int i01 = ir0; i01 < ir1; i01++) { const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); for (int i00 = 0; i00 < ne00; i00++) { dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]); id++; } } id += ne00 * (ne01 - ir1); } } } else if (ggml_get_type_traits_cpu(dst->type)->from_float) { ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float; float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; size_t id = 0; size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type)); char * dst_ptr = (char *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += rs * ir0; for (int i01 = ir0; i01 < ir1; i01++) { const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); for (int i00 = 0; i00 < ne00; i00++) { src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]); } quantize_row_q(src0_f32, dst_ptr + id, ne00); id += rs; } id += rs * (ne01 - ir1); } } } else { GGML_ABORT("fatal error"); // TODO: implement } } else { //printf("%s: this is not optimal - fix me\n", __func__); if (dst->type == GGML_TYPE_F32) { size_t id = 0; float * dst_ptr = (float *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += ne00 * ir0; for (int i01 = ir0; i01 < ir1; i01++) { for (int i00 = 0; i00 < ne00; i00++) { const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr); id++; } } id += ne00 * (ne01 - ir1); } } } else if (dst->type == GGML_TYPE_BF16) { size_t id = 0; ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += ne00 * ir0; for (int i01 = ir0; i01 < ir1; i01++) { for (int i00 = 0; i00 < ne00; i00++) { const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); dst_ptr[id] = *src0_ptr; id++; } } id += ne00 * (ne01 - ir1); } } } else if (dst->type == GGML_TYPE_F16) { size_t id = 0; ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += ne00 * ir0; for (int i01 = ir0; i01 < ir1; i01++) { for (int i00 = 0; i00 < ne00; i00++) { const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr)); id++; } } id += ne00 * (ne01 - ir1); } } } else { GGML_ABORT("fatal error"); // TODO: implement } } return; } // dst counters int64_t i10 = 0; int64_t i11 = 0; int64_t i12 = 0; int64_t i13 = 0; if (dst->type == GGML_TYPE_BF16) { for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { i10 += ne00 * ir0; while (i10 >= ne0) { i10 -= ne0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } for (int64_t i01 = ir0; i01 < ir1; i01++) { for (int64_t i00 = 0; i00 < ne00; i00++) { const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t)); if (++i10 == ne00) { i10 = 0; if (++i11 == ne01) { i11 = 0; if (++i12 == ne02) { i12 = 0; if (++i13 == ne03) { i13 = 0; } } } } } } i10 += ne00 * (ne01 - ir1); while (i10 >= ne0) { i10 -= ne0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } } } } else if (dst->type == GGML_TYPE_F16) { for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { i10 += ne00 * ir0; while (i10 >= ne0) { i10 -= ne0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } for (int64_t i01 = ir0; i01 < ir1; i01++) { for (int64_t i00 = 0; i00 < ne00; i00++) { const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr)); if (++i10 == ne0) { i10 = 0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } } } i10 += ne00 * (ne01 - ir1); while (i10 >= ne0) { i10 -= ne0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } } } } else if (dst->type == GGML_TYPE_F32) { for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { i10 += ne00 * ir0; while (i10 >= ne0) { i10 -= ne0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } for (int64_t i01 = ir0; i01 < ir1; i01++) { for (int64_t i00 = 0; i00 < ne00; i00++) { const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr); if (++i10 == ne0) { i10 = 0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } } } i10 += ne00 * (ne01 - ir1); while (i10 >= ne0) { i10 -= ne0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } } } } else { GGML_ABORT("fatal error"); // TODO: implement } } static void ggml_compute_forward_dup_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); GGML_TENSOR_UNARY_OP_LOCALS const int ith = params->ith; // thread index const int nth = params->nth; // number of threads // parallelize by rows const int nr = ne01; // number of rows per thread const int dr = (nr + nth - 1) / nth; // row range for this thread const int ir0 = dr * ith; const int ir1 = MIN(ir0 + dr, nr); if (src0->type == dst->type && ne00 == ne0 && nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) { // copy by rows const size_t rs = ne00*nb00; for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = ir0; i01 < ir1; i01++) { memcpy( ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03), rs); } } } return; } if (ggml_is_contiguous(dst)) { // TODO: simplify if (nb00 == sizeof(float)) { if (dst->type == GGML_TYPE_F32) { size_t id = 0; const size_t rs = ne00 * nb00; char * dst_ptr = (char *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += rs * ir0; for (int i01 = ir0; i01 < ir1; i01++) { const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; memcpy(dst_ptr + id, src0_ptr, rs); id += rs; } id += rs * (ne01 - ir1); } } } else if (ggml_get_type_traits_cpu(dst->type)->from_float) { ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float; size_t id = 0; size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type)); char * dst_ptr = (char *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += rs * ir0; for (int i01 = ir0; i01 < ir1; i01++) { const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); quantize_row_q(src0_ptr, dst_ptr + id, ne00); id += rs; } id += rs * (ne01 - ir1); } } } else { GGML_ABORT("fatal error"); // TODO: implement } } else { //printf("%s: this is not optimal - fix me\n", __func__); if (dst->type == GGML_TYPE_F32) { size_t id = 0; float * dst_ptr = (float *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += ne00 * ir0; for (int i01 = ir0; i01 < ir1; i01++) { for (int i00 = 0; i00 < ne00; i00++) { const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); dst_ptr[id] = *src0_ptr; id++; } } id += ne00 * (ne01 - ir1); } } } else if (dst->type == GGML_TYPE_F16) { size_t id = 0; ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += ne00 * ir0; for (int i01 = ir0; i01 < ir1; i01++) { for (int i00 = 0; i00 < ne00; i00++) { const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr); id++; } } id += ne00 * (ne01 - ir1); } } } else if (dst->type == GGML_TYPE_BF16) { size_t id = 0; ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { for (int i02 = 0; i02 < ne02; i02++) { id += ne00 * ir0; for (int i01 = ir0; i01 < ir1; i01++) { for (int i00 = 0; i00 < ne00; i00++) { const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr); id++; } } id += ne00 * (ne01 - ir1); } } } else { GGML_ABORT("fatal error"); // TODO: implement } } return; } // dst counters int64_t i10 = 0; int64_t i11 = 0; int64_t i12 = 0; int64_t i13 = 0; if (dst->type == GGML_TYPE_F32) { for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { i10 += ne00 * ir0; while (i10 >= ne0) { i10 -= ne0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } for (int64_t i01 = ir0; i01 < ir1; i01++) { for (int64_t i00 = 0; i00 < ne00; i00++) { const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); memcpy(dst_ptr, src0_ptr, sizeof(float)); if (++i10 == ne0) { i10 = 0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } } } i10 += ne00 * (ne01 - ir1); while (i10 >= ne0) { i10 -= ne0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } } } } else if (dst->type == GGML_TYPE_F16) { for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { i10 += ne00 * ir0; while (i10 >= ne0) { i10 -= ne0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } for (int64_t i01 = ir0; i01 < ir1; i01++) { for (int64_t i00 = 0; i00 < ne00; i00++) { const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr); if (++i10 == ne0) { i10 = 0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } } } i10 += ne00 * (ne01 - ir1); while (i10 >= ne0) { i10 -= ne0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } } } } else if (dst->type == GGML_TYPE_BF16) { for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { i10 += ne00 * ir0; while (i10 >= ne0) { i10 -= ne0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } for (int64_t i01 = ir0; i01 < ir1; i01++) { for (int64_t i00 = 0; i00 < ne00; i00++) { const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr); if (++i10 == ne0) { i10 = 0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } } } i10 += ne00 * (ne01 - ir1); while (i10 >= ne0) { i10 -= ne0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } } } } else { GGML_ABORT("fatal error"); // TODO: implement } } // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy. static void ggml_compute_forward_dup_bytes( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); GGML_ASSERT(src0->type == dst->type); GGML_TENSOR_UNARY_OP_LOCALS; if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) { ggml_compute_forward_dup_same_cont(params, dst); return; } const size_t type_size = ggml_type_size(src0->type); const int ith = params->ith; // thread index const int nth = params->nth; // number of threads // parallelize by rows const int nr = ne01; // number of rows per thread const int dr = (nr + nth - 1) / nth; // row range for this thread const int ir0 = dr * ith; const int ir1 = MIN(ir0 + dr, nr); if (src0->type == dst->type && ggml_are_same_shape(src0, dst) && nb00 == type_size && nb0 == type_size) { // copy by rows const size_t rs = ggml_row_size(src0->type, ne00); for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = ir0; i01 < ir1; i01++) { memcpy( ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03), rs); } } } return; } if (ggml_is_contiguous(dst)) { size_t id = 0; char * dst_ptr = (char *) dst->data; const size_t rs = ne00 * type_size; if (nb00 == type_size) { // src0 is contigous on first dimension, copy by rows for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { id += rs * ir0; for (int64_t i01 = ir0; i01 < ir1; i01++) { const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; memcpy(dst_ptr + id, src0_ptr, rs); id += rs; } id += rs * (ne01 - ir1); } } } else { //printf("%s: this is not optimal - fix me\n", __func__); for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { id += rs * ir0; for (int64_t i01 = ir0; i01 < ir1; i01++) { for (int64_t i00 = 0; i00 < ne00; i00++) { const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03; memcpy(dst_ptr + id, src0_ptr, type_size); id += type_size; } } id += rs * (ne01 - ir1); } } } return; } // dst counters int64_t k10 = 0; int64_t i11 = 0; int64_t i12 = 0; int64_t i13 = 0; // number of blocks in a row const int64_t nk00 = ne00 / ggml_blck_size(src0->type); const int64_t nk0 = ne0 / ggml_blck_size(dst->type); for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { k10 += nk00 * ir0; while (k10 >= nk0) { k10 -= nk0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } for (int64_t i01 = ir0; i01 < ir1; i01++) { for (int64_t k00 = 0; k00 < nk00; k00++) { const char * src0_ptr = ((char *) src0->data + k00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); char * dst_ptr = ((char *) dst->data + k10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); memcpy(dst_ptr, src0_ptr, type_size); if (++k10 == nk0) { k10 = 0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } } } k10 += nk00 * (ne01 - ir1); while (k10 >= nk0) { k10 -= nk0; if (++i11 == ne1) { i11 = 0; if (++i12 == ne2) { i12 = 0; if (++i13 == ne3) { i13 = 0; } } } } } } } static void ggml_compute_forward_dup_q( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS const ggml_type type = src0->type; ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float; size_t qk = ggml_blck_size(type); const int64_t nr = ggml_nelements(src1) / qk; // destination must be contiguous in the first dimension GGML_ASSERT(nb10 == ggml_type_size(dst->type)); // must either have first dimension large enough to hold a row, or fully contiguous GGML_ASSERT((ne10 % qk) == 0 || ggml_is_contiguous(dst)); const int ith = params->ith; const int nth = params->nth; const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int64_t ir = ir0; ir < ir1; ++ir) { uint32_t i = ir * qk; const int64_t i03 = i/(ne00 * ne01 * ne02); const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01); const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00; const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00; const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03; const int64_t i13 = i/(ne10 * ne11 * ne12); const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11); const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10; const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10; const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13; dequantize_row_q( (const void *) ((char *) src0->data + x_offset), (float *) ((char *) dst->data + dst_offset), qk); } } void ggml_compute_forward_dup( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; if (src0->type == dst->type) { ggml_compute_forward_dup_bytes(params, dst); return; } switch (src0->type) { case GGML_TYPE_F16: { ggml_compute_forward_dup_f16(params, dst); } break; case GGML_TYPE_BF16: { ggml_compute_forward_dup_bf16(params, dst); } break; case GGML_TYPE_F32: { ggml_compute_forward_dup_f32(params, dst); } break; default: { if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) { ggml_compute_forward_dup_q(params, dst); break; } GGML_ABORT("fatal error"); } } } // ggml_compute_forward_add static void ggml_compute_forward_add_q_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); const int nr = ggml_nrows(src0); GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; const ggml_type type = src0->type; const ggml_type dtype = dst->type; ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float; ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dtype)->from_float; // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == ggml_type_size(type)); GGML_ASSERT(nb10 == sizeof(float)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); GGML_ASSERT(ggml_is_quantized(src0->type)); GGML_ASSERT(src1->type == GGML_TYPE_F32); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; for (int ir = ir0; ir < ir1; ++ir) { // src0 indices const int i03 = ir/(ne02*ne01); const int i02 = (ir - i03*ne02*ne01)/ne01; const int i01 = (ir - i03*ne02*ne01 - i02*ne01); // src1 and dst are same shape as src0 => same indices const int i13 = i03; const int i12 = i02; const int i11 = i01; const int i3 = i03; const int i2 = i02; const int i1 = i01; void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)); float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)); void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); assert(ne00 % 32 == 0); // unquantize row from src0 to temp buffer dequantize_row_q(src0_row, wdata, ne00); // add src1 ggml_vec_acc_f32(ne00, wdata, src1_row); // quantize row to dst if (quantize_row_q != NULL) { quantize_row_q(wdata, dst_row, ne00); } else { memcpy(dst_row, wdata, ne0*nb0); } } } void ggml_compute_forward_add( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_BF16: { ggml_compute_forward_add_non_quantized(params, dst); } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_TQ1_0: case GGML_TYPE_TQ2_0: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ2_S: { ggml_compute_forward_add_q_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_add1 static void ggml_compute_forward_add1_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_scalar(src1)); const int ith = params->ith; const int nth = params->nth; const int nr = ggml_nrows(src0); GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int ir = ir0; ir < ir1; ++ir) { // src0 and dst are same shape => same indices const int i3 = ir/(ne2*ne1); const int i2 = (ir - i3*ne2*ne1)/ne1; const int i1 = (ir - i3*ne2*ne1 - i2*ne1); #ifdef GGML_USE_ACCELERATE GGML_UNUSED(ggml_vec_add1_f32); vDSP_vadd( (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1, (float *) ((char *) src1->data), 0, (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1, ne0); #else ggml_vec_add1_f32(ne0, (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), *(float *) src1->data); #endif } } static void ggml_compute_forward_add1_f16_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_scalar(src1)); // scalar to add const float v = *(float *) src1->data; const int ith = params->ith; const int nth = params->nth; const int nr = ggml_nrows(src0); GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F16); GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int ir = ir0; ir < ir1; ++ir) { // src0 and dst are same shape => same indices const int i3 = ir/(ne2*ne1); const int i2 = (ir - i3*ne2*ne1)/ne1; const int i1 = (ir - i3*ne2*ne1 - i2*ne1); ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); for (int i = 0; i < ne0; i++) { dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v); } } } static void ggml_compute_forward_add1_f16_f16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_scalar(src1)); // scalar to add const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data); const int ith = params->ith; const int nth = params->nth; const int nr = ggml_nrows(src0); GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F16); GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int ir = ir0; ir < ir1; ++ir) { // src0 and dst are same shape => same indices const int i3 = ir/(ne2*ne1); const int i2 = (ir - i3*ne2*ne1)/ne1; const int i1 = (ir - i3*ne2*ne1 - i2*ne1); ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); for (int i = 0; i < ne0; i++) { dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v); } } } static void ggml_compute_forward_add1_q_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_scalar(src1)); // scalar to add const float v = *(float *) src1->data; const int ith = params->ith; const int nth = params->nth; const int nr = ggml_nrows(src0); GGML_TENSOR_UNARY_OP_LOCALS const ggml_type type = src0->type; ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float; ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(type)->from_float; // we don't support permuted src0 GGML_ASSERT(nb00 == ggml_type_size(type)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); GGML_ASSERT(ggml_is_quantized(src0->type)); GGML_ASSERT(dst->type == src0->type); GGML_ASSERT(src1->type == GGML_TYPE_F32); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith; for (int ir = ir0; ir < ir1; ++ir) { // src0 and dst are same shape => same indices const int i3 = ir/(ne2*ne1); const int i2 = (ir - i3*ne2*ne1)/ne1; const int i1 = (ir - i3*ne2*ne1 - i2*ne1); void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03)); void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 )); assert(ne0 % 32 == 0); // unquantize row from src0 to temp buffer dequantize_row_q(src0_row, wdata, ne0); // add src1 ggml_vec_acc1_f32(ne0, wdata, v); // quantize row to dst quantize_row_q(wdata, dst_row, ne0); } } static void ggml_compute_forward_add1_bf16_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_scalar(src1)); // scalar to add const float v = *(float *) src1->data; const int ith = params->ith; const int nth = params->nth; const int nr = ggml_nrows(src0); GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT(src0->type == GGML_TYPE_BF16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_BF16); GGML_ASSERT( nb0 == sizeof(ggml_bf16_t)); GGML_ASSERT(nb00 == sizeof(ggml_bf16_t)); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int ir = ir0; ir < ir1; ++ir) { // src0 and dst are same shape => same indices const int i3 = ir/(ne2*ne1); const int i2 = (ir - i3*ne2*ne1)/ne1; const int i1 = (ir - i3*ne2*ne1 - i2*ne1); ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); for (int i = 0; i < ne0; i++) { dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v); } } } static void ggml_compute_forward_add1_bf16_bf16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_scalar(src1)); // scalar to add const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data); const int ith = params->ith; const int nth = params->nth; const int nr = ggml_nrows(src0); GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT(src0->type == GGML_TYPE_BF16); GGML_ASSERT(src1->type == GGML_TYPE_BF16); GGML_ASSERT(dst->type == GGML_TYPE_BF16); GGML_ASSERT( nb0 == sizeof(ggml_bf16_t)); GGML_ASSERT(nb00 == sizeof(ggml_bf16_t)); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int ir = ir0; ir < ir1; ++ir) { // src0 and dst are same shape => same indices const int i3 = ir/(ne2*ne1); const int i2 = (ir - i3*ne2*ne1)/ne1; const int i1 = (ir - i3*ne2*ne1 - i2*ne1); ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); for (int i = 0; i < ne0; i++) { dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v); } } } void ggml_compute_forward_add1( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_add1_f32(params, dst); } break; case GGML_TYPE_F16: { if (src1->type == GGML_TYPE_F16) { ggml_compute_forward_add1_f16_f16(params, dst); } else if (src1->type == GGML_TYPE_F32) { ggml_compute_forward_add1_f16_f32(params, dst); } else { GGML_ABORT("fatal error"); } } break; case GGML_TYPE_BF16: { if (src1->type == GGML_TYPE_BF16) { ggml_compute_forward_add1_bf16_bf16(params, dst); } else if (src1->type == GGML_TYPE_F32) { ggml_compute_forward_add1_bf16_f32(params, dst); } else { GGML_ABORT("fatal error"); } } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_1: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_TQ1_0: case GGML_TYPE_TQ2_0: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ2_S: { ggml_compute_forward_add1_q_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_acc static void ggml_compute_forward_acc_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); // view src0 and dst with these strides and data offset inbytes during acc // nb0 is implicitly element_size because src0 and dst are contiguous size_t nb1 = ((int32_t *) dst->op_params)[0]; size_t nb2 = ((int32_t *) dst->op_params)[1]; size_t nb3 = ((int32_t *) dst->op_params)[2]; size_t offset = ((int32_t *) dst->op_params)[3]; bool inplace = (bool) ((int32_t *) dst->op_params)[4]; if (!inplace) { if (params->ith == 0) { // memcpy needs to be synchronized across threads to avoid race conditions. // => do it in INIT phase memcpy( ((char *) dst->data), ((char *) src0->data), ggml_nbytes(dst)); } ggml_barrier(params->threadpool); } const int ith = params->ith; const int nth = params->nth; const int nr = ggml_nrows(src1); const int nc = src1->ne[0]; GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) // src0 and dst as viewed during acc const size_t nb0 = ggml_element_size(src0); const size_t nb00 = nb0; const size_t nb01 = nb1; const size_t nb02 = nb2; const size_t nb03 = nb3; GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst)); GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0)); GGML_ASSERT(nb10 == sizeof(float)); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int ir = ir0; ir < ir1; ++ir) { // src0 and dst are viewed with shape of src1 and offset // => same indices const int i3 = ir/(ne12*ne11); const int i2 = (ir - i3*ne12*ne11)/ne11; const int i1 = (ir - i3*ne12*ne11 - i2*ne11); #ifdef GGML_USE_ACCELERATE vDSP_vadd( (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1, (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1, (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc); #else ggml_vec_add_f32(nc, (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11)); #endif } } void ggml_compute_forward_acc( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_acc_f32(params, dst); } break; case GGML_TYPE_F16: case GGML_TYPE_BF16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_1: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_TQ1_0: case GGML_TYPE_TQ2_0: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ2_S: default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_sum static void ggml_compute_forward_sum_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; if (params->ith != 0) { return; } assert(ggml_is_scalar(dst)); assert(src0->nb[0] == sizeof(float)); GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) ggml_float sum = 0; ggml_float row_sum = 0; for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = 0; i01 < ne01; i01++) { ggml_vec_sum_f32_ggf(ne00, &row_sum, (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03)); sum += row_sum; } } } ((float *) dst->data)[0] = sum; } static void ggml_compute_forward_sum_f16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; if (params->ith != 0) { return; } assert(ggml_is_scalar(dst)); assert(src0->nb[0] == sizeof(ggml_fp16_t)); GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) float sum = 0; float row_sum = 0; for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = 0; i01 < ne01; i01++) { ggml_vec_sum_f16_ggf(ne00, &row_sum, (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03)); sum += row_sum; } } } ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum); } static void ggml_compute_forward_sum_bf16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; if (params->ith != 0) { return; } assert(ggml_is_scalar(dst)); assert(src0->nb[0] == sizeof(ggml_bf16_t)); GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) float sum = 0; float row_sum = 0; for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = 0; i01 < ne01; i01++) { ggml_vec_sum_bf16_ggf(ne00, &row_sum, (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03)); sum += row_sum; } } } ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum); } void ggml_compute_forward_sum( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_sum_f32(params, dst); } break; case GGML_TYPE_F16: { ggml_compute_forward_sum_f16(params, dst); } break; case GGML_TYPE_BF16: { ggml_compute_forward_sum_bf16(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_sum_rows static void ggml_compute_forward_sum_rows_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; if (params->ith != 0) { return; } GGML_ASSERT(src0->nb[0] == sizeof(float)); GGML_ASSERT(dst->nb[0] == sizeof(float)); GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT(ne0 == 1); GGML_ASSERT(ne1 == ne01); GGML_ASSERT(ne2 == ne02); GGML_ASSERT(ne3 == ne03); for (int64_t i3 = 0; i3 < ne03; i3++) { for (int64_t i2 = 0; i2 < ne02; i2++) { for (int64_t i1 = 0; i1 < ne01; i1++) { float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03); float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3); float row_sum = 0; ggml_vec_sum_f32(ne00, &row_sum, src_row); dst_row[0] = row_sum; } } } } void ggml_compute_forward_sum_rows( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_sum_rows_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_mean static void ggml_compute_forward_mean_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; if (params->ith != 0) { return; } assert(src0->nb[0] == sizeof(float)); GGML_TENSOR_UNARY_OP_LOCALS assert(ne0 == 1); assert(ne1 == ne01); assert(ne2 == ne02); assert(ne3 == ne03); GGML_UNUSED(ne0); GGML_UNUSED(ne1); GGML_UNUSED(ne2); GGML_UNUSED(ne3); for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = 0; i01 < ne01; i01++) { ggml_vec_sum_f32(ne00, (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03)); *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00; } } } } void ggml_compute_forward_mean( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_mean_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_argmax static void ggml_compute_forward_argmax_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; if (params->ith != 0) { return; } assert(src0->nb[0] == sizeof(float)); assert(dst->nb[0] == sizeof(float)); const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const size_t nb01 = src0->nb[1]; const size_t nb0 = dst->nb[0]; for (int64_t i1 = 0; i1 < ne01; i1++) { float * src = (float *) ((char *) src0->data + i1*nb01); int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0); int v = 0; ggml_vec_argmax_f32(ne00, &v, src); dst_[0] = v; } } void ggml_compute_forward_argmax( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_argmax_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_count_equal static void ggml_compute_forward_count_equal_i32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS; GGML_ASSERT(src0->type == GGML_TYPE_I32); GGML_ASSERT(src1->type == GGML_TYPE_I32); GGML_ASSERT(ggml_are_same_shape(src0, src1)); GGML_ASSERT(ggml_is_scalar(dst)); GGML_ASSERT(dst->type == GGML_TYPE_I64); const int64_t nr = ggml_nrows(src0); const int ith = params->ith; const int nth = params->nth; int64_t * sums = (int64_t *) params->wdata; int64_t sum_thread = 0; // rows per thread const int64_t dr = (nr + nth - 1)/nth; // row range for this thread const int64_t ir0 = dr*ith; const int64_t ir1 = MIN(ir0 + dr, nr); for (int64_t ir = ir0; ir < ir1; ++ir) { const int64_t i03 = ir / (ne02*ne01); const int64_t i02 = (ir - i03*ne03) / ne01; const int64_t i01 = ir - i03*ne03 - i02*ne02; const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01; const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11; for (int64_t i00 = 0; i00 < ne00; ++i00) { const int32_t val0 = *((const int32_t *) (data0 + i00*nb00)); const int32_t val1 = *((const int32_t *) (data1 + i00*nb10)); sum_thread += val0 == val1; } } if (ith != 0) { sums[ith] = sum_thread; } ggml_barrier(params->threadpool); if (ith != 0) { return; } for (int ith_other = 1; ith_other < nth; ++ith_other) { sum_thread += sums[ith_other]; } *((int64_t *) dst->data) = sum_thread; } void ggml_compute_forward_count_equal( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_I32: { ggml_compute_forward_count_equal_i32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_repeat static void ggml_compute_forward_repeat_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; if (params->ith != 0) { return; } GGML_ASSERT(ggml_can_repeat(src0, dst)); GGML_TENSOR_UNARY_OP_LOCALS // guaranteed to be an integer due to the check in ggml_can_repeat const int nr0 = (int)(ne0/ne00); const int nr1 = (int)(ne1/ne01); const int nr2 = (int)(ne2/ne02); const int nr3 = (int)(ne3/ne03); // TODO: support for transposed / permuted tensors GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); // TODO: maybe this is not optimal? for (int i3 = 0; i3 < nr3; i3++) { for (int k3 = 0; k3 < ne03; k3++) { for (int i2 = 0; i2 < nr2; i2++) { for (int k2 = 0; k2 < ne02; k2++) { for (int i1 = 0; i1 < nr1; i1++) { for (int k1 = 0; k1 < ne01; k1++) { for (int i0 = 0; i0 < nr0; i0++) { ggml_vec_cpy_f32(ne00, (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0), (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01)); } } } } } } } } static void ggml_compute_forward_repeat_f16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; if (params->ith != 0) { return; } GGML_ASSERT(ggml_can_repeat(src0, dst)); GGML_TENSOR_UNARY_OP_LOCALS // guaranteed to be an integer due to the check in ggml_can_repeat const int nr0 = (int)(ne0/ne00); const int nr1 = (int)(ne1/ne01); const int nr2 = (int)(ne2/ne02); const int nr3 = (int)(ne3/ne03); // TODO: support for transposed / permuted tensors GGML_ASSERT(nb0 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); // TODO: maybe this is not optimal? for (int i3 = 0; i3 < nr3; i3++) { for (int k3 = 0; k3 < ne03; k3++) { for (int i2 = 0; i2 < nr2; i2++) { for (int k2 = 0; k2 < ne02; k2++) { for (int i1 = 0; i1 < nr1; i1++) { for (int k1 = 0; k1 < ne01; k1++) { for (int i0 = 0; i0 < nr0; i0++) { ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0); ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01); // ggml_vec_cpy_f16(ne00, y, x) for (int i = 0; i < ne00; ++i) { y[i] = x[i]; } } } } } } } } } void ggml_compute_forward_repeat( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F16: case GGML_TYPE_BF16: case GGML_TYPE_I16: { ggml_compute_forward_repeat_f16(params, dst); } break; case GGML_TYPE_F32: case GGML_TYPE_I32: { ggml_compute_forward_repeat_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_repeat_back static void ggml_compute_forward_repeat_back_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; if (params->ith != 0) { return; } GGML_ASSERT(ggml_can_repeat(dst, src0)); GGML_TENSOR_UNARY_OP_LOCALS // guaranteed to be an integer due to the check in ggml_can_repeat const int nr0 = (int)(ne00/ne0); const int nr1 = (int)(ne01/ne1); const int nr2 = (int)(ne02/ne2); const int nr3 = (int)(ne03/ne3); // TODO: support for transposed / permuted tensors GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); if (ggml_is_contiguous(dst)) { ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0); } else { for (int k3 = 0; k3 < ne3; k3++) { for (int k2 = 0; k2 < ne2; k2++) { for (int k1 = 0; k1 < ne1; k1++) { ggml_vec_set_f32(ne0, (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3), 0); } } } } // TODO: maybe this is not optimal? for (int i3 = 0; i3 < nr3; i3++) { for (int k3 = 0; k3 < ne3; k3++) { for (int i2 = 0; i2 < nr2; i2++) { for (int k2 = 0; k2 < ne2; k2++) { for (int i1 = 0; i1 < nr1; i1++) { for (int k1 = 0; k1 < ne1; k1++) { for (int i0 = 0; i0 < nr0; i0++) { ggml_vec_acc_f32(ne0, (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1), (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00)); } } } } } } } } void ggml_compute_forward_repeat_back( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_repeat_back_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_concat static void ggml_compute_forward_concat_any( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; const size_t len = ggml_type_size(src0->type); const int ith = params->ith; const int nth = params->nth; GGML_TENSOR_BINARY_OP_LOCALS const int32_t dim = ggml_get_op_params_i32(dst, 0); GGML_ASSERT(dim >= 0 && dim < 4); int64_t o[4] = {0, 0, 0, 0}; o[dim] = src0->ne[dim]; const char * x; // TODO: smarter multi-theading for (int i3 = 0; i3 < ne3; i3++) { for (int i2 = ith; i2 < ne2; i2 += nth) { for (int i1 = 0; i1 < ne1; i1++) { for (int i0 = 0; i0 < ne0; i0++) { if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) { x = (const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03; } else { x = (const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13; } char * y = (char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3; memcpy(y, x, len); } } } } } static void ggml_compute_forward_concat_i8( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(ggml_type_size(src0->type) == sizeof(int8_t)); const int ith = params->ith; const int nth = params->nth; GGML_TENSOR_BINARY_OP_LOCALS const int32_t dim = ggml_get_op_params_i32(dst, 0); GGML_ASSERT(dim >= 0 && dim < 4); int64_t o[4] = {0, 0, 0, 0}; o[dim] = src0->ne[dim]; const int8_t * x; // TODO: smarter multi-theading for (int i3 = 0; i3 < ne3; i3++) { for (int i2 = ith; i2 < ne2; i2 += nth) { for (int i1 = 0; i1 < ne1; i1++) { for (int i0 = 0; i0 < ne0; i0++) { if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) { x = (const int8_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03); } else { x = (const int8_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13); } int8_t * y = (int8_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3); *y = *x; } } } } } static void ggml_compute_forward_concat_f16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(ggml_type_size(src0->type) == sizeof(ggml_fp16_t)); const int ith = params->ith; const int nth = params->nth; GGML_TENSOR_BINARY_OP_LOCALS const int32_t dim = ggml_get_op_params_i32(dst, 0); GGML_ASSERT(dim >= 0 && dim < 4); int64_t o[4] = {0, 0, 0, 0}; o[dim] = src0->ne[dim]; const ggml_fp16_t * x; // TODO: smarter multi-theading for (int i3 = 0; i3 < ne3; i3++) { for (int i2 = ith; i2 < ne2; i2 += nth) { for (int i1 = 0; i1 < ne1; i1++) { for (int i0 = 0; i0 < ne0; i0++) { if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) { x = (const ggml_fp16_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03); } else { x = (const ggml_fp16_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13); } ggml_fp16_t * y = (ggml_fp16_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3); *y = *x; } } } } } static void ggml_compute_forward_concat_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(ggml_type_size(src0->type) == sizeof(float)); const int ith = params->ith; const int nth = params->nth; GGML_TENSOR_BINARY_OP_LOCALS const int32_t dim = ggml_get_op_params_i32(dst, 0); GGML_ASSERT(dim >= 0 && dim < 4); int64_t o[4] = {0, 0, 0, 0}; o[dim] = src0->ne[dim]; const float * x; // TODO: smarter multi-theading for (int i3 = 0; i3 < ne3; i3++) { for (int i2 = ith; i2 < ne2; i2 += nth) { for (int i1 = 0; i1 < ne1; i1++) { for (int i0 = 0; i0 < ne0; i0++) { if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) { x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03); } else { x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13); } float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3); *y = *x; } } } } } void ggml_compute_forward_concat( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F16: case GGML_TYPE_BF16: case GGML_TYPE_I16: { ggml_compute_forward_concat_f16(params, dst); } break; case GGML_TYPE_I8: { ggml_compute_forward_concat_i8(params, dst); } break; case GGML_TYPE_F32: case GGML_TYPE_I32: { ggml_compute_forward_concat_f32(params, dst); } break; default: { ggml_compute_forward_concat_any(params, dst); } } } // ggml_compute_forward_gelu static void ggml_compute_forward_gelu_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; assert(ggml_is_contiguous_1(src0)); assert(ggml_is_contiguous_1(dst)); assert(ggml_are_same_shape(src0, dst)); const int ith = params->ith; const int nth = params->nth; const int nc = src0->ne[0]; const int nr = ggml_nrows(src0); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int i1 = ir0; i1 < ir1; i1++) { ggml_vec_gelu_f32(nc, (float *) ((char *) dst->data + i1*( dst->nb[1])), (float *) ((char *) src0->data + i1*(src0->nb[1]))); #ifndef NDEBUG for (int k = 0; k < nc; k++) { const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; GGML_UNUSED(x); assert(!isnan(x)); assert(!isinf(x)); } #endif } } static void ggml_compute_forward_gelu_f16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; assert(ggml_is_contiguous_1(src0)); assert(ggml_is_contiguous_1(dst)); assert(ggml_are_same_shape(src0, dst)); const int ith = params->ith; const int nth = params->nth; const int nc = src0->ne[0]; const int nr = ggml_nrows(src0); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int i1 = ir0; i1 < ir1; i1++) { ggml_vec_gelu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])), (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1]))); #ifndef NDEBUG for (int k = 0; k < nc; k++) { const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k]; const float v = GGML_FP16_TO_FP32(x); GGML_UNUSED(v); assert(!isnan(v)); assert(!isinf(v)); } #endif } } static void ggml_compute_forward_gelu( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_gelu_f32(params, dst); } break; case GGML_TYPE_F16: { ggml_compute_forward_gelu_f16(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_gelu_erf static void ggml_compute_forward_gelu_erf_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; assert(ggml_is_contiguous_1(src0)); assert(ggml_is_contiguous_1(dst)); assert(ggml_are_same_shape(src0, dst)); const int ith = params->ith; const int nth = params->nth; const int nc = src0->ne[0]; const int nr = ggml_nrows(src0); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int i1 = ir0; i1 < ir1; i1++) { ggml_vec_gelu_erf_f32(nc, (float *) ((char *) dst->data + i1*( dst->nb[1])), (float *) ((char *) src0->data + i1*(src0->nb[1]))); #ifndef NDEBUG for (int k = 0; k < nc; k++) { const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; GGML_UNUSED(x); assert(!isnan(x)); assert(!isinf(x)); } #endif } } static void ggml_compute_forward_gelu_erf_f16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; assert(ggml_is_contiguous_1(src0)); assert(ggml_is_contiguous_1(dst)); assert(ggml_are_same_shape(src0, dst)); const int ith = params->ith; const int nth = params->nth; const int nc = src0->ne[0]; const int nr = ggml_nrows(src0); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int i1 = ir0; i1 < ir1; i1++) { ggml_vec_gelu_erf_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])), (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1]))); #ifndef NDEBUG for (int k = 0; k < nc; k++) { const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k]; const float v = GGML_FP16_TO_FP32(x); GGML_UNUSED(v); assert(!isnan(v)); assert(!isinf(v)); } #endif } } static void ggml_compute_forward_gelu_erf( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_gelu_erf_f32(params, dst); } break; case GGML_TYPE_F16: { ggml_compute_forward_gelu_erf_f16(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_gelu_quick static void ggml_compute_forward_gelu_quick_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; assert(ggml_is_contiguous_1(src0)); assert(ggml_is_contiguous_1(dst)); assert(ggml_are_same_shape(src0, dst)); const int ith = params->ith; const int nth = params->nth; const int nc = src0->ne[0]; const int nr = ggml_nrows(src0); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int i1 = ir0; i1 < ir1; i1++) { ggml_vec_gelu_quick_f32(nc, (float *) ((char *) dst->data + i1*( dst->nb[1])), (float *) ((char *) src0->data + i1*(src0->nb[1]))); #ifndef NDEBUG for (int k = 0; k < nc; k++) { const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; GGML_UNUSED(x); assert(!isnan(x)); assert(!isinf(x)); } #endif } } static void ggml_compute_forward_gelu_quick_f16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; assert(ggml_is_contiguous_1(src0)); assert(ggml_is_contiguous_1(dst)); assert(ggml_are_same_shape(src0, dst)); const int ith = params->ith; const int nth = params->nth; const int nc = src0->ne[0]; const int nr = ggml_nrows(src0); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int i1 = ir0; i1 < ir1; i1++) { ggml_vec_gelu_quick_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])), (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1]))); #ifndef NDEBUG for (int k = 0; k < nc; k++) { const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k]; const float v = GGML_FP16_TO_FP32(x); GGML_UNUSED(v); assert(!isnan(v)); assert(!isinf(v)); } #endif } } static void ggml_compute_forward_gelu_quick( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_gelu_quick_f32(params, dst); } break; case GGML_TYPE_F16: { ggml_compute_forward_gelu_quick_f16(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_silu static void ggml_compute_forward_silu_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; assert(ggml_is_contiguous_1(src0)); assert(ggml_is_contiguous_1(dst)); assert(ggml_are_same_shape(src0, dst)); const int ith = params->ith; const int nth = params->nth; const int nc = src0->ne[0]; const int nr = ggml_nrows(src0); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int i1 = ir0; i1 < ir1; i1++) { ggml_vec_silu_f32(nc, (float *) ((char *) dst->data + i1*( dst->nb[1])), (float *) ((char *) src0->data + i1*(src0->nb[1]))); #ifndef NDEBUG for (int k = 0; k < nc; k++) { const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k]; GGML_UNUSED(x); assert(!isnan(x)); assert(!isinf(x)); } #endif } } static void ggml_compute_forward_silu_f16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; assert(ggml_is_contiguous_1(src0)); assert(ggml_is_contiguous_1(dst)); assert(ggml_are_same_shape(src0, dst)); const int ith = params->ith; const int nth = params->nth; const int nc = src0->ne[0]; const int nr = ggml_nrows(src0); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int i1 = ir0; i1 < ir1; i1++) { ggml_vec_silu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])), (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1]))); #ifndef NDEBUG for (int k = 0; k < nc; k++) { const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])))[k]; const float v = GGML_FP16_TO_FP32(x); GGML_UNUSED(v); assert(!isnan(v)); assert(!isinf(v)); } #endif } } static void ggml_compute_forward_silu( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_silu_f32(params, dst); } break; case GGML_TYPE_F16: { ggml_compute_forward_silu_f16(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_leaky_relu static void ggml_compute_forward_leaky_relu_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; if (params->ith != 0) { return; } assert(ggml_is_contiguous_1(src0)); assert(ggml_is_contiguous_1(dst)); assert(ggml_are_same_shape(src0, dst)); const int n = ggml_nrows(src0); const int nc = src0->ne[0]; float negative_slope; memcpy(&negative_slope, dst->op_params, sizeof(float)); assert(dst->nb[0] == sizeof(float)); assert(src0->nb[0] == sizeof(float)); for (int i = 0; i < n; i++) { ggml_vec_leaky_relu_f32(nc, (float *) ((char *) dst->data + i*( dst->nb[1])), (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope); } } static void ggml_compute_forward_leaky_relu_f16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; if (params->ith != 0) { return; } assert(ggml_is_contiguous_1(src0)); assert(ggml_is_contiguous_1(dst)); assert(ggml_are_same_shape(src0, dst)); const int n = ggml_nrows(src0); const int nc = src0->ne[0]; float negative_slope; memcpy(&negative_slope, dst->op_params, sizeof(float)); assert(dst->nb[0] == sizeof(ggml_fp16_t)); assert(src0->nb[0] == sizeof(ggml_fp16_t)); for (int i = 0; i < n; i++) { ggml_vec_leaky_relu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i*( dst->nb[1])), (ggml_fp16_t *) ((char *) src0->data + i*(src0->nb[1])), negative_slope); } } void ggml_compute_forward_leaky_relu( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_leaky_relu_f32(params, dst); } break; case GGML_TYPE_F16: { ggml_compute_forward_leaky_relu_f16(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_silu_back static void ggml_compute_forward_silu_back_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * grad = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; assert(ggml_is_contiguous_1(grad)); assert(ggml_is_contiguous_1(src1)); assert(ggml_is_contiguous_1(dst)); assert(ggml_are_same_shape(src1, dst)); assert(ggml_are_same_shape(src1, grad)); const int ith = params->ith; const int nth = params->nth; const int nc = src1->ne[0]; const int nr = ggml_nrows(src1); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int i1 = ir0; i1 < ir1; i1++) { ggml_vec_silu_backward_f32(nc, (float *) ((char *) dst->data + i1*( dst->nb[1])), (float *) ((char *) src1->data + i1*(src1->nb[1])), (float *) ((char *) grad->data + i1*(grad->nb[1]))); #ifndef NDEBUG for (int k = 0; k < nc; k++) { const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; GGML_UNUSED(x); assert(!isnan(x)); assert(!isinf(x)); } #endif } } static void ggml_compute_forward_silu_back_f16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * grad = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; assert(ggml_is_contiguous_1(grad)); assert(ggml_is_contiguous_1(src1)); assert(ggml_is_contiguous_1(dst)); assert(ggml_are_same_shape(src1, dst)); assert(ggml_are_same_shape(src1, grad)); const int ith = params->ith; const int nth = params->nth; const int nc = src1->ne[0]; const int nr = ggml_nrows(src1); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int i1 = ir0; i1 < ir1; i1++) { ggml_vec_silu_backward_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])), (ggml_fp16_t *) ((char *) src1->data + i1*(src1->nb[1])), (ggml_fp16_t *) ((char *) grad->data + i1*(grad->nb[1]))); #ifndef NDEBUG for (int k = 0; k < nc; k++) { const float x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k]; const float v = GGML_FP16_TO_FP32(x); GGML_UNUSED(v); assert(!isnan(v)); assert(!isinf(v)); } #endif } } void ggml_compute_forward_silu_back( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_silu_back_f32(params, dst); } break; case GGML_TYPE_F16: { ggml_compute_forward_silu_back_f16(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_norm static void ggml_compute_forward_norm_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(src0->nb[0] == sizeof(float)); const int ith = params->ith; const int nth = params->nth; GGML_TENSOR_UNARY_OP_LOCALS float eps; memcpy(&eps, dst->op_params, sizeof(float)); GGML_ASSERT(eps >= 0.0f); // TODO: optimize for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = ith; i01 < ne01; i01 += nth) { const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); ggml_float sum = 0.0; for (int64_t i00 = 0; i00 < ne00; i00++) { sum += (ggml_float)x[i00]; } float mean = sum/ne00; float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); ggml_float sum2 = 0.0; for (int64_t i00 = 0; i00 < ne00; i00++) { float v = x[i00] - mean; y[i00] = v; sum2 += (ggml_float)(v*v); } float variance = sum2/ne00; const float scale = 1.0f/sqrtf(variance + eps); ggml_vec_scale_f32(ne00, y, scale); } } } } void ggml_compute_forward_norm( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_norm_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_group_rms_norm static void ggml_compute_forward_rms_norm_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(src0->nb[0] == sizeof(float)); const int ith = params->ith; const int nth = params->nth; GGML_TENSOR_UNARY_OP_LOCALS float eps; memcpy(&eps, dst->op_params, sizeof(float)); GGML_ASSERT(eps >= 0.0f); // TODO: optimize for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = ith; i01 < ne01; i01 += nth) { const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); ggml_float sum = 0.0; for (int64_t i00 = 0; i00 < ne00; i00++) { sum += (ggml_float)(x[i00] * x[i00]); } const float mean = sum/ne00; float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); memcpy(y, x, ne00 * sizeof(float)); // for (int i00 = 0; i00 < ne00; i00++) { // y[i00] = x[i00]; // } const float scale = 1.0f/sqrtf(mean + eps); ggml_vec_scale_f32(ne00, y, scale); } } } } void ggml_compute_forward_rms_norm( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_rms_norm_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } static void ggml_compute_forward_rms_norm_back_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; // gradients from forward pass output const ggml_tensor * src1 = dst->src[1]; // src1 from forward pass GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1)); GGML_ASSERT(src0->nb[0] == sizeof(float)); GGML_ASSERT(src1->nb[0] == sizeof(float)); const int ith = params->ith; const int nth = params->nth; GGML_TENSOR_BINARY_OP_LOCALS float eps; memcpy(&eps, dst->op_params, sizeof(float)); // TODO: optimize for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = ith; i01 < ne01; i01 += nth) { // src1 is same shape as src0 => same indices const int64_t i11 = i01; const int64_t i12 = i02; const int64_t i13 = i03; const float * dz = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); const float * x = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13); ggml_float sum_xx = 0.0; ggml_float sum_xdz = 0.0; for (int64_t i00 = 0; i00 < ne00; i00++) { sum_xx += (ggml_float)(x[i00] * x[i00]); sum_xdz += (ggml_float)(x[i00] * dz[i00]); } //const float mean = (float)(sum_xx)/ne00; const float mean_eps = (float)(sum_xx)/ne00 + eps; const float sum_eps = (float)(sum_xx) + eps*ne00; //const float mean_xdz = (float)(sum_xdz)/ne00; // we could cache rms from forward pass to improve performance. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms. //const float rms = sqrtf(mean_eps); const float rrms = 1.0f / sqrtf(mean_eps); //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3) { // z = rms_norm(x) // // rms_norm(src1) = // scale( // src1, // div( // 1, // sqrt( // add( // scale( // sum( // sqr( // src1)), // (1.0/N)), // eps)))); // postorder: // ## op args grad // 00 param src1 grad[#00] // 01 const 1 // 02 sqr (#00) grad[#02] // 03 sum (#02) grad[#03] // 04 const 1/N // 05 scale (#03, #04) grad[#05] // 06 const eps // 07 add (#05, #06) grad[#07] // 08 sqrt (#07) grad[#08] // 09 div (#01,#08) grad[#09] // 10 scale (#00,#09) grad[#10] // // backward pass, given grad[#10] // #10: scale // grad[#00] += scale(grad[#10],#09) // grad[#09] += sum(mul(grad[#10],#00)) // #09: div // grad[#08] += neg(mul(grad[#09], div(#09,#08))) // #08: sqrt // grad[#07] += mul(grad[#08], div(0.5, #08)) // #07: add // grad[#05] += grad[#07] // #05: scale // grad[#03] += scale(grad[#05],#04) // #03: sum // grad[#02] += repeat(grad[#03], #02) // #02: // grad[#00] += scale(mul(#00, grad[#02]), 2.0) // // substitute and simplify: // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0) // grad[#02] = repeat(grad[#03], #02) // grad[#02] = repeat(scale(grad[#05],#04), #02) // grad[#02] = repeat(scale(grad[#07],#04), #02) // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02) // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02) // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02) // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02) // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02) // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02) // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02) // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0) // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0) // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0) // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N))) // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N)) // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N)) // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N)) // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps)) // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps))) // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps)) // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps)) // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps)) // a = b*c + d*e // a = b*c*f/f + d*e*f/f // a = (b*c*f + d*e*f)*(1/f) // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c)) // a = (b + d*e/c)*c // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps) // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms // a = (dz + x*div(-mean_xdz,mean_eps))*rrms // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms) // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms) // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms) } // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms) // post-order: // dx := x // dx := scale(dx,-mean_xdz/mean_eps) // dx := add(dx, dz) // dx := scale(dx, rrms) float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); // dx[i00] = (x*(-sum_xdz/sum_eps) + dz) / sqrtf(mean_eps) ggml_vec_cpy_f32 (ne00, dx, x); // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps); ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps); ggml_vec_acc_f32 (ne00, dx, dz); ggml_vec_scale_f32(ne00, dx, rrms); } } } } void ggml_compute_forward_rms_norm_back( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_rms_norm_back_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_group_norm static void ggml_compute_forward_group_norm_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(src0->nb[0] == sizeof(float)); const int ith = params->ith; const int nth = params->nth; GGML_TENSOR_UNARY_OP_LOCALS // TODO: optimize float eps; memcpy(&eps, dst->op_params + 1, sizeof(float)); int n_channels = src0->ne[2]; int n_groups = dst->op_params[0]; int n_channels_per_group = (n_channels + n_groups - 1) / n_groups; for (int i = ith; i < n_groups; i += nth) { int start = i * n_channels_per_group; int end = start + n_channels_per_group; if (end > n_channels) { end = n_channels; } int step = end - start; for (int64_t i03 = 0; i03 < ne03; i03++) { ggml_float sum = 0.0; for (int64_t i02 = start; i02 < end; i02++) { for (int64_t i01 = 0; i01 < ne01; i01++) { const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03); ggml_float sumr = 0.0; for (int64_t i00 = 0; i00 < ne00; i00++) { sumr += (ggml_float)x[i00]; } sum += sumr; } } const float mean = sum / (ne00 * ne01 * step); ggml_float sum2 = 0.0; for (int64_t i02 = start; i02 < end; i02++) { for (int64_t i01 = 0; i01 < ne01; i01++) { const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03); float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3); ggml_float sumr = 0.0; for (int64_t i00 = 0; i00 < ne00; i00++) { float v = x[i00] - mean; y[i00] = v; sumr += (ggml_float)(v * v); } sum2 += sumr; } } const float variance = sum2 / (ne00 * ne01 * step); const float scale = 1.0f / sqrtf(variance + eps); for (int64_t i02 = start; i02 < end; i02++) { for (int64_t i01 = 0; i01 < ne01; i01++) { float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3); ggml_vec_scale_f32(ne00, y, scale); } } } } } void ggml_compute_forward_group_norm( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_group_norm_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_l2_norm static void ggml_compute_forward_l2_norm_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(src0->nb[0] == sizeof(float)); const int ith = params->ith; const int nth = params->nth; GGML_TENSOR_UNARY_OP_LOCALS float eps; memcpy(&eps, dst->op_params, sizeof(float)); GGML_ASSERT(eps >= 0.0f); // TODO: optimize for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = ith; i01 < ne01; i01 += nth) { const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); ggml_float sum = 0.0; for (int64_t i00 = 0; i00 < ne00; i00++) { sum += (ggml_float)(x[i00] * x[i00]); } float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); memcpy(y, x, ne00 * sizeof(float)); const float scale = 1.0f/fmaxf(sqrtf(sum), eps); ggml_vec_scale_f32(ne00, y, scale); } } } } void ggml_compute_forward_l2_norm( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_l2_norm_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_out_prod static void ggml_compute_forward_out_prod_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT(dst->type == GGML_TYPE_F32); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); const int ith = params->ith; const int nth = params->nth; GGML_ASSERT(ne0 == ne00); GGML_ASSERT(ne1 == ne10); GGML_ASSERT(ne2 == ne12); GGML_ASSERT(ne3 == ne13); GGML_ASSERT(ne2 % ne02 == 0); GGML_ASSERT(ne3 % ne03 == 0); // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == sizeof(float)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); // GGML_ASSERT(nb0 <= nb1); // GGML_ASSERT(nb1 <= nb2); // GGML_ASSERT(nb2 <= nb3); // nb01 >= nb00 - src0 is not transposed // compute by src0 rows if (ith == 0) { ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0); } ggml_barrier(params->threadpool); // dst[:,:,:,:] = 0 // for i2,i3: // for i1: // for i01: // for i0: // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3] // parallelize by last three dimensions // total rows in dst const int64_t nr = ne1*ne2*ne3; // rows per thread const int64_t dr = (nr + nth - 1)/nth; // row range for this thread const int64_t ir0 = dr*ith; const int64_t ir1 = MIN(ir0 + dr, nr); // block-tiling attempt const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32); const int64_t blck_1 = 16; // dps == dst per src0, used for group query attention const int64_t dps2 = ne2 / ne02; const int64_t dps3 = ne3 / ne03; for (int64_t bir = ir0; bir < ir1; bir += blck_1) { const int64_t bir1 = MIN(bir + blck_1, ir1); for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) { const int64_t bne01 = MIN(bi01 + blck_0, ne01); for (int64_t ir = bir; ir < bir1; ++ir) { // dst indices const int64_t i3 = ir/(ne2*ne1); const int64_t i2 = (ir - i3*ne2*ne1)/ne1; const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1); const int64_t i02 = i2 / dps2; const int64_t i03 = i3 / dps3; //const int64_t i10 = i1; const int64_t i12 = i2; const int64_t i13 = i3; #if GGML_VEC_MAD_UNROLL > 2 const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL); for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) { const int64_t i11 = i01; float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1); } for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) { const int64_t i11 = i01; float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); ggml_vec_mad_f32(ne0, d, s0, *s1); } #else for (int64_t i01 = bi01; i01 < bne01; ++i01) { const int64_t i11 = i01; float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); ggml_vec_mad_f32(ne0, d, s0, *s1); } #endif } } } } static void ggml_compute_forward_out_prod_q_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; const ggml_type type = src0->type; ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float; GGML_ASSERT(ne02 == ne12); GGML_ASSERT(ne03 == ne13); GGML_ASSERT(ne2 == ne12); GGML_ASSERT(ne3 == ne13); // we don't support permuted src0 dim0 GGML_ASSERT(nb00 == ggml_type_size(type)); // dst dim0 cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); // GGML_ASSERT(nb0 <= nb1); // GGML_ASSERT(nb1 <= nb2); // GGML_ASSERT(nb2 <= nb3); GGML_ASSERT(ne0 == ne00); GGML_ASSERT(ne1 == ne10); GGML_ASSERT(ne2 == ne02); GGML_ASSERT(ne3 == ne03); // nb01 >= nb00 - src0 is not transposed // compute by src0 rows if (ith == 0) { ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0); } ggml_barrier(params->threadpool); // parallelize by last three dimensions // total rows in dst const int64_t nr = ne1*ne2*ne3; // rows per thread const int64_t dr = (nr + nth - 1)/nth; // row range for this thread const int64_t ir0 = dr*ith; const int64_t ir1 = MIN(ir0 + dr, nr); // dst[:,:,:,:] = 0 // for i2,i3: // for i1: // for i01: // for i0: // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3] float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith; for (int64_t ir = ir0; ir < ir1; ++ir) { // dst indices const int64_t i3 = ir/(ne2*ne1); const int64_t i2 = (ir - i3*ne2*ne1)/ne1; const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1); const int64_t i02 = i2; const int64_t i03 = i3; //const int64_t i10 = i1; const int64_t i12 = i2; const int64_t i13 = i3; for (int64_t i01 = 0; i01 < ne01; ++i01) { const int64_t i11 = i01; float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); dequantize_row_q(s0, wdata, ne0); ggml_vec_mad_f32(ne0, d, wdata, *s1); } } } void ggml_compute_forward_out_prod( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_TQ1_0: case GGML_TYPE_TQ2_0: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ2_S: { ggml_compute_forward_out_prod_q_f32(params, dst); } break; case GGML_TYPE_F16: { GGML_ABORT("fatal error"); // todo // ggml_compute_forward_out_prod_f16_f32(params, dst); } case GGML_TYPE_F32: { ggml_compute_forward_out_prod_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_scale static void ggml_compute_forward_scale_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); // scale factor float v; memcpy(&v, dst->op_params, sizeof(float)); const int ith = params->ith; const int nth = params->nth; const int nc = src0->ne[0]; const int nr = ggml_nrows(src0); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); const size_t nb01 = src0->nb[1]; const size_t nb1 = dst->nb[1]; for (int i1 = ir0; i1 < ir1; i1++) { if (dst->data != src0->data) { // src0 is same shape as dst => same indices memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float)); } ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v); } } void ggml_compute_forward_scale( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_scale_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_set static void ggml_compute_forward_set_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); // view src0 and dst with these strides and data offset inbytes during set // nb0 is implicitly element_size because src0 and dst are contiguous size_t nb1 = ((int32_t *) dst->op_params)[0]; size_t nb2 = ((int32_t *) dst->op_params)[1]; size_t nb3 = ((int32_t *) dst->op_params)[2]; size_t offset = ((int32_t *) dst->op_params)[3]; bool inplace = (bool) ((int32_t *) dst->op_params)[4]; if (!inplace) { if (params->ith == 0) { // memcpy needs to be synchronized across threads to avoid race conditions. // => do it in INIT phase memcpy( ((char *) dst->data), ((char *) src0->data), ggml_nbytes(dst)); } ggml_barrier(params->threadpool); } const int ith = params->ith; const int nth = params->nth; const int nr = ggml_nrows(src1); const int nc = src1->ne[0]; GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) // src0 and dst as viewed during set const size_t nb0 = ggml_element_size(src0); const int im0 = (ne10 == 0 ? 0 : ne10-1); const int im1 = (ne11 == 0 ? 0 : ne11-1); const int im2 = (ne12 == 0 ? 0 : ne12-1); const int im3 = (ne13 == 0 ? 0 : ne13-1); GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst)); GGML_ASSERT(nb10 == sizeof(float)); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int ir = ir0; ir < ir1; ++ir) { // src0 and dst are viewed with shape of src1 and offset // => same indices const int i3 = ir/(ne12*ne11); const int i2 = (ir - i3*ne12*ne11)/ne11; const int i1 = (ir - i3*ne12*ne11 - i2*ne11); ggml_vec_cpy_f32(nc, (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11)); } } static void ggml_compute_forward_set_i32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); // view src0 and dst with these strides and data offset inbytes during set // nb0 is implicitly element_size because src0 and dst are contiguous size_t nb1 = ((int32_t *) dst->op_params)[0]; size_t nb2 = ((int32_t *) dst->op_params)[1]; size_t nb3 = ((int32_t *) dst->op_params)[2]; size_t offset = ((int32_t *) dst->op_params)[3]; bool inplace = (bool) ((int32_t *) dst->op_params)[4]; if (!inplace) { if (params->ith == 0) { // memcpy needs to be synchronized across threads to avoid race conditions. // => do it in INIT phase memcpy( ((char *) dst->data), ((char *) src0->data), ggml_nbytes(dst)); } ggml_barrier(params->threadpool); } const int ith = params->ith; const int nth = params->nth; const int nr = ggml_nrows(src1); const int nc = src1->ne[0]; GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) // src0 and dst as viewed during set const size_t nb0 = ggml_element_size(src0); const int im0 = (ne10 == 0 ? 0 : ne10-1); const int im1 = (ne11 == 0 ? 0 : ne11-1); const int im2 = (ne12 == 0 ? 0 : ne12-1); const int im3 = (ne13 == 0 ? 0 : ne13-1); GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst)); GGML_ASSERT(nb10 == sizeof(int32_t)); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int ir = ir0; ir < ir1; ++ir) { // src0 and dst are viewed with shape of src1 and offset // => same indices const int i3 = ir/(ne12*ne11); const int i2 = (ir - i3*ne12*ne11)/ne11; const int i1 = (ir - i3*ne12*ne11 - i2*ne11); ggml_vec_cpy_i32(nc, (int32_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), (int32_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11)); } } void ggml_compute_forward_set( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_set_f32(params, dst); } break; case GGML_TYPE_I32: { ggml_compute_forward_set_i32(params, dst); } break; case GGML_TYPE_F16: case GGML_TYPE_BF16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_1: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_TQ1_0: case GGML_TYPE_TQ2_0: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ2_S: default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_cpy void ggml_compute_forward_cpy( const ggml_compute_params * params, ggml_tensor * dst) { ggml_compute_forward_dup(params, dst); } // ggml_compute_forward_cont void ggml_compute_forward_cont( const ggml_compute_params * params, ggml_tensor * dst) { ggml_compute_forward_dup(params, dst); } // ggml_compute_forward_reshape void ggml_compute_forward_reshape( const ggml_compute_params * params, ggml_tensor * dst) { // NOP GGML_UNUSED(params); GGML_UNUSED(dst); } // ggml_compute_forward_view void ggml_compute_forward_view( const ggml_compute_params * params, ggml_tensor * dst) { // NOP GGML_UNUSED(params); GGML_UNUSED(dst); } // ggml_compute_forward_permute void ggml_compute_forward_permute( const ggml_compute_params * params, ggml_tensor * dst) { // NOP GGML_UNUSED(params); GGML_UNUSED(dst); } // ggml_compute_forward_transpose void ggml_compute_forward_transpose( const ggml_compute_params * params, ggml_tensor * dst) { // NOP GGML_UNUSED(params); GGML_UNUSED(dst); } // ggml_compute_forward_get_rows static void ggml_compute_forward_get_rows_q( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS const int64_t nc = ne00; const int64_t nr = ggml_nelements(src1); const ggml_type type = src0->type; ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float; assert(ne0 == nc); assert(ne02 == ne11); assert(nb00 == ggml_type_size(type)); assert(ggml_nrows(dst) == nr); const int ith = params->ith; const int nth = params->nth; // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int64_t i = ir0; i < ir1; ++i) { const int64_t i12 = i/(ne11*ne10); const int64_t i11 = (i - i12*ne11*ne10)/ne10; const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10); const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); GGML_ASSERT(i01 >= 0 && i01 < ne01); dequantize_row_q( (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03), (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc); } } static void ggml_compute_forward_get_rows_f16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS const int64_t nc = ne00; const int64_t nr = ggml_nelements(src1); assert(ne0 == nc); assert(ne02 == ne11); assert(nb00 == sizeof(ggml_fp16_t)); assert(ggml_nrows(dst) == nr); const int ith = params->ith; const int nth = params->nth; // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int64_t i = ir0; i < ir1; ++i) { const int64_t i12 = i/(ne11*ne10); const int64_t i11 = (i - i12*ne11*ne10)/ne10; const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10); const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); GGML_ASSERT(i01 >= 0 && i01 < ne01); ggml_cpu_fp16_to_fp32( (const ggml_fp16_t*) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03), (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc); } } static void ggml_compute_forward_get_rows_bf16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS const int64_t nc = ne00; const int64_t nr = ggml_nelements(src1); assert(ne0 == nc); assert(ne02 == ne11); assert(nb00 == sizeof(ggml_bf16_t)); assert(ggml_nrows(dst) == nr); const int ith = params->ith; const int nth = params->nth; // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int64_t i = ir0; i < ir1; ++i) { const int64_t i12 = i/(ne11*ne10); const int64_t i11 = (i - i12*ne11*ne10)/ne10; const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10); const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); GGML_ASSERT(i01 >= 0 && i01 < ne01); ggml_cpu_bf16_to_fp32( (const ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03), (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc); } } static void ggml_compute_forward_get_rows_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS const int64_t nc = ne00; const int64_t nr = ggml_nelements(src1); assert(ne0 == nc); assert(ne02 == ne11); assert(nb00 == sizeof(float)); assert(ggml_nrows(dst) == nr); const int ith = params->ith; const int nth = params->nth; // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int64_t i = ir0; i < ir1; ++i) { const int64_t i12 = i/(ne11*ne10); const int64_t i11 = (i - i12*ne11*ne10)/ne10; const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10); const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); GGML_ASSERT(i01 >= 0 && i01 < ne01); ggml_vec_cpy_f32(nc, (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03)); } } void ggml_compute_forward_get_rows( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_1: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_TQ1_0: case GGML_TYPE_TQ2_0: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ2_S: { ggml_compute_forward_get_rows_q(params, dst); } break; case GGML_TYPE_F16: { ggml_compute_forward_get_rows_f16(params, dst); } break; case GGML_TYPE_BF16: { ggml_compute_forward_get_rows_bf16(params, dst); } break; case GGML_TYPE_F32: case GGML_TYPE_I32: { ggml_compute_forward_get_rows_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } //static bool first = true; //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]); //if (first) { // first = false; //} else { // for (int k = 0; k < dst->ne[1]; ++k) { // for (int j = 0; j < dst->ne[0]/16; ++j) { // for (int i = 0; i < 16; ++i) { // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]); // } // printf("\n"); // } // printf("\n"); // } // printf("\n"); // exit(0); //} } // ggml_compute_forward_get_rows_back static void ggml_compute_forward_get_rows_back_f32_f16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; if (params->ith != 0) { return; } GGML_ASSERT(ggml_is_contiguous(dst)); // ggml_compute_forward_dup_same_cont(params, opt0, dst); memset(dst->data, 0, ggml_nbytes(dst)); const int nc = src0->ne[0]; const int nr = ggml_nelements(src1); GGML_ASSERT( dst->ne[0] == nc); GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t)); for (int i = 0; i < nr; ++i) { const int r = ((int32_t *) src1->data)[i]; for (int j = 0; j < nc; ++j) { ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j]; ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v); } } } static void ggml_compute_forward_get_rows_back_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; if (params->ith != 0) { return; } GGML_ASSERT(ggml_is_contiguous(dst)); // ggml_compute_forward_dup_same_cont(params, opt0, dst); memset(dst->data, 0, ggml_nbytes(dst)); const int nc = src0->ne[0]; const int nr = ggml_nelements(src1); GGML_ASSERT( dst->ne[0] == nc); GGML_ASSERT(src0->nb[0] == sizeof(float)); for (int i = 0; i < nr; ++i) { const int r = ((int32_t *) src1->data)[i]; ggml_vec_add_f32(nc, (float *) ((char *) dst->data + r*dst->nb[1]), (float *) ((char *) dst->data + r*dst->nb[1]), (float *) ((char *) src0->data + i*src0->nb[1])); } } void ggml_compute_forward_get_rows_back( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F16: { ggml_compute_forward_get_rows_back_f32_f16(params, dst); } break; case GGML_TYPE_F32: { ggml_compute_forward_get_rows_back_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } //static bool first = true; //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]); //if (first) { // first = false; //} else { // for (int k = 0; k < dst->ne[1]; ++k) { // for (int j = 0; j < dst->ne[0]/16; ++j) { // for (int i = 0; i < 16; ++i) { // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]); // } // printf("\n"); // } // printf("\n"); // } // printf("\n"); // exit(0); //} } // ggml_compute_forward_diag static void ggml_compute_forward_diag_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; if (params->ith != 0) { return; } // TODO: handle transposed/permuted matrices GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT(ne00 == ne0); GGML_ASSERT(ne00 == ne1); GGML_ASSERT(ne01 == 1); GGML_ASSERT(ne02 == ne2); GGML_ASSERT(ne03 == ne3); GGML_ASSERT(nb00 == sizeof(float)); GGML_ASSERT(nb0 == sizeof(float)); for (int i3 = 0; i3 < ne3; i3++) { for (int i2 = 0; i2 < ne2; i2++) { for (int i1 = 0; i1 < ne1; i1++) { float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1); float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02); for (int i0 = 0; i0 < i1; i0++) { d[i0] = 0; } d[i1] = s[i1]; for (int i0 = i1+1; i0 < ne0; i0++) { d[i0] = 0; } } } } } void ggml_compute_forward_diag( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_diag_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_diag_mask_inf static void ggml_compute_forward_diag_mask_f32( const ggml_compute_params * params, ggml_tensor * dst, const float value) { const ggml_tensor * src0 = dst->src[0]; const int ith = params->ith; const int nth = params->nth; const int n_past = ((int32_t *) dst->op_params)[0]; const bool inplace = src0->data == dst->data; GGML_ASSERT(n_past >= 0); if (!inplace) { if (ith == 0) { // memcpy needs to be synchronized across threads to avoid race conditions. // => do it in INIT phase GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); memcpy( ((char *) dst->data), ((char *) src0->data), ggml_nbytes(dst)); } ggml_barrier(params->threadpool); } // TODO: handle transposed/permuted matrices const int n = ggml_nrows(src0); const int nc = src0->ne[0]; const int nr = src0->ne[1]; const int nz = n/nr; GGML_ASSERT( dst->nb[0] == sizeof(float)); GGML_ASSERT(src0->nb[0] == sizeof(float)); for (int k = 0; k < nz; k++) { for (int j = ith; j < nr; j += nth) { for (int i = n_past; i < nc; i++) { if (i > n_past + j) { *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value; } } } } } void ggml_compute_forward_diag_mask_inf( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY); } break; default: { GGML_ABORT("fatal error"); } } } void ggml_compute_forward_diag_mask_zero( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_diag_mask_f32(params, dst, 0); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_soft_max static void ggml_compute_forward_soft_max_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; assert(ggml_is_contiguous(dst)); assert(ggml_are_same_shape(src0, dst)); float scale = 1.0f; float max_bias = 0.0f; memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float)); // TODO: handle transposed/permuted matrices const int ith = params->ith; const int nth = params->nth; GGML_TENSOR_UNARY_OP_LOCALS //const int64_t ne11 = src1 ? src1->ne[1] : 1; // TODO: is this supposed to be ceil instead of floor? // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370 const uint32_t n_head = ne02; const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head)); const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); const int nc = src0->ne[0]; const int nr = ggml_nrows(src0); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith; const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16); for (int i1 = ir0; i1 < ir1; i1++) { // ALiBi const uint32_t h = (i1/ne01)%ne02; // head const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f; float * sp = (float *)((char *) src0->data + i1*src0->nb[1]); float * dp = (float *)((char *) dst->data + i1*dst->nb[1]); // broadcast the mask across rows ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL; float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL; ggml_vec_cpy_f32 (nc, wp, sp); ggml_vec_scale_f32(nc, wp, scale); if (mp_f32) { if (use_f16) { for (int i = 0; i < nc; ++i) { wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]); } } else { for (int i = 0; i < nc; ++i) { wp[i] += slope*mp_f32[i]; } } } #ifndef NDEBUG for (int i = 0; i < nc; ++i) { //printf("p[%d] = %f\n", i, p[i]); assert(!isnan(wp[i])); } #endif float max = -INFINITY; ggml_vec_max_f32(nc, &max, wp); ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max); assert(sum > 0.0); sum = 1.0/sum; ggml_vec_scale_f32(nc, dp, sum); #ifndef NDEBUG for (int i = 0; i < nc; ++i) { assert(!isnan(dp[i])); assert(!isinf(dp[i])); } #endif } } void ggml_compute_forward_soft_max( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_soft_max_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_soft_max_ext_back static void ggml_compute_forward_soft_max_ext_back_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_are_same_shape(src1, dst)); float scale = 1.0f; float max_bias = 0.0f; memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float)); memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float)); GGML_ASSERT(max_bias == 0.0f); // TODO: handle transposed/permuted matrices const int ith = params->ith; const int nth = params->nth; const int nc = src0->ne[0]; const int nr = ggml_nrows(src0); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); for (int i1 = ir0; i1 < ir1; i1++) { float *dy = (float *)((char *) src0->data + i1*src0->nb[1]); float *y = (float *)((char *) src1->data + i1*src1->nb[1]); float *dx = (float *)((char *) dst->data + i1*dst->nb[1]); #ifndef NDEBUG for (int i = 0; i < nc; ++i) { //printf("p[%d] = %f\n", i, p[i]); assert(!isnan(dy[i])); assert(!isnan(y[i])); } #endif // Jii = yi - yi*yi // Jij = -yi*yj // J = diag(y)-y.T*y // dx = J * dy // dxk = sum_i(Jki * dyi) // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk // dxk = sum_i(-yk*yi * dyi) + yk*dyk // dxk = -yk * sum_i(yi * dyi) + yk*dyk // dxk = -yk * dot(y, dy) + yk*dyk // dxk = yk * (- dot(y, dy) + dyk) // dxk = yk * (dyk - dot(y, dy)) // // post-order: // dot_y_dy := dot(y, dy) // dx := dy // dx := dx - dot_y_dy // dx := dx * y // linear runtime, no additional memory float dot_y_dy = 0; ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1); ggml_vec_cpy_f32 (nc, dx, dy); ggml_vec_acc1_f32 (nc, dx, -dot_y_dy); ggml_vec_mul_f32 (nc, dx, dx, y); ggml_vec_scale_f32(nc, dx, scale); #ifndef NDEBUG for (int i = 0; i < nc; ++i) { assert(!isnan(dx[i])); assert(!isinf(dx[i])); } #endif } } void ggml_compute_forward_soft_max_ext_back( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_soft_max_ext_back_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_clamp static void ggml_compute_forward_clamp_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; float min; float max; memcpy(&min, (float *) dst->op_params + 0, sizeof(float)); memcpy(&max, (float *) dst->op_params + 1, sizeof(float)); const int ith = params->ith; const int nth = params->nth; const int n = ggml_nrows(src0); const int nc = src0->ne[0]; const size_t nb00 = src0->nb[0]; const size_t nb01 = src0->nb[1]; const size_t nb0 = dst->nb[0]; const size_t nb1 = dst->nb[1]; GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); for (int j = ith; j < n; j += nth) { float * dst_ptr = (float *) ((char *) dst->data + j*nb1); float * src0_ptr = (float *) ((char *) src0->data + j*nb01); for (int i = 0; i < nc; i++) { dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min); } } } static void ggml_compute_forward_clamp_f16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; float min; float max; memcpy(&min, (float *) dst->op_params + 0, sizeof(float)); memcpy(&max, (float *) dst->op_params + 1, sizeof(float)); const int ith = params->ith; const int nth = params->nth; const int n = ggml_nrows(src0); const int nc = src0->ne[0]; const size_t nb00 = src0->nb[0]; const size_t nb01 = src0->nb[1]; const size_t nb0 = dst->nb[0]; const size_t nb1 = dst->nb[1]; GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); for (int j = ith; j < n; j += nth) { ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1); ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01); for (int i = 0; i < nc; i++) { float v = GGML_FP16_TO_FP32(src0_ptr[i]); dst_ptr[i] = GGML_FP32_TO_FP16(MAX(MIN(v, max), min)); } } } void ggml_compute_forward_clamp( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_clamp_f32(params, dst); } break; case GGML_TYPE_F16: { ggml_compute_forward_clamp_f16(params, dst); } break; case GGML_TYPE_BF16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_1: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_TQ1_0: case GGML_TYPE_TQ2_0: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ2_S: case GGML_TYPE_Q8_K: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: case GGML_TYPE_I64: case GGML_TYPE_F64: case GGML_TYPE_COUNT: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_rope static float rope_yarn_ramp(const float low, const float high, const int i0) { const float y = (i0 / 2 - low) / MAX(0.001f, high - low); return 1 - MIN(1, MAX(0, y)); } // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. static void rope_yarn( float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale, float * cos_theta, float * sin_theta) { // Get n-d rotational scaling corrected for extrapolation float theta_interp = freq_scale * theta_extrap; float theta = theta_interp; if (ext_factor != 0.0f) { float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor; theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; // Get n-d magnitude scaling corrected for interpolation mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale); } *cos_theta = cosf(theta) * mscale; *sin_theta = sinf(theta) * mscale; } static void ggml_rope_cache_init( float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale, float * cache, float sin_sign, float theta_scale) { // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py float theta = theta_base; for (int64_t i0 = 0; i0 < ne0; i0 += 2) { const float ff = freq_factors ? freq_factors[i0/2] : 1.0f; rope_yarn( theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1] ); cache[i0 + 1] *= sin_sign; theta *= theta_scale; } } static void ggml_mrope_cache_init( float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool indep_sects, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale, float * cache, float sin_sign, float theta_scale) { // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py float theta_t = theta_base_t; float theta_h = theta_base_h; float theta_w = theta_base_w; float theta_e = theta_base_e; // extra position id for vision encoder int sect_dims = sections[0] + sections[1] + sections[2] + sections[3]; int sec_w = sections[1] + sections[0]; int sec_e = sections[2] + sec_w; GGML_ASSERT(sect_dims <= ne0); for (int64_t i0 = 0; i0 < ne0; i0 += 2) { const float ff = freq_factors ? freq_factors[i0/2] : 1.0f; int sector = (i0 / 2) % sect_dims; if (indep_sects) { // compute theta independently for each dim sections // (i.e. reset corresponding theta when `i0` go from one section to another) if (sector == 0) { theta_t = theta_base_t; } else if (sector == sections[0]) { theta_h = theta_base_h;; } else if (sector == sec_w) { theta_w = theta_base_w; } else if (sector == sec_e) { theta_e = theta_base_e; } } float theta = theta_t; if (sector >= sections[0] && sector < sec_w) { theta = theta_h; } else if (sector >= sec_w && sector < sec_w + sections[2]) { theta = theta_w; } else if (sector >= sec_w + sections[2]) { theta = theta_e; } rope_yarn( theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1] ); cache[i0 + 1] *= sin_sign; theta_t *= theta_scale; theta_w *= theta_scale; theta_h *= theta_scale; theta_e *= theta_scale; } } static void ggml_compute_forward_rope_f32( const ggml_compute_params * params, ggml_tensor * dst, const bool forward) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; const ggml_tensor * src2 = dst->src[2]; float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; int sections[4]; //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; //const int n_ctx = ((int32_t *) dst->op_params)[3]; const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4); GGML_TENSOR_UNARY_OP_LOCALS //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); GGML_ASSERT(nb00 == sizeof(float)); const int ith = params->ith; const int nth = params->nth; const int nr = ggml_nrows(dst); GGML_ASSERT(n_dims <= ne0); GGML_ASSERT(n_dims % 2 == 0); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); // row index used to determine which thread to use int ir = 0; const float theta_scale = powf(freq_base, -2.0f/n_dims); float corr_dims[2]; ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims); const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, multimodal rotary position embedding const bool is_vision = mode == GGML_ROPE_TYPE_VISION; if (is_mrope) { GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0); } if (is_vision) { GGML_ASSERT(n_dims == ne0/2); } const float * freq_factors = NULL; if (src2 != NULL) { GGML_ASSERT(src2->type == GGML_TYPE_F32); GGML_ASSERT(src2->ne[0] >= n_dims / 2); freq_factors = (const float *) src2->data; } // backward process uses inverse rotation by cos and sin. // cos and sin build a rotation matrix, where the inverse is the transpose. // this essentially just switches the sign of sin. const float sin_sign = forward ? 1.0f : -1.0f; const int32_t * pos = (const int32_t *) src1->data; for (int64_t i3 = 0; i3 < ne3; i3++) { // batch for (int64_t i2 = 0; i2 < ne2; i2++) { // seq-len float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith; if (!is_mrope) { const int64_t p = pos[i2]; ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale); } else { const int64_t p_t = pos[i2]; const int64_t p_h = pos[i2 + ne2]; const int64_t p_w = pos[i2 + ne2 * 2]; const int64_t p_e = pos[i2 + ne2 * 3]; ggml_mrope_cache_init( p_t, p_h, p_w, p_e, sections, is_vision, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale); } for (int64_t i1 = 0; i1 < ne1; i1++) { // attn-heads if (ir++ < ir0) continue; if (ir > ir1) break; if (is_neox || is_mrope) { if (is_vision){ for (int64_t i0 = 0; i0 < n_dims; i0 += 2) { const int64_t ic = i0/2; const float cos_theta = cache[i0 + 0]; const float sin_theta = cache[i0 + 1]; const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00); float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0); const float x0 = src[0]; const float x1 = src[n_dims]; dst_data[0] = x0*cos_theta - x1*sin_theta; dst_data[n_dims] = x0*sin_theta + x1*cos_theta; } } else { for (int64_t i0 = 0; i0 < n_dims; i0 += 2) { const int64_t ic = i0/2; const float cos_theta = cache[i0 + 0]; const float sin_theta = cache[i0 + 1]; const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00); float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0); const float x0 = src[0]; const float x1 = src[n_dims/2]; dst_data[0] = x0*cos_theta - x1*sin_theta; dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta; } } } else { for (int64_t i0 = 0; i0 < n_dims; i0 += 2) { const float cos_theta = cache[i0 + 0]; const float sin_theta = cache[i0 + 1]; const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); const float x0 = src[0]; const float x1 = src[1]; dst_data[0] = x0*cos_theta - x1*sin_theta; dst_data[1] = x0*sin_theta + x1*cos_theta; } } if (is_vision) { for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) { const int64_t ic = i0/2; const float cos_theta = cache[i0 + 0]; const float sin_theta = cache[i0 + 1]; const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00); float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0); const float x0 = src[0]; const float x1 = src[n_dims]; dst_data[0] = x0*cos_theta - x1*sin_theta; dst_data[n_dims] = x0*sin_theta + x1*cos_theta; } } else { // fill the remain channels with data from src tensor for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) { const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); dst_data[0] = src[0]; dst_data[1] = src[1]; } } } } } } // TODO: deduplicate f16/f32 code static void ggml_compute_forward_rope_f16( const ggml_compute_params * params, ggml_tensor * dst, const bool forward) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; const ggml_tensor * src2 = dst->src[2]; float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; int sections[4]; //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; //const int n_ctx = ((int32_t *) dst->op_params)[3]; const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4); GGML_TENSOR_UNARY_OP_LOCALS //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); GGML_ASSERT(nb0 == sizeof(ggml_fp16_t)); const int ith = params->ith; const int nth = params->nth; const int nr = ggml_nrows(dst); GGML_ASSERT(n_dims <= ne0); GGML_ASSERT(n_dims % 2 == 0); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); // row index used to determine which thread to use int ir = 0; const float theta_scale = powf(freq_base, -2.0f/n_dims); float corr_dims[2]; ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims); const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; const bool is_vision = mode == GGML_ROPE_TYPE_VISION; if (is_mrope) { GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0); } if (is_vision) { GGML_ASSERT(n_dims == ne0/2); } const float * freq_factors = NULL; if (src2 != NULL) { GGML_ASSERT(src2->type == GGML_TYPE_F32); GGML_ASSERT(src2->ne[0] >= n_dims / 2); freq_factors = (const float *) src2->data; } // backward process uses inverse rotation by cos and sin. // cos and sin build a rotation matrix, where the inverse is the transpose. // this essentially just switches the sign of sin. const float sin_sign = forward ? 1.0f : -1.0f; const int32_t * pos = (const int32_t *) src1->data; for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = 0; i2 < ne2; i2++) { float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith; if (!is_mrope) { const int64_t p = pos[i2]; ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale); } else { const int64_t p_t = pos[i2]; const int64_t p_h = pos[i2 + ne2]; const int64_t p_w = pos[i2 + ne2 * 2]; const int64_t p_e = pos[i2 + ne2 * 3]; ggml_mrope_cache_init( p_t, p_h, p_w, p_e, sections, is_vision, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale); } for (int64_t i1 = 0; i1 < ne1; i1++) { if (ir++ < ir0) continue; if (ir > ir1) break; if (is_neox || is_mrope) { if (is_vision) { for (int64_t i0 = 0; i0 < n_dims; i0 += 2) { const int64_t ic = i0/2; const float cos_theta = cache[i0 + 0]; const float sin_theta = cache[i0 + 1]; const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00); ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0); const float x0 = GGML_FP16_TO_FP32(src[0]); const float x1 = GGML_FP16_TO_FP32(src[n_dims]); dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); } } else { for (int64_t i0 = 0; i0 < n_dims; i0 += 2) { const int64_t ic = i0/2; const float cos_theta = cache[i0 + 0]; const float sin_theta = cache[i0 + 1]; const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00); ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0); const float x0 = GGML_FP16_TO_FP32(src[0]); const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]); dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); } } } else { for (int64_t i0 = 0; i0 < n_dims; i0 += 2) { const float cos_theta = cache[i0 + 0]; const float sin_theta = cache[i0 + 1]; const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); const float x0 = GGML_FP16_TO_FP32(src[0]); const float x1 = GGML_FP16_TO_FP32(src[1]); dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); } } if (is_vision) { for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) { const int64_t ic = i0/2; const float cos_theta = cache[i0 + 0]; const float sin_theta = cache[i0 + 1]; const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00); ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0); const float x0 = GGML_FP16_TO_FP32(src[0]); const float x1 = GGML_FP16_TO_FP32(src[n_dims]); dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); } } else { for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) { const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); dst_data[0] = src[0]; dst_data[1] = src[1]; } } } } } } void ggml_compute_forward_rope( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F16: { ggml_compute_forward_rope_f16(params, dst, true); } break; case GGML_TYPE_F32: { ggml_compute_forward_rope_f32(params, dst, true); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_rope_back void ggml_compute_forward_rope_back( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F16: { ggml_compute_forward_rope_f16(params, dst, false); } break; case GGML_TYPE_F32: { ggml_compute_forward_rope_f32(params, dst, false); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_conv_transpose_1d static void ggml_compute_forward_conv_transpose_1d_f16_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; const int nk = ne00*ne01*ne02; GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb10 == sizeof(float)); if (ith == 0) { memset(params->wdata, 0, params->wsize); // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout) { ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = 0; i01 < ne01; i01++) { const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01); ggml_fp16_t * dst_data = wdata + i01*ne00*ne02; for (int64_t i00 = 0; i00 < ne00; i00++) { dst_data[i00*ne02 + i02] = src[i00]; } } } } // permute source data (src1) from (L x Cin) to (Cin x L) { ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk; ggml_fp16_t * dst_data = wdata; for (int64_t i11 = 0; i11 < ne11; i11++) { const float * const src = (float *)((char *) src1->data + i11*nb11); for (int64_t i10 = 0; i10 < ne10; i10++) { dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]); } } } // need to zero dst since we are accumulating into it memset(dst->data, 0, ggml_nbytes(dst)); } ggml_barrier(params->threadpool); const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; // total rows in dst const int nr = ne1; // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; ggml_fp16_t * const wdata_src = wdata + nk; for (int i1 = ir0; i1 < ir1; i1++) { float * dst_data = (float *)((char *) dst->data + i1*nb1); ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00; for (int i10 = 0; i10 < ne10; i10++) { const int i1n = i10*ne11; for (int i00 = 0; i00 < ne00; i00++) { float v = 0; ggml_vec_dot_f16(ne02, &v, 0, (ggml_fp16_t *) wdata_src + i1n, 0, (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1); dst_data[i10*s0 + i00] += v; } } } } static void ggml_compute_forward_conv_transpose_1d_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; const int nk = ne00*ne01*ne02; GGML_ASSERT(nb00 == sizeof(float)); GGML_ASSERT(nb10 == sizeof(float)); if (ith == 0) { memset(params->wdata, 0, params->wsize); // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout) { float * const wdata = (float *) params->wdata + 0; for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = 0; i01 < ne01; i01++) { const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01); float * dst_data = wdata + i01*ne00*ne02; for (int64_t i00 = 0; i00 < ne00; i00++) { dst_data[i00*ne02 + i02] = src[i00]; } } } } // prepare source data (src1) { float * const wdata = (float *) params->wdata + nk; float * dst_data = wdata; for (int64_t i11 = 0; i11 < ne11; i11++) { const float * const src = (float *)((char *) src1->data + i11*nb11); for (int64_t i10 = 0; i10 < ne10; i10++) { dst_data[i10*ne11 + i11] = src[i10]; } } } // need to zero dst since we are accumulating into it memset(dst->data, 0, ggml_nbytes(dst)); } ggml_barrier(params->threadpool); const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; // total rows in dst const int nr = ne1; // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); float * const wdata = (float *) params->wdata + 0; float * const wdata_src = wdata + nk; for (int i1 = ir0; i1 < ir1; i1++) { float * dst_data = (float *)((char *) dst->data + i1*nb1); float * wdata_kernel = wdata + i1*ne02*ne00; for (int i10 = 0; i10 < ne10; i10++) { const int i1n = i10*ne11; for (int i00 = 0; i00 < ne00; i00++) { float v = 0; ggml_vec_dot_f32(ne02, &v, 0, wdata_src + i1n, 0, wdata_kernel + i00*ne02, 0, 1); dst_data[i10*s0 + i00] += v; } } } } void ggml_compute_forward_conv_transpose_1d( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F16: { ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst); } break; case GGML_TYPE_F32: { ggml_compute_forward_conv_transpose_1d_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_im2col_f32 // src0: kernel [OC, IC, KH, KW] // src1: image [N, IC, IH, IW] // dst: result [N, OH, OW, IC*KH*KW] static void ggml_compute_forward_im2col_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_TENSOR_BINARY_OP_LOCALS; const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; const int32_t p0 = ((const int32_t *)(dst->op_params))[2]; const int32_t p1 = ((const int32_t *)(dst->op_params))[3]; const int32_t d0 = ((const int32_t *)(dst->op_params))[4]; const int32_t d1 = ((const int32_t *)(dst->op_params))[5]; const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1; const int ith = params->ith; const int nth = params->nth; const int64_t N = is_2D ? ne13 : ne12; const int64_t IC = is_2D ? ne12 : ne11; const int64_t IH = is_2D ? ne11 : 1; const int64_t IW = ne10; const int64_t KH = is_2D ? ne01 : 1; const int64_t KW = ne00; const int64_t OH = is_2D ? ne2 : 1; const int64_t OW = ne1; int ofs0 = is_2D ? nb13 : nb12; int ofs1 = is_2D ? nb12 : nb11; GGML_ASSERT(nb10 == sizeof(float)); // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] { float * const wdata = (float *) dst->data; for (int64_t in = 0; in < N; in++) { for (int64_t ioh = 0; ioh < OH; ioh++) { // 1 for (int64_t iow = 0; iow < OW; iow++) { for (int64_t iic = ith; iic < IC; iic += nth) { // micro kernel float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW] const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW] for (int64_t ikh = 0; ikh < KH; ikh++) { // 1 for (int64_t ikw = 0; ikw < KW; ikw++) { const int64_t iiw = iow*s0 + ikw*d0 - p0; const int64_t iih = ioh*s1 + ikh*d1 - p1; if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) { dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0; } else { dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]); } } } } } } } } } // ggml_compute_forward_im2col_f16 // src0: kernel [OC, IC, KH, KW] // src1: image [N, IC, IH, IW] // dst: result [N, OH, OW, IC*KH*KW] static void ggml_compute_forward_im2col_f16( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F16); GGML_TENSOR_BINARY_OP_LOCALS; const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; const int32_t p0 = ((const int32_t *)(dst->op_params))[2]; const int32_t p1 = ((const int32_t *)(dst->op_params))[3]; const int32_t d0 = ((const int32_t *)(dst->op_params))[4]; const int32_t d1 = ((const int32_t *)(dst->op_params))[5]; const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1; const int ith = params->ith; const int nth = params->nth; const int64_t N = is_2D ? ne13 : ne12; const int64_t IC = is_2D ? ne12 : ne11; const int64_t IH = is_2D ? ne11 : 1; const int64_t IW = ne10; const int64_t KH = is_2D ? ne01 : 1; const int64_t KW = ne00; const int64_t OH = is_2D ? ne2 : 1; const int64_t OW = ne1; int ofs0 = is_2D ? nb13 : nb12; int ofs1 = is_2D ? nb12 : nb11; GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb10 == sizeof(float)); // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] { ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data; for (int64_t in = 0; in < N; in++) { for (int64_t ioh = 0; ioh < OH; ioh++) { // 1 for (int64_t iow = 0; iow < OW; iow++) { for (int64_t iic = ith; iic < IC; iic += nth) { // micro kernel ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW] const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW] for (int64_t ikh = 0; ikh < KH; ikh++) { // 1 for (int64_t ikw = 0; ikw < KW; ikw++) { const int64_t iiw = iow*s0 + ikw*d0 - p0; const int64_t iih = ioh*s1 + ikh*d1 - p1; if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) { dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0; } else { dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]); } } } } } } } } } void ggml_compute_forward_im2col( const ggml_compute_params * params, ggml_tensor * dst) { switch (dst->type) { case GGML_TYPE_F16: { ggml_compute_forward_im2col_f16(params, dst); } break; case GGML_TYPE_F32: { ggml_compute_forward_im2col_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_im2col_back_f32 void ggml_compute_forward_im2col_back_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output const ggml_tensor * src1 = dst->src[1]; // convolution kernel GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_TENSOR_BINARY_OP_LOCALS; const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; const int32_t p0 = ((const int32_t *)(dst->op_params))[2]; const int32_t p1 = ((const int32_t *)(dst->op_params))[3]; const int32_t d0 = ((const int32_t *)(dst->op_params))[4]; const int32_t d1 = ((const int32_t *)(dst->op_params))[5]; const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1; const int ith = params->ith; const int nth = params->nth; const int64_t N = is_2D ? ne3 : ne2; const int64_t IC = is_2D ? ne2 : ne1; const int64_t IH = is_2D ? ne1 : 1; const int64_t IW = ne0; const int64_t KH = is_2D ? ne11 : 1; const int64_t KW = ne10; const int64_t OH = is_2D ? ne02 : 1; const int64_t OW = ne01; int ofs0 = is_2D ? nb3 : nb2; int ofs1 = is_2D ? nb2 : nb1; GGML_ASSERT(nb0 == sizeof(float)); // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] { float * const wdata = (float *) dst->data; for (int64_t in = 0; in < N; in++) { for (int64_t iic = ith; iic < IC; iic += nth) { for (int64_t iih = 0; iih < IH; iih++) { for (int64_t iiw = 0; iiw < IW; iiw++) { // micro kernel float grad = 0.0f; for (int64_t ikh = 0; ikh < KH; ikh++) { for (int64_t ikw = 0; ikw < KW; ikw++) { // For s0 > 1 some values were skipped over in the forward pass. // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well. const int64_t tmpw = (iiw + p0 - ikw*d0); if (tmpw % s0 != 0) { continue; } const int64_t iow = tmpw / s0; // Equivalent logic as above except for s1. int64_t ioh; if (is_2D) { const int64_t tmph = iih + p1 - ikh*d1; if (tmph % s1 != 0) { continue; } ioh = tmph / s1; } else { ioh = 0; } if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) { continue; } const float * const grad_in = (const float *) src0->data + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW] grad += grad_in[iic*(KH*KW) + ikh*KW + ikw]; } } float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW] dst_data[iih*IW + iiw] = grad; } } } } } } // ggml_compute_forward_conv_transpose_2d void ggml_compute_forward_conv_transpose_2d( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; const int nk = ne00*ne01*ne02*ne03; GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb10 == sizeof(float)); if (ith == 0) { memset(params->wdata, 0, params->wsize); // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout) { ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02); ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03; for (int64_t i01 = 0; i01 < ne01; i01++) { for (int64_t i00 = 0; i00 < ne00; i00++) { dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00]; } } } } } // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh) { ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk; for (int i12 = 0; i12 < ne12; i12++) { for (int i11 = 0; i11 < ne11; i11++) { const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11); ggml_fp16_t * dst_data = wdata + i11*ne10*ne12; for (int i10 = 0; i10 < ne10; i10++) { dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]); } } } } memset(dst->data, 0, ggml_nbytes(dst)); } ggml_barrier(params->threadpool); const int32_t stride = ggml_get_op_params_i32(dst, 0); // total patches in dst const int np = ne2; // patches per thread const int dp = (np + nth - 1)/nth; // patch range for this thread const int ip0 = dp*ith; const int ip1 = MIN(ip0 + dp, np); ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; ggml_fp16_t * const wdata_src = wdata + nk; for (int i2 = ip0; i2 < ip1; i2++) { // Cout float * dst_data = (float *)((char *) dst->data + i2*nb2); ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03; for (int i11 = 0; i11 < ne11; i11++) { for (int i10 = 0; i10 < ne10; i10++) { const int i1n = i11*ne10*ne12 + i10*ne12; for (int i01 = 0; i01 < ne01; i01++) { for (int i00 = 0; i00 < ne00; i00++) { float v = 0; ggml_vec_dot_f16(ne03, &v, 0, wdata_src + i1n, 0, wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1); dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v; } } } } } } // ggml_compute_forward_conv_2d_dw struct ggml_conv_2d_dw_params { int64_t channels; int64_t batch; int64_t src_w; int64_t src_h; int64_t dst_w; int64_t dst_h; int64_t knl_w; int64_t knl_h; int stride_x; int stride_y; int pad_x; int pad_y; int dilation_x; int dilation_y; }; static void ggml_compute_forward_conv_2d_dw_cwhn( const ggml_compute_params * params, const ggml_tensor * src, const ggml_tensor * kernel, ggml_tensor * dst, const ggml_conv_2d_dw_params & p) { const int64_t c = p.channels; const float * knl_data = (const float *)kernel->data; const int64_t rows_total = p.dst_h * p.batch; const int64_t rows_per_thread = (rows_total + params->nth - 1) / params->nth; const int64_t row_start = params->ith * rows_per_thread; const int64_t row_end = MIN(row_start + rows_per_thread, rows_total); #ifdef GGML_SIMD const int64_t pkg_size = GGML_F32_EPR; const int64_t pkg_count = c / pkg_size; const int64_t c_pkg_end = pkg_count * pkg_size; #else const int64_t c_pkg_end = 0; #endif for (int64_t row = row_start; row < row_end; ++row) { const int64_t dst_y = row % p.dst_h; const float * src_data = (const float *)src->data + (row / p.dst_h) * p.src_w * p.src_h * c; for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) { float * dst_data = (float *)dst->data + (row * p.dst_w + dst_x) * c; const int64_t src_y_base = dst_y * p.stride_y - p.pad_y; const int64_t src_x_base = dst_x * p.stride_x - p.pad_x; #ifdef GGML_SIMD // Vectorized loop for (int64_t c_i = 0; c_i < c_pkg_end; c_i += pkg_size) { GGML_F32_VEC sum = GGML_F32_VEC_ZERO; for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) { const int64_t src_y = src_y_base + knl_y * p.dilation_y; if (src_y < 0 || src_y >= p.src_h) { continue; } for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) { const int64_t src_x = src_x_base + knl_x * p.dilation_x; if (src_x < 0 || src_x >= p.src_w) { continue; } GGML_F32_VEC k = GGML_F32_VEC_LOAD(knl_data + (knl_y * p.knl_w + knl_x) * c + c_i); GGML_F32_VEC s = GGML_F32_VEC_LOAD(src_data + (src_y * p.src_w + src_x) * c + c_i); sum = GGML_F32_VEC_FMA(sum, k, s); } } GGML_F32_VEC_STORE(dst_data + c_i, sum); } #endif // Scalar loop for (int64_t c_i = c_pkg_end; c_i < c; ++c_i) { float sum = 0.0f; for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) { const int64_t src_y = src_y_base + knl_y * p.dilation_y; if (src_y < 0 || src_y >= p.src_h) { continue; } for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) { const int64_t src_x = src_x_base + knl_x * p.dilation_x; if (src_x < 0 || src_x >= p.src_w) { continue; } sum += knl_data[(knl_y * p.knl_w + knl_x) * c + c_i] * src_data[(src_y * p.src_w + src_x) * c + c_i]; } } dst_data[c_i] = sum; } } } } static void ggml_compute_forward_conv_2d_dw_whcn( const ggml_compute_params * params, const ggml_tensor * src, const ggml_tensor * kernel, ggml_tensor * dst, const ggml_conv_2d_dw_params & p) { const int64_t n = p.channels * p.batch; const int64_t per_thread = (n + params->nth - 1) / params->nth; const int64_t start = params->ith * per_thread; const int64_t end = MIN(start + per_thread, n); for (int64_t i = start; i < end; ++i) { const float * knl_data = (const float *)kernel->data + (i % p.channels) * p.knl_w * p.knl_h; const float * src_data = (const float *)src->data + i * p.src_w * p.src_h; float * dst_data = (float *)dst->data + i * p.dst_w * p.dst_h; for (int64_t dst_y = 0; dst_y < p.dst_h; ++dst_y) { for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) { float sum = 0.0f; for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) { const int64_t src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y; if (src_y < 0 || src_y >= p.src_h) { continue; } for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) { const int64_t src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x; if (src_x < 0 || src_x >= p.src_w) { continue; } sum += knl_data[knl_y * p.knl_w + knl_x] * src_data[src_y * p.src_w + src_x]; } } dst_data[dst_y * p.dst_w + dst_x] = sum; } } } } void ggml_compute_forward_conv_2d_dw( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * kernel = dst->src[0]; const ggml_tensor * src = dst->src[1]; ggml_conv_2d_dw_params p; p.channels = src->ne[2]; p.batch = src->ne[3]; p.src_w = src->ne[0]; p.src_h = src->ne[1]; p.dst_w = dst->ne[0]; p.dst_h = dst->ne[1]; p.knl_w = kernel->ne[0]; p.knl_h = kernel->ne[1]; p.stride_x = dst->op_params[0]; p.stride_y = dst->op_params[1]; p.pad_x = dst->op_params[2]; p.pad_y = dst->op_params[3]; p.dilation_x = dst->op_params[4]; p.dilation_y = dst->op_params[5]; GGML_ASSERT(kernel->ne[3] == p.channels); GGML_ASSERT(dst->ne[3] == p.batch); if (ggml_is_contiguous(src)) { ggml_compute_forward_conv_2d_dw_whcn(params, src, kernel, dst, p); } else if (ggml_is_contiguous_channels(src)) { // kernel should also have channels most contiguous in memory GGML_ASSERT(kernel->nb[0] >= kernel->nb[2] && kernel->nb[1] >= kernel->nb[0]); ggml_compute_forward_conv_2d_dw_cwhn(params, src, kernel, dst, p); } else { GGML_ABORT("non-contiguous memory layout not supported"); } } // ggml_compute_forward_pool_1d_sk_p0 static void ggml_compute_forward_pool_1d_sk_p0( const ggml_compute_params * params, const ggml_op_pool op, const int k, ggml_tensor * dst) { const ggml_tensor * src = dst->src[0]; assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16); if (params->ith != 0) { return; } const char * cdata = (const char *)src->data; const char * const data_end = cdata + ggml_nbytes(src); float * drow = (float *)dst->data; const int64_t rs = dst->ne[0]; while (cdata < data_end) { const void * srow = (const void *)cdata; int j = 0; for (int64_t i = 0; i < rs; ++i) { switch (op) { case GGML_OP_POOL_AVG: drow[i] = 0; break; case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break; case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); } for (int ki = 0; ki < k; ++ki) { const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]); switch (op) { case GGML_OP_POOL_AVG: drow[i] += srow_j; break; case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break; case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); } ++j; } switch (op) { case GGML_OP_POOL_AVG: drow[i] /= k; break; case GGML_OP_POOL_MAX: break; case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); } } cdata += src->nb[1]; drow += rs; } } // ggml_compute_forward_pool_1d void ggml_compute_forward_pool_1d( const ggml_compute_params * params, ggml_tensor * dst) { const int32_t * opts = (const int32_t *)dst->op_params; ggml_op_pool op = static_cast(opts[0]); const int k0 = opts[1]; const int s0 = opts[2]; const int p0 = opts[3]; GGML_ASSERT(p0 == 0); // padding not supported GGML_ASSERT(k0 == s0); // only s = k supported ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst); } // ggml_compute_forward_pool_2d void ggml_compute_forward_pool_2d( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src = dst->src[0]; assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16); if (params->ith != 0) { return; } const int32_t * opts = (const int32_t *)dst->op_params; ggml_op_pool op = static_cast(opts[0]); const int k0 = opts[1]; const int k1 = opts[2]; const int s0 = opts[3]; const int s1 = opts[4]; const int p0 = opts[5]; const int p1 = opts[6]; const char * cdata = (const char*)src->data; const char * const data_end = cdata + ggml_nbytes(src); const int64_t px = dst->ne[0]; const int64_t py = dst->ne[1]; const int64_t pa = px * py; float * dplane = (float *)dst->data; const int ka = k0 * k1; const int offset0 = -p0; const int offset1 = -p1; while (cdata < data_end) { for (int oy = 0; oy < py; ++oy) { float * const drow = dplane + oy * px; for (int ox = 0; ox < px; ++ox) { float * const out = drow + ox; switch (op) { case GGML_OP_POOL_AVG: *out = 0; break; case GGML_OP_POOL_MAX: *out = -FLT_MAX; break; case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); } const int ix = offset0 + ox * s0; const int iy = offset1 + oy * s1; for (int ky = 0; ky < k1; ++ky) { if (iy + ky < 0 || iy + ky >= src->ne[1]) continue; const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky)); for (int kx = 0; kx < k0; ++kx) { int j = ix + kx; if (j < 0 || j >= src->ne[0]) continue; const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]); switch (op) { case GGML_OP_POOL_AVG: *out += srow_j; break; case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break; case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); } } } switch (op) { case GGML_OP_POOL_AVG: *out /= ka; break; case GGML_OP_POOL_MAX: break; case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); } } } cdata += src->nb[2]; dplane += pa; } } // ggml_compute_forward_pool_2d_back void ggml_compute_forward_pool_2d_back( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src = dst->src[0]; const ggml_tensor * dstf = dst->src[1]; // forward tensor of dst assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); if (params->ith != 0) { return; } const int32_t * opts = (const int32_t *)dst->op_params; ggml_op_pool op = static_cast(opts[0]); const int k0 = opts[1]; const int k1 = opts[2]; const int s0 = opts[3]; const int s1 = opts[4]; const int p0 = opts[5]; const int p1 = opts[6]; char * cdata = (char *) dst->data; const char * cdataf = (const char *) dstf->data; const char * const data_end = cdata + ggml_nbytes(dst); GGML_ASSERT(params->ith == 0); memset(cdata, 0, ggml_nbytes(dst)); const int64_t px = src->ne[0]; const int64_t py = src->ne[1]; const int64_t pa = px * py; const float * splane = (const float *) src->data; const int ka = k0 * k1; const int offset0 = -p0; const int offset1 = -p1; while (cdata < data_end) { for (int oy = 0; oy < py; ++oy) { const float * const srow = splane + oy * px; for (int ox = 0; ox < px; ++ox) { const float grad0 = srow[ox]; const int ix = offset0 + ox * s0; const int iy = offset1 + oy * s1; if (op == GGML_OP_POOL_MAX) { float maxval = -FLT_MAX; int kxmax = -1; int kymax = -1; for (int ky = 0; ky < k1; ++ky) { if (iy + ky < 0 || iy + ky >= dst->ne[1]) { continue; } const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky)); for (int kx = 0; kx < k0; ++kx) { int j = ix + kx; if (j < 0 || j >= dst->ne[0]) { continue; } const float val = dst->type == GGML_TYPE_F32 ? ((const float *) drowf)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]); if (val <= maxval) { continue; } maxval = val; kxmax = kx; kymax = ky; } } if (kxmax == -1 || kymax == -1) { continue; } void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax)); const int j = ix + kxmax; if (dst->type == GGML_TYPE_F32) { ((float *) drow)[j] += grad0; } else { ((ggml_fp16_t *) drow)[j] = GGML_FP32_TO_FP16(grad0 + GGML_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j])); } } else if (op == GGML_OP_POOL_AVG) { const float grad = grad0 / ka; for (int ky = 0; ky < k1; ++ky) { if (iy + ky < 0 || iy + ky >= dst->ne[1]) { continue; } void * drow = (void *)(cdata + dst->nb[1] * (iy + ky)); for (int kx = 0; kx < k0; ++kx) { int j = ix + kx; if (j < 0 || j >= dst->ne[0]) { continue; } if (dst->type == GGML_TYPE_F32) { ((float *) drow)[j] += grad; } else { ((ggml_fp16_t *) drow)[j] += GGML_FP32_TO_FP16(grad); } } } } else { GGML_ASSERT(false); } } } cdata += dst->nb[2]; cdataf += dst->nb[2]; splane += pa; } } // ggml_compute_forward_upscale static void ggml_compute_forward_upscale_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(src0->type == GGML_TYPE_F32); const int ith = params->ith; const int nth = params->nth; GGML_TENSOR_UNARY_OP_LOCALS const float sf0 = (float)ne0/src0->ne[0]; const float sf1 = (float)ne1/src0->ne[1]; const float sf2 = (float)ne2/src0->ne[2]; const float sf3 = (float)ne3/src0->ne[3]; const ggml_scale_mode mode = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0); if (mode == GGML_SCALE_MODE_NEAREST) { for (int64_t i3 = 0; i3 < ne3; i3++) { const int64_t i03 = i3 / sf3; for (int64_t i2 = ith; i2 < ne2; i2 += nth) { const int64_t i02 = i2 / sf2; for (int64_t i1 = 0; i1 < ne1; i1++) { const int64_t i01 = i1 / sf1; for (int64_t i0 = 0; i0 < ne0; i0++) { const int64_t i00 = i0 / sf0; const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3); *y = *x; } } } } } else if (mode == GGML_SCALE_MODE_BILINEAR) { // setting a pixel offset of 0 would replicate the behavior of pytorch interpolate with align_corners=True const float pixel_offset = 0.5f; for (int64_t i3 = 0; i3 < ne3; i3++) { const int64_t i03 = i3 / sf3; for (int64_t i2 = ith; i2 < ne2; i2 += nth) { const int64_t i02 = i2 / sf2; for (int64_t i1 = 0; i1 < ne1; i1++) { const float y = ((float)i1 + pixel_offset) / sf1 - pixel_offset; int64_t y0 = (int64_t)floorf(y); int64_t y1 = y0 + 1; y0 = std::max(int64_t(0), std::min(y0, ne01 - 1)); y1 = std::max(int64_t(0), std::min(y1, ne01 - 1)); float dy = y - (float)y0; dy = std::max(0.0f, std::min(dy, 1.0f)); for (int64_t i0 = 0; i0 < ne0; i0++) { const float x = ((float)i0 + pixel_offset) / sf0 - pixel_offset; int64_t x0 = (int64_t)floorf(x); int64_t x1 = x0 + 1; x0 = std::max(int64_t(0), std::min(x0, ne00 - 1)); x1 = std::max(int64_t(0), std::min(x1, ne00 - 1)); float dx = x - (float)x0; dx = std::max(0.0f, std::min(dx, 1.0f)); // fetch the four surrounding pixel values and interpolate const float a = *(const float *)((const char *)src0->data + x0*nb00 + y0*nb01 + i02*nb02 + i03*nb03); const float b = *(const float *)((const char *)src0->data + x1*nb00 + y0*nb01 + i02*nb02 + i03*nb03); const float c = *(const float *)((const char *)src0->data + x0*nb00 + y1*nb01 + i02*nb02 + i03*nb03); const float d = *(const float *)((const char *)src0->data + x1*nb00 + y1*nb01 + i02*nb02 + i03*nb03); const float val = a*(1 - dx)*(1 - dy) + b*dx*(1 - dy) + c*(1 - dx)*dy + d*dx*dy; float * y_dst = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3); *y_dst = val; } } } } } else { GGML_ABORT("unsupported upscale mode"); } } void ggml_compute_forward_upscale( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_upscale_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_pad static void ggml_compute_forward_pad_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(src0->nb[0] == sizeof(float)); GGML_ASSERT( dst->nb[0] == sizeof(float)); const int ith = params->ith; const int nth = params->nth; GGML_TENSOR_UNARY_OP_LOCALS float * dst_ptr = (float *) dst->data; // TODO: optimize for (int64_t i2 = 0; i2 < ne2; ++i2) { for (int64_t i1 = ith; i1 < ne1; i1 += nth) { for (int64_t i0 = 0; i0 < ne0; ++i0) { for (int64_t i3 = 0; i3 < ne3; ++i3) { const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0; const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) { dst_ptr[dst_idx] = *src_ptr; } else { dst_ptr[dst_idx] = 0; } } } } } } void ggml_compute_forward_pad( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_pad_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_pad_reflect_1d void ggml_compute_forward_pad_reflect_1d( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); const int ith = params->ith; const int nth = params->nth; const int32_t * opts = (const int32_t *) dst->op_params; const int p0 = opts[0]; const int p1 = opts[1]; GGML_TENSOR_UNARY_OP_LOCALS for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = 0; i2 < ne2; i2++) { for (int64_t i1 = ith; i1 < ne1; i1 += nth) { float * left = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + p0*nb0); float * right = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (ne0-p1-1)*nb0); ggml_vec_cpy_f32(ne00, left, (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01)); for (int i0 = 1; i0 <= p0; i0++) { left[-i0] = left[i0]; } for (int i0 = 1; i0 <= p1; i0++) { right[i0] = right[-i0]; } } } } } // ggml_compute_forward_arange static void ggml_compute_forward_arange_f32( const ggml_compute_params * params, ggml_tensor * dst) { GGML_ASSERT(dst->nb[0] == sizeof(float)); const int ith = params->ith; const int nth = params->nth; const float start = ggml_get_op_params_f32(dst, 0); const float stop = ggml_get_op_params_f32(dst, 1); const float step = ggml_get_op_params_f32(dst, 2); const int64_t steps = (int64_t) ceilf((stop - start) / step); GGML_ASSERT(ggml_nelements(dst) == steps); for (int64_t i = ith; i < steps; i+= nth) { float value = start + step * i; ((float *)dst->data)[i] = value; } } void ggml_compute_forward_arange( const ggml_compute_params * params, ggml_tensor * dst) { switch (dst->type) { case GGML_TYPE_F32: { ggml_compute_forward_arange_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } static void ggml_compute_forward_timestep_embedding_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(src0->nb[0] == sizeof(float)); const int ith = params->ith; const int nth = params->nth; GGML_TENSOR_UNARY_OP_LOCALS const int dim = ggml_get_op_params_i32(dst, 0); const int max_period = ggml_get_op_params_i32(dst, 1); int half = dim / 2; for (int64_t i = 0; i < ne00; i++) { float * embed_data = (float *)((char *) dst->data + i*nb1); for (int64_t j = ith; j < half; j += nth) { float timestep = ((float *)src0->data)[i]; float freq = (float)expf(-logf(max_period) * j / half); float arg = timestep * freq; embed_data[j] = cosf(arg); embed_data[j + half] = sinf(arg); } if (dim % 2 != 0 && ith == 0) { embed_data[dim] = 0.f; } } } void ggml_compute_forward_timestep_embedding( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_timestep_embedding_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_argsort static void ggml_compute_forward_argsort_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT(nb0 == sizeof(float)); const int ith = params->ith; const int nth = params->nth; const int64_t nr = ggml_nrows(src0); ggml_sort_order order = (ggml_sort_order) ggml_get_op_params_i32(dst, 0); for (int64_t i = ith; i < nr; i += nth) { int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1); const float * src_data = (float *)((char *) src0->data + i*nb01); for (int64_t j = 0; j < ne0; j++) { dst_data[j] = j; } // C doesn't have a functional sort, so we do a bubble sort instead for (int64_t j = 0; j < ne0; j++) { for (int64_t k = j + 1; k < ne0; k++) { if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) || (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) { int32_t tmp = dst_data[j]; dst_data[j] = dst_data[k]; dst_data[k] = tmp; } } } } } void ggml_compute_forward_argsort( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_argsort_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_flash_attn_ext static void ggml_compute_forward_flash_attn_ext_f16( const ggml_compute_params * params, const ggml_tensor * q, const ggml_tensor * k, const ggml_tensor * v, const ggml_tensor * mask, ggml_tensor * dst) { GGML_TENSOR_LOCALS(int64_t, neq, q, ne) GGML_TENSOR_LOCALS(size_t, nbq, q, nb) GGML_TENSOR_LOCALS(int64_t, nek, k, ne) GGML_TENSOR_LOCALS(size_t, nbk, k, nb) GGML_TENSOR_LOCALS(int64_t, nev, v, ne) GGML_TENSOR_LOCALS(size_t, nbv, v, nb) GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) GGML_TENSOR_LOCALS(size_t, nb, dst, nb) const int ith = params->ith; const int nth = params->nth; const int64_t DK = nek0; const int64_t DV = nev0; const int64_t N = neq1; GGML_ASSERT(ne0 == DV); GGML_ASSERT(ne2 == N); // input tensor rows must be contiguous GGML_ASSERT(nbq0 == ggml_type_size(q->type)); GGML_ASSERT(nbk0 == ggml_type_size(k->type)); GGML_ASSERT(nbv0 == ggml_type_size(v->type)); GGML_ASSERT(neq0 == DK); GGML_ASSERT(nek0 == DK); GGML_ASSERT(nev0 == DV); GGML_ASSERT(neq1 == N); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); // broadcast factors const int64_t rk2 = neq2/nek2; const int64_t rk3 = neq3/nek3; const int64_t rv2 = neq2/nev2; const int64_t rv3 = neq3/nev3; // parallelize by q rows using ggml_vec_dot_f32 // total rows in q const int nr = neq1*neq2*neq3; // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); float scale = 1.0f; float max_bias = 0.0f; float logit_softcap = 0.0f; memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float)); memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float)); if (logit_softcap != 0) { scale /= logit_softcap; } const uint32_t n_head = neq2; const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head)); const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); ggml_type const k_vec_dot_type = ggml_get_type_traits_cpu(k->type)->vec_dot_type; ggml_from_float_t const q_to_vec_dot = ggml_get_type_traits_cpu(k_vec_dot_type)->from_float; ggml_vec_dot_t const kq_vec_dot = ggml_get_type_traits_cpu(k->type)->vec_dot; ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float; GGML_ASSERT(( q_to_vec_dot) && "fattn: unsupported K-type"); GGML_ASSERT((v->type == GGML_TYPE_F32 || v_to_float ) && "fattn: unsupported V-type"); // loop over n_batch and n_head for (int ir = ir0; ir < ir1; ++ir) { // q indices const int iq3 = ir/(neq2*neq1); const int iq2 = (ir - iq3*neq2*neq1)/neq1; const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1); const uint32_t h = iq2; // head index const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f; float S = 0.0f; // sum float M = -INFINITY; // maximum KQ value float * VKQ32 = (float *) params->wdata + ith*(1*DK + 2*DV + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator float * V32 = (VKQ32 + 1*DV); // (temporary) FP32 V buffer ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*DV); // (temporary) FP16 VKQ accumulator ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*DV); // (temporary) buffer for Q converted to quantized/FP16 if (v->type == GGML_TYPE_F16) { memset(VKQ16, 0, DV*sizeof(ggml_fp16_t)); } else { memset(VKQ32, 0, DV*sizeof(float)); } const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL; // k indices const int ik3 = iq3 / rk3; const int ik2 = iq2 / rk2; // v indices const int iv3 = iq3 / rv3; const int iv2 = iq2 / rv2; const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)); q_to_vec_dot(pq, Q_q, DK); // online softmax / attention // loop over n_kv and n_head_kv // ref: https://arxiv.org/pdf/2112.05682.pdf for (int64_t ic = 0; ic < nek1; ++ic) { const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f; if (mv == -INFINITY) { continue; } float s; // KQ value const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3); kq_vec_dot(DK, &s, 0, k_data, 0, Q_q, 0, 1); s = s*scale; // scale KQ value if (logit_softcap != 0.0f) { s = logit_softcap*tanhf(s); } s += mv; // apply mask const float Mold = M; float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value float vs = 1.0f; // post-softmax KQ value, expf(s - M) const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3)); if (v->type == GGML_TYPE_F16) { if (s > M) { // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f M = s; ms = expf(Mold - M); // V = V*expf(Mold - M) ggml_vec_scale_f16(DV, VKQ16, ms); } else { // no new maximum, ms == 1.0f, vs != 1.0f vs = expf(s - M); } // V += v*expf(s - M) ggml_vec_mad_f16(DV, VKQ16, (const ggml_fp16_t *) v_data, vs); } else { if (s > M) { // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f M = s; ms = expf(Mold - M); // V = V*expf(Mold - M) ggml_vec_scale_f32(DV, VKQ32, ms); } else { // no new maximum, ms == 1.0f, vs != 1.0f vs = expf(s - M); } // V += v*expf(s - M) if (v_to_float) { v_to_float(v_data, V32, DV); ggml_vec_mad_f32(DV, VKQ32, V32, vs); } else { // V is F32 ggml_vec_mad_f32(DV, VKQ32, (const float *) v_data, vs); } } S = S*ms + vs; // scale and increment sum with partial sum } if (v->type == GGML_TYPE_F16) { for (int64_t d = 0; d < DV; ++d) { VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]); } } // V /= S const float S_inv = 1.0f/S; ggml_vec_scale_f32(DV, VKQ32, S_inv); // dst indices const int i1 = iq1; const int i2 = iq2; const int i3 = iq3; // original //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float)); // permute(0, 2, 1, 3) memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1); } } void ggml_compute_forward_flash_attn_ext( const ggml_compute_params * params, const ggml_tensor * q, const ggml_tensor * k, const ggml_tensor * v, const ggml_tensor * mask, ggml_tensor * dst) { switch (dst->op_params[3]) { case GGML_PREC_DEFAULT: case GGML_PREC_F32: { // uses F32 accumulators ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_flash_attn_back static void ggml_compute_forward_flash_attn_back_f32( const ggml_compute_params * params, const bool masked, ggml_tensor * dst) { const ggml_tensor * q = dst->src[0]; const ggml_tensor * k = dst->src[1]; const ggml_tensor * v = dst->src[2]; const ggml_tensor * d = dst->src[3]; GGML_TENSOR_LOCALS(int64_t, neq, q, ne) GGML_TENSOR_LOCALS(size_t, nbq, q, nb) GGML_TENSOR_LOCALS(int64_t, nek, k, ne) GGML_TENSOR_LOCALS(size_t, nbk, k, nb) GGML_TENSOR_LOCALS(int64_t, nev, v, ne) GGML_TENSOR_LOCALS(size_t, nbv, v, nb) GGML_TENSOR_LOCALS(int64_t, ned, d, ne) GGML_TENSOR_LOCALS(size_t, nbd, d, nb) GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) GGML_TENSOR_LOCALS(size_t, nb, dst, nb) const int ith = params->ith; const int nth = params->nth; const int64_t D = neq0; const int64_t N = neq1; const int64_t P = nek1 - N; const int64_t M = P + N; const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL); const int mxDM = MAX(D, Mup); // GGML_ASSERT(ne0 == D); // GGML_ASSERT(ne1 == N); GGML_ASSERT(P >= 0); GGML_ASSERT(nbq0 == sizeof(float)); GGML_ASSERT(nbk0 == sizeof(float)); GGML_ASSERT(nbv0 == sizeof(float)); GGML_ASSERT(neq0 == D); GGML_ASSERT(nek0 == D); GGML_ASSERT(nev1 == D); GGML_ASSERT(ned0 == D); GGML_ASSERT(neq1 == N); GGML_ASSERT(nek1 == N + P); GGML_ASSERT(nev1 == D); GGML_ASSERT(ned1 == N); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); if (ith == 0) { memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3); } ggml_barrier(params->threadpool); const int64_t elem_q = ggml_nelements(q); const int64_t elem_k = ggml_nelements(k); ggml_type result_type = dst->type; GGML_ASSERT(ggml_blck_size(result_type) == 1); const size_t tsize = ggml_type_size(result_type); const size_t offs_q = 0; const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN); const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN); void * grad_q = (char *) dst->data; void * grad_k = (char *) dst->data + offs_k; void * grad_v = (char *) dst->data + offs_v; const size_t nbgq1 = nb0*neq0; const size_t nbgq2 = nb0*neq0*neq1; const size_t nbgq3 = nb0*neq0*neq1*neq2; const size_t nbgk1 = nb0*nek0; const size_t nbgk2 = nb0*nek0*nek1; const size_t nbgk3 = nb0*nek0*nek1*neq2; const size_t nbgv1 = nb0*nev0; const size_t nbgv2 = nb0*nev0*nev1; const size_t nbgv3 = nb0*nev0*nev1*neq2; // parallelize by k rows using ggml_vec_dot_f32 // total rows in k const int nr = nek2*nek3; // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); const float scale = 1.0f/sqrtf(D); //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale); // how often k2 (and v2) is repeated in q2 int nrep = neq2/nek2; for (int ir = ir0; ir < ir1; ++ir) { // q indices const int ik3 = ir/(nek2); const int ik2 = ir - ik3*nek2; const int iq3 = ik3; const int id3 = ik3; const int iv3 = ik3; const int iv2 = ik2; for (int irep = 0; irep < nrep; ++irep) { const int iq2 = ik2 + irep*nek2; const int id2 = iq2; // (ik2 + irep*nek2) % nek2 == ik2 for (int iq1 = 0; iq1 < neq1; ++iq1) { const int id1 = iq1; // not sure about CACHE_LINE_SIZE_F32.. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset? float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32); float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32); for (int i = M; i < Mup; ++i) { S[i] = -INFINITY; } const int64_t masked_begin = masked ? (P + iq1 + 1) : M; for (int64_t ic = 0; ic < masked_begin; ++ic) { // k indices const int ik1 = ic; // S indices const int i1 = ik1; ggml_vec_dot_f32(neq0, S + i1, 0, (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0, (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1); } // scale ggml_vec_scale_f32(masked_begin, S, scale); for (int64_t i = masked_begin; i < M; i++) { S[i] = -INFINITY; } // softmax // exclude known -INF S[..] values from max and loop // dont forget to set their SM values to zero { float max = -INFINITY; ggml_vec_max_f32(masked_begin, &max, S); ggml_float sum = 0.0; { #ifdef GGML_SOFT_MAX_ACCELERATE max = -max; vDSP_vsadd(SM, 1, &max, SM, 1, Mup); vvexpf(SM, SM, &Mup); ggml_vec_sum_f32(Mup, &sum, SM); #else sum = ggml_vec_soft_max_f32(Mup, SM, S, max); #endif } assert(sum > 0.0); sum = 1.0/sum; ggml_vec_scale_f32(masked_begin, SM, sum); } // step-by-step explanation { // forward-process shape grads from backward process // parallel_for ik2,ik3: // for irep: // iq2 = ik2 + irep*nek2 // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur] // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur] // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur] // for iq1: // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4 // S0 = -Inf [D,1,1,1] // ~S1[i] = dot(kcur[:D,i], qcur) // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P) // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur // ~S5[i] = dot(vcur[:,i], S4) // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3] // ~dst[i,iq1,iq2,iq3] = S5[i] ^ // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3] // dst backward-/ grad[dst] = d // // output gradients with their dependencies: // // grad[kcur] = grad[S1].T @ qcur // grad[S1] = diag_mask_zero(grad[S3], P) * scale // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) // grad[S4] = grad[S5] @ vcur // grad[S4] = d[:D,id1,id2,id3] @ vcur // grad[qcur] = grad[S1] @ kcur // grad[vcur] = grad[S5].T @ S4 // grad[vcur] = d[:D,id1,id2,id3].T @ S4 // // in post-order: // // S1 = qcur @ kcur.T // S2 = S1 * scale // S3 = diag_mask_inf(S2, P) // S4 = softmax(S3) // grad[S4] = d[:D,id1,id2,id3] @ vcur // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) // grad[S1] = diag_mask_zero(grad[S3], P) * scale // grad[qcur] = grad[S1] @ kcur // grad[kcur] = grad[S1].T @ qcur // grad[vcur] = d[:D,id1,id2,id3].T @ S4 // // using less variables (SM=S4): // // S = diag_mask_inf(qcur @ kcur.T * scale, P) // SM = softmax(S) // S = d[:D,iq1,iq2,iq3] @ vcur // dot_SM_gradSM = dot(SM, S) // S = SM * (S - dot(SM, S)) // S = diag_mask_zero(S, P) * scale // // grad[q][:D,iq1,iq2,iq3] += S @ kcur // grad[k][:D,:M,ik2,ik3] += S.T @ qcur // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM } // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3] // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3] // for ic: // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3] // exclude known future zero S[..] values from operation ggml_vec_set_f32(masked_begin, S, 0); for (int64_t ic = 0; ic < D; ++ic) { ggml_vec_mad_f32(masked_begin, S, (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3))); } // S = SM * (S - dot(SM, S)) float dot_SM_gradSM = 0; ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1); ggml_vec_acc1_f32(M, S, -dot_SM_gradSM); ggml_vec_mul_f32 (masked_begin, S, S, SM); // S = diag_mask_zero(S, P) * scale // already done by above ggml_vec_set_f32 // exclude known zero S[..] values from operation ggml_vec_scale_f32(masked_begin, S, scale); // S shape [M,1] // SM shape [M,1] // kcur shape [D,M] // qcur shape [D,1] // vcur shape [M,D] // grad[q][:D,iq1,iq2,iq3] += S @ kcur // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M] // for ic: // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3] // exclude known zero S[..] values from loop for (int64_t ic = 0; ic < masked_begin; ++ic) { ggml_vec_mad_f32(D, (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)), (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)), S[ic]); } // grad[k][:D,:M,iq2,iq3] += S.T @ qcur // for ic: // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0] // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0] // exclude known zero S[..] values from loop for (int64_t ic = 0; ic < masked_begin; ++ic) { ggml_vec_mad_f32(D, (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)), (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), S[ic]); } // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM // for ic: // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M] // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M] // exclude known zero SM[..] values from mad for (int64_t ic = 0; ic < D; ++ic) { ggml_vec_mad_f32(masked_begin, (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)), SM, *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3))); } } } } } void ggml_compute_forward_flash_attn_back( const ggml_compute_params * params, const bool masked, ggml_tensor * dst) { const ggml_tensor * q = dst->src[0]; switch (q->type) { case GGML_TYPE_F32: { ggml_compute_forward_flash_attn_back_f32(params, masked, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_ssm_conv static void ggml_compute_forward_ssm_conv_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; // conv_x const ggml_tensor * src1 = dst->src[1]; // conv1d.weight const int ith = params->ith; const int nth = params->nth; const int nc = src1->ne[0]; // d_conv const int ncs = src0->ne[0]; // d_conv - 1 + n_t const int nr = src0->ne[1]; // d_inner const int n_t = dst->ne[1]; // tokens per sequence const int n_s = dst->ne[2]; // number of sequences in the batch GGML_ASSERT( dst->ne[0] == nr); GGML_ASSERT(src0->nb[0] == sizeof(float)); GGML_ASSERT(src1->nb[0] == sizeof(float)); GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float)); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); const int ir = ir1 - ir0; for (int i3 = 0; i3 < n_s; ++i3) { for (int i2 = 0; i2 < n_t; ++i2) { // {d_conv - 1 + n_t, d_inner, n_seqs} // sliding window const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s} const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner} float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s} // TODO: transpose the output for smaller strides for big batches? // d_inner for (int i1 = 0; i1 < ir; ++i1) { // rowwise dot product // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision float sumf = 0.0f; // d_conv for (int i0 = 0; i0 < nc; ++i0) { sumf += s[i0 + i1*ncs] * c[i0 + i1*nc]; } x[i1] = sumf; } } } } void ggml_compute_forward_ssm_conv( const ggml_compute_params * params, ggml_tensor * dst) { switch (dst->src[0]->type) { case GGML_TYPE_F32: { ggml_compute_forward_ssm_conv_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_ssm_scan static void ggml_compute_forward_ssm_scan_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; // s const ggml_tensor * src1 = dst->src[1]; // x const ggml_tensor * src2 = dst->src[2]; // dt const ggml_tensor * src3 = dst->src[3]; // A const ggml_tensor * src4 = dst->src[4]; // B const ggml_tensor * src5 = dst->src[5]; // C const int ith = params->ith; const int nth = params->nth; const int64_t nc = src0->ne[0]; // d_state const int64_t nr = src0->ne[1]; // d_inner const int64_t n_t = src1->ne[1]; // number of tokens per sequence const int64_t n_s = src0->ne[2]; // number of sequences in the batch GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst)); GGML_ASSERT(src0->nb[0] == sizeof(float)); GGML_ASSERT(src1->nb[0] == sizeof(float)); GGML_ASSERT(src2->nb[0] == sizeof(float)); GGML_ASSERT(src3->nb[0] == sizeof(float)); GGML_ASSERT(src4->nb[0] == sizeof(float)); GGML_ASSERT(src5->nb[0] == sizeof(float)); // required for the dot product between s and C GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float)); // required for per-sequence offsets for states GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float)); // required to get correct offset for state destination (i.e. src1->nb[3]) GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float)); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); const int ir = ir1 - ir0; for (int i3 = 0; i3 < n_s; ++i3) { for (int i2 = 0; i2 < n_t; ++i2) { const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s} const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s} const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s} const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner} const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s} const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s} float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s} float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s} // use the output as the source for the next token-wise iterations if (i2 > 0) { s0 = s; } // d_inner for (int i1 = 0; i1 < ir; ++i1) { // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78 float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1]; float x_dt = x[i1] * dt_soft_plus; float sumf = 0.0f; // d_state for (int i0 = 0; i0 < nc; ++i0) { int i = i0 + i1*nc; // state = prev_state * dA + dB * x float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt); // y = rowwise_dotprod(state, C) sumf += state * C[i0]; s[i] = state; } y[i1] = sumf; } } } } void ggml_compute_forward_ssm_scan( const ggml_compute_params * params, ggml_tensor * dst) { switch (dst->src[0]->type) { case GGML_TYPE_F32: { ggml_compute_forward_ssm_scan_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_win_part static void ggml_compute_forward_win_part_f32( const ggml_compute_params * params, ggml_tensor * dst) { GGML_UNUSED(params); const ggml_tensor * src0 = dst->src[0]; GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) const int32_t nep0 = ((const int32_t *)(dst->op_params))[0]; const int32_t nep1 = ((const int32_t *)(dst->op_params))[1]; const int32_t w = ((const int32_t *)(dst->op_params))[2]; assert(ne00 == ne0); assert(ne3 == nep0*nep1); // TODO: optimize / multi-thread for (int py = 0; py < nep1; ++py) { for (int px = 0; px < nep0; ++px) { const int64_t i3 = py*nep0 + px; for (int64_t i2 = 0; i2 < ne2; ++i2) { for (int64_t i1 = 0; i1 < ne1; ++i1) { for (int64_t i0 = 0; i0 < ne0; ++i0) { const int64_t i02 = py*w + i2; const int64_t i01 = px*w + i1; const int64_t i00 = i0; const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0; const int64_t j = i02*ne01*ne00 + i01*ne00 + i00; if (py*w + i2 >= ne02 || px*w + i1 >= ne01) { ((float *) dst->data)[i] = 0.0f; } else { ((float *) dst->data)[i] = ((float *) src0->data)[j]; } } } } } } } void ggml_compute_forward_win_part( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_win_part_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_win_unpart static void ggml_compute_forward_win_unpart_f32( const ggml_compute_params * params, ggml_tensor * dst) { GGML_UNUSED(params); const ggml_tensor * src0 = dst->src[0]; GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) const int32_t w = ((const int32_t *)(dst->op_params))[0]; // padding const int px = (w - ne1%w)%w; //const int py = (w - ne2%w)%w; const int npx = (px + ne1)/w; //const int npy = (py + ne2)/w; assert(ne0 == ne00); // TODO: optimize / multi-thread for (int64_t i2 = 0; i2 < ne2; ++i2) { for (int64_t i1 = 0; i1 < ne1; ++i1) { for (int64_t i0 = 0; i0 < ne0; ++i0) { const int ip2 = i2/w; const int ip1 = i1/w; const int64_t i02 = i2%w; const int64_t i01 = i1%w; const int64_t i00 = i0; const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00; const int64_t j = i2*ne1*ne0 + i1*ne0 + i0; ((float *) dst->data)[j] = ((float *) src0->data)[i]; } } } } void ggml_compute_forward_win_unpart( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_win_unpart_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } //gmml_compute_forward_unary void ggml_compute_forward_unary( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_unary_op op = ggml_get_unary_op(dst); switch (op) { case GGML_UNARY_OP_ABS: { ggml_compute_forward_abs(params, dst); } break; case GGML_UNARY_OP_SGN: { ggml_compute_forward_sgn(params, dst); } break; case GGML_UNARY_OP_NEG: { ggml_compute_forward_neg(params, dst); } break; case GGML_UNARY_OP_STEP: { ggml_compute_forward_step(params, dst); } break; case GGML_UNARY_OP_TANH: { ggml_compute_forward_tanh(params, dst); } break; case GGML_UNARY_OP_ELU: { ggml_compute_forward_elu(params, dst); } break; case GGML_UNARY_OP_RELU: { ggml_compute_forward_relu(params, dst); } break; case GGML_UNARY_OP_SIGMOID: { ggml_compute_forward_sigmoid(params, dst); } break; case GGML_UNARY_OP_GELU: { ggml_compute_forward_gelu(params, dst); } break; case GGML_UNARY_OP_GELU_ERF: { ggml_compute_forward_gelu_erf(params, dst); } break; case GGML_UNARY_OP_GELU_QUICK: { ggml_compute_forward_gelu_quick(params, dst); } break; case GGML_UNARY_OP_SILU: { ggml_compute_forward_silu(params, dst); } break; case GGML_UNARY_OP_HARDSWISH: { ggml_compute_forward_hardswish(params, dst); } break; case GGML_UNARY_OP_HARDSIGMOID: { ggml_compute_forward_hardsigmoid(params, dst); } break; case GGML_UNARY_OP_EXP: { ggml_compute_forward_exp(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_get_rel_pos static void ggml_compute_forward_get_rel_pos_f16( const ggml_compute_params * params, ggml_tensor * dst) { GGML_UNUSED(params); const ggml_tensor * src0 = dst->src[0]; // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322 GGML_TENSOR_UNARY_OP_LOCALS const int64_t w = ne1; ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data; ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data; for (int64_t i2 = 0; i2 < ne2; ++i2) { for (int64_t i1 = 0; i1 < ne1; ++i1) { const int64_t pos = (w - i1 - 1) + i2; for (int64_t i0 = 0; i0 < ne0; ++i0) { dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0]; } } } } void ggml_compute_forward_get_rel_pos( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F16: case GGML_TYPE_BF16: { ggml_compute_forward_get_rel_pos_f16(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_add_rel_pos static void ggml_compute_forward_add_rel_pos_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; const ggml_tensor * src2 = dst->src[2]; const bool inplace = (bool) ((int32_t *) dst->op_params)[0]; if (!inplace) { if (params->ith == 0) { memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst)); } ggml_barrier(params->threadpool); } // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359 float * src1_data = (float *) src1->data; float * src2_data = (float *) src2->data; float * dst_data = (float *) dst->data; const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; const int64_t ne12 = src1->ne[2]; const int64_t ne13 = src1->ne[3]; const int ith = params->ith; const int nth = params->nth; // total patches in dst const int np = ne13; // patches per thread const int dp = (np + nth - 1)/nth; // patch range for this thread const int ip0 = dp*ith; const int ip1 = MIN(ip0 + dp, np); for (int64_t i13 = ip0; i13 < ip1; ++i13) { for (int64_t i12 = 0; i12 < ne12; ++i12) { for (int64_t i11 = 0; i11 < ne11; ++i11) { const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10; for (int64_t i10 = 0; i10 < ne10; ++i10) { const int64_t jp0 = jp1 + i10; const float src1_e = src1_data[jp0]; const float src2_e = src2_data[jp0]; const int64_t jdh = jp0 * ne10; const int64_t jdw = jdh - (ne10 - 1) * i10; for (int64_t j = 0; j < ne10; ++j) { dst_data[jdh + j ] += src2_e; dst_data[jdw + j*ne10] += src1_e; } } } } } } void ggml_compute_forward_add_rel_pos( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_add_rel_pos_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_rwkv_wkv6 static void ggml_compute_forward_rwkv_wkv6_f32( const ggml_compute_params * params, ggml_tensor * dst) { const int64_t T = dst->src[1]->ne[2]; const int64_t C = dst->ne[0]; const int64_t HEADS = dst->src[1]->ne[1]; const int64_t n_seqs = dst->src[5]->ne[1]; const int64_t head_size = C / HEADS; float * dst_data = (float *) dst->data; float * state = ((float *) dst->data) + C * T; const int ith = params->ith; const int nth = params->nth; if (ith >= HEADS) { return; } const int h_start = (HEADS * ith) / nth; const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ? (HEADS * (ith + 1)) / nth : HEADS; float * k = (float *) dst->src[0]->data; float * v = (float *) dst->src[1]->data; float * r = (float *) dst->src[2]->data; float * time_faaaa = (float *) dst->src[3]->data; float * time_decay = (float *) dst->src[4]->data; size_t t_stride = HEADS * head_size; // Same to C size_t h_stride = C / HEADS; GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS size_t h_stride_2d = head_size * head_size; if (ith == 0) { memset(dst_data, 0, T * C * sizeof(float)); } ggml_barrier(params->threadpool); #if defined(__AVX__) && !defined(__AVX512F__) #define GGML_F32X GGML_F32x8 #define GGML_F32X_SET1 GGML_F32x8_SET1 #define GGML_F32X_LOAD GGML_F32x8_LOAD #define GGML_F32X_STORE GGML_F32x8_STORE #define GGML_F32X_MUL GGML_F32x8_MUL #define GGML_F32X_FMA GGML_F32x8_FMA #define WKV_VECTOR_SIZE 8 #elif defined(__AVX512F__) #define GGML_F32X GGML_F32x16 #define GGML_F32X_SET1 GGML_F32x16_SET1 #define GGML_F32X_LOAD GGML_F32x16_LOAD #define GGML_F32X_STORE GGML_F32x16_STORE #define GGML_F32X_MUL GGML_F32x16_MUL #define GGML_F32X_FMA GGML_F32x16_FMA #define WKV_VECTOR_SIZE 16 #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__) #define GGML_F32X GGML_F32xt #define GGML_F32X_SET1 GGML_F32xt_SET1 #define GGML_F32X_LOAD GGML_F32xt_LOAD #define GGML_F32X_STORE GGML_F32xt_STORE #define GGML_F32X_MUL GGML_F32xt_MUL #define GGML_F32X_FMA GGML_F32xt_FMA #define WKV_VECTOR_SIZE 8 #elif defined(__ARM_NEON) && defined(__aarch64__) #define GGML_F32X GGML_F32x4 #define GGML_F32X_SET1 GGML_F32x4_SET1 #define GGML_F32X_LOAD GGML_F32x4_LOAD #define GGML_F32X_STORE GGML_F32x4_STORE #define GGML_F32X_MUL GGML_F32x4_MUL #define GGML_F32X_FMA GGML_F32x4_FMA #define WKV_VECTOR_SIZE 4 #endif int wkv_vector_size; #ifdef WKV_VECTOR_SIZE #if defined(__ARM_FEATURE_SVE) wkv_vector_size = svcntw(); #else wkv_vector_size = WKV_VECTOR_SIZE; #endif const int64_t vec_count = head_size / wkv_vector_size; for (int64_t t = 0; t < T; t++) { size_t t_offset = t * t_stride; size_t state_offset = head_size * C * (t / (T / n_seqs)); float * state_cur = state + state_offset; float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset; for (int64_t h = h_start; h < h_end; h++) { size_t h_offset = h * h_stride; size_t t_h_offset = t_offset + h_offset; size_t h_2d_offset = h * h_stride_2d; for (int64_t i = 0; i < head_size; i++) { size_t t_h_i_offset = t_h_offset + i; size_t h_i_offset = h_offset + i; size_t h_2d_i_offset = h_2d_offset + i * h_stride; float k_val = k[t_h_i_offset]; float r_val = r[t_h_i_offset]; float time_faaaa_val = time_faaaa[h_i_offset]; float time_decay_val = time_decay[t_h_i_offset]; // Broadcast scalar values to vectors GGML_F32X k_vec = GGML_F32X_SET1(k_val); GGML_F32X r_vec = GGML_F32X_SET1(r_val); GGML_F32X time_faaaa_vec = GGML_F32X_SET1(time_faaaa_val); GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val); for (int64_t j = 0; j < vec_count; j++) { size_t base_j = j * wkv_vector_size; size_t t_h_j_offset = t_h_offset + base_j; size_t h_2d_i_j_offset = h_2d_i_offset + base_j; // Load x elements at once GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]); GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]); GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]); // Compute kv = v * k GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec); // Compute temp = kv * time_faaaa + prev_state GGML_F32X temp_vec = GGML_F32X_FMA(prev_state_vec, kv_vec, time_faaaa_vec); // Update dst: dst += temp * r dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, r_vec); GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec); // Update state: state = prev_state * time_decay + kv GGML_F32X new_state_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, time_decay_vec); GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], new_state_vec); } // Handle remaining elements, this will not be used. for (int64_t j = vec_count * wkv_vector_size; j < head_size; j++) { size_t t_h_j_offset = t_h_offset + j; size_t h_2d_i_j_offset = h_2d_i_offset + j; float v_val = v[t_h_j_offset]; float kv_val = v_val * k_val; float prev_state_val = state_prev[h_2d_i_j_offset]; float temp_val = kv_val * time_faaaa_val + prev_state_val; dst_data[t_h_j_offset] += temp_val * r_val; state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val; } } } } #else // basically fused operations: // dst = r @ (time_faaaa * (k @ v) + state), // state = time_decay * state + (k @ v), // recursive through each token for (int64_t t = 0; t < T; t++) { size_t t_offset = t * t_stride; size_t state_offset = head_size * C * (t / (T / n_seqs)); float * state_cur = state + state_offset; float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset; for (int64_t h = h_start; h < h_end; h++) { size_t h_offset = h * h_stride; size_t t_h_offset = t_offset + h_offset; size_t h_2d_offset = h * h_stride_2d; for (int64_t i = 0; i < head_size; i++) { size_t t_h_i_offset = t_h_offset + i; size_t h_i_offset = h_offset + i; size_t h_2d_i_offset = h_2d_offset + i * h_stride; float k_val = k[t_h_i_offset]; float r_val = r[t_h_i_offset]; float time_faaaa_val = time_faaaa[h_i_offset]; // RWKV v6: different time_decay for each token. float time_decay_val = time_decay[t_h_i_offset]; for (int64_t j = 0; j < head_size; j++) { size_t t_h_j_offset = t_h_offset + j; size_t h_2d_i_j_offset = h_2d_i_offset + j; float v_val = v[t_h_j_offset]; float kv_val = v_val * k_val; float prev_state_val = state_prev[h_2d_i_j_offset]; float temp_val = kv_val * time_faaaa_val + prev_state_val; dst_data[t_h_j_offset] += temp_val * r_val; state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val; } } } } #endif } void ggml_compute_forward_rwkv_wkv6( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_rwkv_wkv6_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_gla static void ggml_compute_forward_gla_f32( const ggml_compute_params * params, ggml_tensor * dst) { const int64_t T = dst->src[1]->ne[2]; const int64_t C = dst->ne[0]; const int64_t HEADS = dst->src[1]->ne[1]; const int64_t n_seqs = dst->src[4]->ne[1]; const int64_t head_size = C / HEADS; const float scale = ggml_get_op_params_f32(dst, 0); float * dst_data = (float *) dst->data; float * state = ((float *) dst->data) + C * T; const int ith = params->ith; const int nth = params->nth; if (ith >= HEADS) { return; } const int h_start = (HEADS * ith) / nth; const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ? (HEADS * (ith + 1)) / nth : HEADS; float * k = (float *) dst->src[0]->data; float * v = (float *) dst->src[1]->data; float * q = (float *) dst->src[2]->data; float * g = (float *) dst->src[3]->data; size_t t_stride = HEADS * head_size; // Same to C size_t h_stride = C / HEADS; GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS size_t h_stride_2d = head_size * head_size; if (ith == 0) { memset(dst_data, 0, T * C * sizeof(float)); } ggml_barrier(params->threadpool); #if defined(__AVX__) && !defined(__AVX512F__) #define GGML_F32X GGML_F32x8 #define GGML_F32X_SET1 GGML_F32x8_SET1 #define GGML_F32X_LOAD GGML_F32x8_LOAD #define GGML_F32X_STORE GGML_F32x8_STORE #define GGML_F32X_MUL GGML_F32x8_MUL #define GGML_F32X_FMA GGML_F32x8_FMA #define GLA_VECTOR_SIZE 8 #elif defined(__AVX512F__) #define GGML_F32X GGML_F32x16 #define GGML_F32X_SET1 GGML_F32x16_SET1 #define GGML_F32X_LOAD GGML_F32x16_LOAD #define GGML_F32X_STORE GGML_F32x16_STORE #define GGML_F32X_MUL GGML_F32x16_MUL #define GGML_F32X_FMA GGML_F32x16_FMA #define GLA_VECTOR_SIZE 16 #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__) #define GGML_F32X GGML_F32xt #define GGML_F32X_SET1 GGML_F32xt_SET1 #define GGML_F32X_LOAD GGML_F32xt_LOAD #define GGML_F32X_STORE GGML_F32xt_STORE #define GGML_F32X_MUL GGML_F32xt_MUL #define GGML_F32X_FMA GGML_F32xt_FMA #define GLA_VECTOR_SIZE 8 #elif defined(__ARM_NEON) && defined(__aarch64__) #define GGML_F32X GGML_F32x4 #define GGML_F32X_SET1 GGML_F32x4_SET1 #define GGML_F32X_LOAD GGML_F32x4_LOAD #define GGML_F32X_STORE GGML_F32x4_STORE #define GGML_F32X_MUL GGML_F32x4_MUL #define GGML_F32X_FMA GGML_F32x4_FMA #define GLA_VECTOR_SIZE 4 #endif int gla_vector_size; #ifdef GLA_VECTOR_SIZE #if defined(__ARM_FEATURE_SVE) gla_vector_size = svcntw(); #else gla_vector_size = GLA_VECTOR_SIZE; #endif const int64_t vec_count = head_size / gla_vector_size; for (int64_t t = 0; t < T; t++) { size_t t_offset = t * t_stride; size_t state_offset = head_size * C * (t / (T / n_seqs)); float * state_cur = state + state_offset; float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset; for (int64_t h = h_start; h < h_end; h++) { size_t h_offset = h * h_stride; size_t t_h_offset = t_offset + h_offset; size_t h_2d_offset = h * h_stride_2d; for (int64_t i = 0; i < head_size; i++) { size_t t_h_i_offset = t_h_offset + i; size_t h_2d_i_offset = h_2d_offset + i * h_stride; float k_val = k[t_h_i_offset]; float q_val = q[t_h_i_offset] * scale; float g_val = g[t_h_i_offset]; // Broadcast scalar values to vectors GGML_F32X k_vec = GGML_F32X_SET1(k_val); GGML_F32X q_vec = GGML_F32X_SET1(q_val); GGML_F32X g_vec = GGML_F32X_SET1(g_val); for (int64_t j = 0; j < vec_count; j++) { size_t base_j = j * gla_vector_size; size_t t_h_j_offset = t_h_offset + base_j; size_t h_2d_i_j_offset = h_2d_i_offset + base_j; // Load x elements at once GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]); GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]); GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]); // Compute kv = v * k GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec); // Compute temp = prev_state * g + kv GGML_F32X temp_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, g_vec); // Update dst: dst += temp * q dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, q_vec); GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec); // Update state GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], temp_vec); } // Handle remaining elements, this will not be used. for (int64_t j = vec_count * gla_vector_size; j < head_size; j++) { size_t t_h_j_offset = t_h_offset + j; size_t h_2d_i_j_offset = h_2d_i_offset + j; float v_val = v[t_h_j_offset]; float kv_val = v_val * k_val; float prev_state_val = state_prev[h_2d_i_j_offset]; float temp_val = kv_val + prev_state_val * g_val; dst_data[t_h_j_offset] += temp_val * q_val; state_cur[h_2d_i_j_offset] = temp_val; } } } } #else for (int64_t t = 0; t < T; t++) { size_t t_offset = t * t_stride; size_t state_offset = head_size * C * (t / (T / n_seqs)); float * state_cur = state + state_offset; float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset; for (int64_t h = h_start; h < h_end; h++) { size_t h_offset = h * h_stride; size_t t_h_offset = t_offset + h_offset; size_t h_2d_offset = h * h_stride_2d; for (int64_t i = 0; i < head_size; i++) { size_t t_h_i_offset = t_h_offset + i; size_t h_2d_i_offset = h_2d_offset + i * h_stride; float k_val = k[t_h_i_offset]; float q_val = q[t_h_i_offset] * scale; float g_val = g[t_h_i_offset]; for (int64_t j = 0; j < head_size; j++) { size_t t_h_j_offset = t_h_offset + j; size_t h_2d_i_j_offset = h_2d_i_offset + j; float v_val = v[t_h_j_offset]; float kv_val = v_val * k_val; float prev_state_val = state_prev[h_2d_i_j_offset]; float temp_val = prev_state_val * g_val + kv_val; dst_data[t_h_j_offset] += temp_val * q_val; state_cur[h_2d_i_j_offset] = temp_val; } } } } #endif } void ggml_compute_forward_gla( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_gla_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_rwkv_wkv7 static void ggml_compute_forward_rwkv_wkv7_f32( const ggml_compute_params * params, ggml_tensor * dst) { const int64_t T = dst->src[1]->ne[2]; const int64_t C = dst->ne[0]; const int64_t HEADS = dst->src[1]->ne[1]; const int64_t n_seqs = dst->src[6]->ne[1]; const int64_t head_size = C / HEADS; float * dst_data = (float *) dst->data; float * state = ((float *) dst->data) + C * T; const int ith = params->ith; const int nth = params->nth; if (ith >= HEADS) { return; } const int h_start = (HEADS * ith) / nth; const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ? (HEADS * (ith + 1)) / nth : HEADS; float * r = (float *) dst->src[0]->data; float * w = (float *) dst->src[1]->data; float * k = (float *) dst->src[2]->data; float * v = (float *) dst->src[3]->data; float * a = (float *) dst->src[4]->data; float * b = (float *) dst->src[5]->data; int64_t t_stride = HEADS * head_size; // Same to C int64_t h_stride = C / HEADS; GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS int64_t h_stride_2d = head_size * head_size; #if defined(GGML_SIMD) #if defined(__ARM_FEATURE_SVE) // scalar Route to scalar implementation //TODO: Write SVE code for (int64_t t = 0; t < T; t++) { int64_t t_offset = t * t_stride; int64_t state_offset = head_size * C * (t / (T / n_seqs)); float * state_cur = state + state_offset; float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset; for (int64_t h = h_start; h < h_end; h++) { int64_t h_offset = h * h_stride; int64_t t_h_offset = t_offset + h_offset; int64_t h_2d_offset = h * h_stride_2d; for (int64_t i = 0; i < head_size; i++) { int64_t t_h_i_offset = t_h_offset + i; int64_t h_2d_i_offset = h_2d_offset + i * h_stride; float v_val = v[t_h_i_offset]; float sa = 0, result = 0; for (int64_t j = 0; j < head_size; j++) { sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j]; } for (int64_t j = 0; j < head_size; j++) { int64_t t_h_j_offset = t_h_offset + j; int64_t h_2d_i_j_offset = h_2d_i_offset + j; float r_val = r[t_h_j_offset]; float w_val = w[t_h_j_offset]; float k_val = k[t_h_j_offset]; float b_val = b[t_h_j_offset]; float kv_val = v_val * k_val; float prev_state_val = state_prev[h_2d_i_j_offset]; state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val; result += state_cur[h_2d_i_j_offset] * r_val; } dst_data[t_h_i_offset] = result; } } } #else for (int64_t t = 0; t < T; t++) { int64_t t_offset = t * t_stride; int64_t state_offset = head_size * C * (t / (T / n_seqs)); float * state_cur = state + state_offset; float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset; for (int64_t h = h_start; h < h_end; h++) { int64_t h_offset = h * h_stride; int64_t t_h_offset = t_offset + h_offset; int64_t h_2d_offset = h * h_stride_2d; for (int64_t ii = 0; ii < head_size; ii++) { int64_t t_h_i_offset = t_h_offset + ii; int64_t h_2d_i_offset = h_2d_offset + ii * h_stride; GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]); float sa = 0; { GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO }; GGML_F32_VEC ax[GGML_F32_ARR]; GGML_F32_VEC ay[GGML_F32_ARR]; for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) { for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) { ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]); ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]); sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]); } } GGML_F32_VEC_REDUCE(sa, sum); } GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa); int64_t j = 0; GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO }; for (; j < head_size; j += GGML_F32_STEP) { for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) { int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR; int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR; GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]); GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]); GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]); GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]); k_vec = GGML_F32_VEC_MUL(v_vec, k_vec); GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]); // kv + s * decay + sa * b state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec); state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec); GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec); result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec); } } GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec); // There shouldn't be left-overs though. for (; j < head_size; j++) { int64_t t_h_j_offset = t_h_offset + j; int64_t h_2d_i_j_offset = h_2d_i_offset + j; float r_val = r[t_h_j_offset]; float w_val = w[t_h_j_offset]; float k_val = k[t_h_j_offset]; float b_val = b[t_h_j_offset]; float kv_val = v[t_h_i_offset] * k_val; float prev_state_val = state_prev[h_2d_i_j_offset]; state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val; dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val; } } } } #endif #else for (int64_t t = 0; t < T; t++) { int64_t t_offset = t * t_stride; int64_t state_offset = head_size * C * (t / (T / n_seqs)); float * state_cur = state + state_offset; float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset; for (int64_t h = h_start; h < h_end; h++) { int64_t h_offset = h * h_stride; int64_t t_h_offset = t_offset + h_offset; int64_t h_2d_offset = h * h_stride_2d; for (int64_t i = 0; i < head_size; i++) { int64_t t_h_i_offset = t_h_offset + i; int64_t h_2d_i_offset = h_2d_offset + i * h_stride; float v_val = v[t_h_i_offset]; float sa = 0, result = 0; for (int64_t j = 0; j < head_size; j++) { sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j]; } for (int64_t j = 0; j < head_size; j++) { int64_t t_h_j_offset = t_h_offset + j; int64_t h_2d_i_j_offset = h_2d_i_offset + j; float r_val = r[t_h_j_offset]; float w_val = w[t_h_j_offset]; float k_val = k[t_h_j_offset]; float b_val = b[t_h_j_offset]; float kv_val = v_val * k_val; float prev_state_val = state_prev[h_2d_i_j_offset]; state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val; result += state_cur[h_2d_i_j_offset] * r_val; } dst_data[t_h_i_offset] = result; } } } #endif } void ggml_compute_forward_rwkv_wkv7( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_rwkv_wkv7_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_map_custom1 void ggml_compute_forward_map_custom1( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * a = dst->src[0]; struct ggml_map_custom1_op_params p; memcpy(&p, dst->op_params, sizeof(p)); p.fun(dst, a, params->ith, params->nth, p.userdata); } // ggml_compute_forward_map_custom2 void ggml_compute_forward_map_custom2( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * a = dst->src[0]; const ggml_tensor * b = dst->src[1]; struct ggml_map_custom2_op_params p; memcpy(&p, dst->op_params, sizeof(p)); p.fun(dst, a, b, params->ith, params->nth, p.userdata); } // ggml_compute_forward_map_custom3 void ggml_compute_forward_map_custom3( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * a = dst->src[0]; const ggml_tensor * b = dst->src[1]; const ggml_tensor * c = dst->src[2]; struct ggml_map_custom3_op_params p; memcpy(&p, dst->op_params, sizeof(p)); p.fun(dst, a, b, c, params->ith, params->nth, p.userdata); } // ggml_compute_forward_custom void ggml_compute_forward_custom( const struct ggml_compute_params * params, struct ggml_tensor * dst) { struct ggml_custom_op_params p; memcpy(&p, dst->op_params, sizeof(p)); p.fun(dst, params->ith, params->nth, p.userdata); } // ggml_compute_forward_cross_entropy_loss static void ggml_compute_forward_cross_entropy_loss_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type)); GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type)); GGML_ASSERT(ggml_are_same_shape(src0, src1)); GGML_ASSERT(ggml_is_scalar(dst)); GGML_ASSERT(dst->type == GGML_TYPE_F32); // TODO: handle transposed/permuted matrices const int64_t nc = src0->ne[0]; const int64_t nr = ggml_nrows(src0); const int ith = params->ith; const int nth = params->nth; float * sums = (float *) params->wdata; float * st = ((float *) params->wdata) + nth + ith*nc; float sum_thread = 0.0f; GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc)); // rows per thread const int64_t dr = (nr + nth - 1)/nth; // row range for this thread const int64_t ir0 = dr*ith; const int64_t ir1 = MIN(ir0 + dr, nr); for (int64_t i1 = ir0; i1 < ir1; ++i1) { const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]); const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]); #ifndef NDEBUG for (int64_t i = 0; i < nc; ++i) { //printf("p[%d] = %f\n", i, p[i]); assert(!isnan(s0[i])); assert(!isnan(s1[i])); } #endif float max = -INFINITY; ggml_vec_max_f32(nc, &max, s0); const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max); assert(sum_softmax >= 0.0); ggml_vec_add1_f32(nc, st, st, -sum_softmax); ggml_vec_mul_f32(nc, st, st, s1); float sum_st = 0.0f; ggml_vec_sum_f32(nc, &sum_st, st); sum_thread += sum_st; #ifndef NDEBUG for (int64_t i = 0; i < nc; ++i) { assert(!isnan(st[i])); assert(!isinf(st[i])); } #endif } sums[ith] = sum_thread; ggml_barrier(params->threadpool); if (ith == 0) { float * dp = (float *) dst->data; ggml_vec_sum_f32(nth, dp, sums); dp[0] *= -1.0f / (float) nr; } } void ggml_compute_forward_cross_entropy_loss( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_cross_entropy_loss_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } // ggml_compute_forward_cross_entropy_loss_back static void ggml_compute_forward_cross_entropy_loss_back_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * grad = dst->src[0]; // gradient of forward pass output const ggml_tensor * src0f = dst->src[1]; // src0 of forward pass const ggml_tensor * src1f = dst->src[2]; // src1 of forward pass GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(ggml_is_contiguous(src0f)); GGML_ASSERT(ggml_is_contiguous(src1f)); GGML_ASSERT(ggml_is_contiguous(grad)); GGML_ASSERT(ggml_are_same_shape(src0f, src1f) && ggml_are_same_shape(src0f, dst)); const int64_t ith = params->ith; const int64_t nth = params->nth; // TODO: handle transposed/permuted matrices const int64_t nc = src0f->ne[0]; const int64_t nr = ggml_nrows(src0f); // rows per thread const int64_t dr = (nr + nth - 1)/nth; // row range for this thread const int64_t ir0 = dr*ith; const int64_t ir1 = MIN(ir0 + dr, nr); const float d_by_nr = ((const float *) grad->data)[0] / (float) nr; for (int64_t i1 = ir0; i1 < ir1; i1++) { float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]); const float * s0 = (const float *)((const char *) src0f->data + i1*src0f->nb[1]); const float * s1 = (const float *)((const char *) src1f->data + i1*src1f->nb[1]); #ifndef NDEBUG for (int64_t i = 0; i < nc; ++i) { //printf("p[%d] = %f\n", i, p[i]); assert(!isnan(s0[i])); assert(!isnan(s1[i])); } #endif // soft_max float max = -INFINITY; ggml_vec_max_f32(nc, &max, s0); const ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max); assert(sum > 0.0); ggml_vec_scale_f32(nc, ds0, 1.0/sum); // grad(src0f) = (softmax(src0f) - src1f) * grad(cross_entropy_loss(src0f, src1f)) / nr ggml_vec_sub_f32(nc, ds0, ds0, s1); ggml_vec_scale_f32(nc, ds0, d_by_nr); #ifndef NDEBUG for (int64_t i = 0; i < nc; ++i) { assert(!isnan(ds0[i])); assert(!isinf(ds0[i])); } #endif } } void ggml_compute_forward_cross_entropy_loss_back( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_cross_entropy_loss_back_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } } static void ggml_compute_forward_opt_step_adamw_f32( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src0_grad = dst->src[1]; const ggml_tensor * src0_grad_m = dst->src[2]; const ggml_tensor * src0_grad_v = dst->src[3]; const ggml_tensor * adamw_params = dst->src[4]; GGML_ASSERT(ggml_are_same_shape(src0, src0_grad)); GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m)); GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v)); GGML_ASSERT(ggml_nelements(adamw_params) == 7); const int ith = params->ith; const int nth = params->nth; const int nr = ggml_nrows(src0); GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT(nb00 == sizeof(float)); // rows per thread const int dr = (nr + nth - 1)/nth; // row range for this thread const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); const float * adamw_params_ptr = ggml_get_data_f32(adamw_params); const float alpha = adamw_params_ptr[0]; const float beta1 = adamw_params_ptr[1]; const float beta2 = adamw_params_ptr[2]; const float eps = adamw_params_ptr[3]; const float wd = adamw_params_ptr[4]; const float beta1h = adamw_params_ptr[5]; const float beta2h = adamw_params_ptr[6]; for (int ir = ir0; ir < ir1; ++ir) { const int64_t i03 = ir/(ne02*ne01); const int64_t i02 = (ir - i03*ne02*ne01)/ne01; const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01); const size_t offset = i03*nb03 + i02*nb02 + i01*nb01; float * w = (float *) ((char *) src0->data + offset); // weight const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad float * m = (float *) ((char *) src0_grad_m->data + offset); float * v = (float *) ((char *) src0_grad_v->data + offset); for (int i00 = 0; i00 < ne00; ++i00) { m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1); v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2); const float mh = m[i00]*beta1h; const float vh = sqrtf(v[i00]*beta2h) + eps; // The weight decay is applied independently of the Adam momenta m and v. // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss. // See: https://arxiv.org/pdf/1711.05101v3.pdf w[i00] = w[i00]*(1.0f - alpha*wd) - alpha*mh/vh; } } } void ggml_compute_forward_opt_step_adamw( const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_compute_forward_opt_step_adamw_f32(params, dst); } break; default: { GGML_ABORT("fatal error"); } } }