// thread safety test // - Loads a copy of the same model on each GPU, plus a copy on the CPU // - Creates n_parallel (--parallel) contexts per model // - Runs inference in parallel on each context #include #include #include #include "llama.h" #include "arg.h" #include "common.h" #include "log.h" #include "sampling.h" int main(int argc, char ** argv) { common_params params; if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) { return 1; } common_init(); llama_backend_init(); llama_numa_init(params.numa); LOG_INF("%s\n", common_params_get_system_info(params).c_str()); //llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) { // if (level == GGML_LOG_LEVEL_ERROR) { // common_log_add(common_log_main(), level, "%s", text); // } //}, NULL); auto cparams = common_context_params_to_llama(params); int dev_count = ggml_backend_dev_count(); int gpu_dev_count = 0; for (int i = 0; i < dev_count; ++i) { auto * dev = ggml_backend_dev_get(i); if (dev && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) { gpu_dev_count++; } } const int num_models = gpu_dev_count + 1 + 1; // GPUs + 1 CPU model + 1 layer split //const int num_models = std::max(1, gpu_dev_count); const int num_contexts = std::max(1, params.n_parallel); std::vector models; std::vector threads; std::atomic failed = false; for (int m = 0; m < num_models; ++m) { auto mparams = common_model_params_to_llama(params); if (m < gpu_dev_count) { mparams.split_mode = LLAMA_SPLIT_MODE_NONE; mparams.main_gpu = m; } else if (m == gpu_dev_count) { mparams.split_mode = LLAMA_SPLIT_MODE_NONE; mparams.main_gpu = -1; // CPU model } else { mparams.split_mode = LLAMA_SPLIT_MODE_LAYER;; } llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams); if (model == NULL) { LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str()); return 1; } models.emplace_back(model); } for (int m = 0; m < num_models; ++m) { auto * model = models[m].get(); for (int c = 0; c < num_contexts; ++c) { threads.emplace_back([&, m, c, model]() { LOG_INF("Creating context %d/%d for model %d/%d\n", c + 1, num_contexts, m + 1, num_models); llama_context_ptr ctx { llama_init_from_model(model, cparams) }; if (ctx == NULL) { LOG_ERR("failed to create context\n"); failed.store(true); return; } std::unique_ptr sampler { common_sampler_init(model, params.sampling), common_sampler_free }; if (sampler == NULL) { LOG_ERR("failed to create sampler\n"); failed.store(true); return; } llama_batch batch = {}; { auto prompt = common_tokenize(ctx.get(), params.prompt, true); if (prompt.empty()) { LOG_ERR("failed to tokenize prompt\n"); failed.store(true); return; } batch = llama_batch_get_one(prompt.data(), prompt.size()); if (llama_decode(ctx.get(), batch)) { LOG_ERR("failed to decode prompt\n"); failed.store(true); return; } } const auto * vocab = llama_model_get_vocab(model); std::string result = params.prompt; for (int i = 0; i < params.n_predict; i++) { llama_token token; if (batch.n_tokens > 0) { token = common_sampler_sample(sampler.get(), ctx.get(), batch.n_tokens - 1); } else { token = llama_vocab_bos(vocab); } result += common_token_to_piece(ctx.get(), token); if (llama_vocab_is_eog(vocab, token)) { break; } batch = llama_batch_get_one(&token, 1); if (llama_decode(ctx.get(), batch)) { LOG_ERR("Model %d/%d, Context %d/%d: failed to decode\n", m + 1, num_models, c + 1, num_contexts); failed.store(true); return; } } LOG_INF("Model %d/%d, Context %d/%d: %s\n\n", m + 1, num_models, c + 1, num_contexts, result.c_str()); }); } } for (auto & thread : threads) { thread.join(); } if (failed) { LOG_ERR("One or more threads failed.\n"); return 1; } LOG_INF("All threads finished without errors.\n"); return 0; }