#!/usr/bin/env python3 # -*- coding: utf-8 -*- import logging import os import pathlib import re import requests import sys import json import shutil import argparse from hashlib import sha256 from enum import IntEnum, auto from transformers import AutoTokenizer logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger("convert_hf_to_gguf_update") sess = requests.Session() convert_py_pth = pathlib.Path("convert_hf_to_gguf.py") convert_py = convert_py_pth.read_text(encoding="utf-8") hf_token_pth = pathlib.Path.home() / ".cache" / "huggingface" / "token" hf_token = hf_token_pth.read_text(encoding="utf-8").strip() if hf_token_pth.exists() else None class TOKENIZER_TYPE(IntEnum): SPM = auto() BPE = auto() WPM = auto() UGM = auto() DOC_STRING = """ This script downloads the tokenizer models of the specified models from Huggingface and generates the get_vocab_base_pre() function for convert_hf_to_gguf.py /!\\ It is intended to be used by contributors and is not meant to be run by end users This is necessary in order to analyze the type of pre-tokenizer used by the model and provide the necessary information to llama.cpp via the GGUF header in order to implement the same pre-tokenizer. ref: https://github.com/ggml-org/llama.cpp/pull/6920 Instructions: - Add a new model to the "models" list - Run the script with your huggingface token By default, token will be read from ~/.cache/huggingface/token - The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated - Update llama.cpp with the new pre-tokenizer if necessary """ # TODO: generate tokenizer tests for llama.cpp parser = argparse.ArgumentParser(description=DOC_STRING, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( "--full", action="store_true", help="download full list of models - make sure you have access to all of them", ) parser.add_argument( "hf_token", help="optional HF token", nargs="?", ) args = parser.parse_args() hf_token = args.hf_token if args.hf_token is not None else hf_token if hf_token is None: logger.error("HF token is required. Please provide it as an argument or set it in ~/.cache/huggingface/token") sys.exit(1) # TODO: this string has to exercise as much pre-tokenizer functionality as possible # will be updated with time - contributions welcome CHK_TXT = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL' # TODO: add models here, base models preferred models = [ {"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", }, {"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", }, {"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", }, {"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", }, {"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", }, {"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", }, {"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", }, {"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", }, {"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", }, {"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", }, {"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", }, {"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", }, {"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", }, {"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", }, {"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", }, {"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", }, {"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", }, {"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", }, {"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", }, {"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM! {"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", }, {"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", }, {"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", }, {"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", }, {"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", }, {"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B {"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", }, {"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", }, {"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", }, {"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", }, {"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", }, {"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", }, {"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", }, {'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", }, {'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", }, {"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", }, {"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", }, {"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", }, {"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"}, {"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"}, {"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"}, {"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"}, {"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"}, {"name": "gpt-4o", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Xenova/gpt-4o", }, {"name": "superbpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k", }, {"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", }, {"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", }, {"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", }, {"name": "pixtral", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistral-community/pixtral-12b", }, {"name": "seed-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base", }, ] # some models are known to be broken upstream, so we will skip them as exceptions pre_computed_hashes = [ # chatglm-bpe has 2 hashes, why? {"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b"}, {"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516"}, {"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"}, {"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"}, ] def download_file_with_auth(url, token, save_path): headers = {"Authorization": f"Bearer {token}"} response = sess.get(url, headers=headers) response.raise_for_status() os.makedirs(os.path.dirname(save_path), exist_ok=True) with open(save_path, 'wb') as downloaded_file: downloaded_file.write(response.content) logger.info(f"File {save_path} downloaded successfully") def download_model(model): name = model["name"] repo = model["repo"] tokt = model["tokt"] os.makedirs(f"models/tokenizers/{name}", exist_ok=True) files = ["config.json", "tokenizer.json", "tokenizer_config.json"] if name == "gpt-4o": # Xenova/gpt-4o is tokenizer-only, it does not contain config.json files = ["tokenizer.json", "tokenizer_config.json"] if tokt == TOKENIZER_TYPE.SPM: files.append("tokenizer.model") if tokt == TOKENIZER_TYPE.UGM: files.append("spiece.model") if os.path.isdir(repo): # If repo is a path on the file system, copy the directory for file in files: src_path = os.path.join(repo, file) dst_path = f"models/tokenizers/{name}/{file}" if os.path.isfile(dst_path): logger.info(f"{name}: File {dst_path} already exists - skipping") continue if os.path.isfile(src_path): shutil.copy2(src_path, dst_path) logger.info(f"{name}: Copied {src_path} to {dst_path}") else: logger.warning(f"{name}: Source file {src_path} does not exist") else: # If repo is a URL, download the files for file in files: save_path = f"models/tokenizers/{name}/{file}" if os.path.isfile(save_path): logger.info(f"{name}: File {save_path} already exists - skipping") continue download_file_with_auth(f"{repo}/resolve/main/{file}", hf_token, save_path) # get list of existing models and chkhsh from the convert_hf_to_gguf.py file # returns mapping res --> chkhsh def get_existing_models(convert_py): pattern = r'if chkhsh == "([a-f0-9]{64})":\s*\n\s*.*\s*res = "([^"]+)"' matches = re.findall(pattern, convert_py) output = {} for chkhsh, res in matches: output[res] = chkhsh return output existing_models = {} all_models = models.copy() if not args.full: # Filter out models that already exist in convert_hf_to_gguf.py existing_models = get_existing_models(convert_py) all_models = models.copy() models = [model for model in all_models if model["name"] not in existing_models] logging.info(f"Downloading {len(models)} models...") for model in models: try: download_model(model) except Exception as e: logger.error(f"Failed to download model {model['name']}. Error: {e}") # generate the source code for the convert_hf_to_gguf.py:get_vocab_base_pre() function: src_ifs = "" for model in [*all_models, *pre_computed_hashes]: name = model["name"] tokt = model["tokt"] chkhsh = model.get("chkhsh") if tokt == TOKENIZER_TYPE.SPM or tokt == TOKENIZER_TYPE.UGM: continue # Skip if the tokenizer folder does not exist or there are other download issues previously if not os.path.exists(f"models/tokenizers/{name}"): logger.warning(f"Directory for tokenizer {name} not found. Skipping...") continue # create the tokenizer if chkhsh is not None: # if the model has a pre-computed hash, use it logger.info(f"Using pre-computed hash for model {name}: {chkhsh}") elif name in existing_models: # if the model already exists in convert_hf_to_gguf.py, skip compute hash chkhsh = existing_models[name] else: # otherwise, compute the hash of the tokenizer try: logger.info(f"Loading tokenizer from {f'models/tokenizers/{name}'}...") if name == "t5": tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False) else: tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") except OSError as e: logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}") continue # Skip to the next model if the tokenizer can't be loaded chktok = tokenizer.encode(CHK_TXT) chkhsh = sha256(str(chktok).encode()).hexdigest() logger.info(f"model: {name}") logger.info(f"tokt: {tokt}") logger.info(f"repo: {model['repo']}") logger.info(f"chktok: {chktok}") logger.info(f"chkhsh: {chkhsh}") # print the "pre_tokenizer" content from the tokenizer.json with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f: cfg = json.load(f) normalizer = cfg["normalizer"] logger.info("normalizer: " + json.dumps(normalizer, indent=4)) pre_tokenizer = cfg["pre_tokenizer"] logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4)) if "ignore_merges" in cfg["model"]: logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4)) logger.info("") src_ifs += f" if chkhsh == \"{chkhsh}\":\n" src_ifs += f" # ref: {model['repo']}\n" src_ifs += f" res = \"{name}\"\n" src_func = f""" def get_vocab_base_pre(self, tokenizer) -> str: # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that # is specific for the BPE pre-tokenizer used by the model # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can # use in llama.cpp to implement the same pre-tokenizer chktxt = {repr(CHK_TXT)} chktok = tokenizer.encode(chktxt) chkhsh = sha256(str(chktok).encode()).hexdigest() logger.debug(f"chktok: {{chktok}}") logger.debug(f"chkhsh: {{chkhsh}}") res = None # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script # or pull the latest version of the model from Huggingface # don't edit the hashes manually! {src_ifs} if res is None: logger.warning("\\n") logger.warning("**************************************************************************************") logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!") logger.warning("** There are 2 possible reasons for this:") logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet") logger.warning("** - the pre-tokenization config has changed upstream") logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.") logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920") logger.warning("**") logger.warning(f"** chkhsh: {{chkhsh}}") logger.warning("**************************************************************************************") logger.warning("\\n") raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()") logger.debug(f"tokenizer.ggml.pre: {{repr(res)}}") logger.debug(f"chkhsh: {{chkhsh}}") return res """ convert_py = re.sub( r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)", lambda m: m.group(1) + src_func + m.group(3), convert_py, flags=re.DOTALL | re.MULTILINE, ) convert_py_pth.write_text(convert_py, encoding="utf-8") logger.info("+++ convert_hf_to_gguf.py was updated") # generate tests for each tokenizer model tests = [ "ied 4 ½ months", "Äpfel", "", " ", " ", " ", "\t", "\n", "\n\n", "\n\n\n", "\t\n", "Hello world", " Hello world", "Hello World", " Hello World", " Hello World!", "Hello, world!", " Hello, world!", " this is 🦙.cpp", "w048 7tuijk dsdfhu", "нещо на Български", "កាន់តែពិសេសអាចខលចេញ", "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", "Hello", " Hello", " Hello", " Hello", " Hello", " Hello\n Hello", " (", "\n =", "' era", "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~", "!!!!!!", "3", "33", "333", "3333", "33333", "333333", "3333333", "33333333", "333333333", "Cửa Việt", # llama-bpe fails on this " discards", CHK_TXT, ] # write the tests to ./models/ggml-vocab-{name}.gguf.inp # the format is: # # test0 # __ggml_vocab_test__ # test1 # __ggml_vocab_test__ # ... # # with each model, encode all tests and write the results in ./models/ggml-vocab-{name}.gguf.out # for each test, write the resulting tokens on a separate line for model in models: name = model["name"] tokt = model["tokt"] # Skip if the tokenizer folder does not exist or there are other download issues previously if not os.path.exists(f"models/tokenizers/{name}"): logger.warning(f"Directory for tokenizer {name} not found. Skipping...") continue # create the tokenizer try: if name == "t5": tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False) else: tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") except OSError as e: logger.error(f"Failed to load tokenizer for model {name}. Error: {e}") continue # Skip this model and continue with the next one in the loop if not os.path.exists(f"models/ggml-vocab-{name}.gguf"): logger.info(f"Skip vocab files for model {name}, no GGUF file found") continue with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f: for text in tests: f.write(f"{text}") f.write("\n__ggml_vocab_test__\n") with open(f"models/ggml-vocab-{name}.gguf.out", "w") as f: for text in tests: res = tokenizer.encode(text, add_special_tokens=False) for r in res: f.write(f" {r}") f.write("\n") logger.info(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*") # generate commands for creating vocab files logger.info("\nRun the following commands to generate the vocab files for testing:\n") for model in models: name = model["name"] print(f"python3 convert_hf_to_gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") # noqa: NP100 logger.info("\n")