Commit Graph

319 Commits

Author SHA1 Message Date
04aaae1d79 add avx2 for dot_q8_0_q8_0, 2x faster than scalar (#1211) 2023-04-28 11:59:48 +00:00
0b2da20538 ggml : slightly faster AVX2 implementation for Q5 (#1197) 2023-04-26 23:26:42 +03:00
574406dc7e ggml : add Q5_0 and Q5_1 quantization (#1187)
* ggml : add Q5_0 quantization (cuBLAS only)

* ggml : fix Q5_0 qh -> uint32_t

* ggml : fix q5_0 histogram stats

* ggml : q5_0 scalar dot product

* ggml : q5_0 ARM NEON dot

* ggml : q5_0 more efficient ARM NEON using uint64_t masks

* ggml : rename Q5_0 -> Q5_1

* ggml : adding Q5_0 mode

* quantize : add Q5_0 and Q5_1 to map

* ggml : AVX2 optimizations for Q5_0, Q5_1 (#1195)

---------

Co-authored-by: Stephan Walter <stephan@walter.name>
2023-04-26 23:14:13 +03:00
7a32fcb3b2 ggml : add Q8_0 quantization format (rename the old one to Q8_1) (ARM NEON) (#1179)
* ggml : add Q8_0 quantization format (rename the old one to Q8_1)

* tests : fix test-quantize-fns

* ggml : finalize Q8_0 implementation

* ggml : use q4_0_q8_0 and q4_2_q8_0

* ggml : fix Q8_0 dot product bug (ARM)

* ggml : Q8_0 unroll x2

* ggml : fix bug - using wrong block type

* ggml : extend quantize_fns_t with "vec_dot_type"

* ggml : fix Q8_0 to use 255 values out of 256

* ggml : fix assert using wrong QK4_2 instead of QK4_3
2023-04-25 23:40:51 +03:00
dd0eabc049 ggml : use full range for Q4_0 and Q4_2 quantization (#729)
* Use full range for q4_0 quantization

By keeping the sign of the highest magnitude, we can make sure the
highest value maps to -8, which is currently unused.
This is a bit of a freebie since it is fully backwards compatible with
the current format.

* Update quantize_row_q4_0 for AVX/AVX2

* Update quantize_row_q4_0 for WASM

Untested

* Update quantize_row_q4_0 for Arm NEON

* Update quantize_row_q4_0 for PowerPC

Untested

* Use full range for q4_2 quantization
2023-04-25 20:20:46 +03:00
54bb60e268 ggml : fix bug in ggml_compute_forward_sum_f32 (#1162)
The sum over all rows is now computed instead of just the last row
2023-04-24 23:02:02 +02:00
2ec83428de Fix build for gcc 8 and test in CI (#1154) 2023-04-24 15:38:26 +00:00
ec9cdb6752 ggml : do not print perf ops that have not been used at all 2023-04-23 18:32:52 +03:00
e4422e299c ggml : better PERF prints + support "LLAMA_PERF=1 make" 2023-04-23 18:15:39 +03:00
53c8434398 Improve AVX2 for vec_dot_q4_3_q8_0 (#1138) 2023-04-23 11:01:03 +00:00
c9e2c26f41 A better packNibbles and mul_sum_i8_pairs_float implementation using AVX512 (#1119) 2023-04-23 07:57:05 +00:00
0e018fe008 ggml : fix Q4_3 cuBLAS 2023-04-22 16:32:07 +03:00
c50b628810 Fix CI: ARM NEON, quantization unit tests, editorconfig (#1122) 2023-04-22 10:54:13 +00:00
872c365a91 ggml : fix AVX build + update to new Q8_0 format 2023-04-22 11:08:12 +03:00
955ef9a5d5 ggml : alternative Q4_3 implementation using modified Q8_0 (#1109)
* ggml : prefer vzip to vuzp

This way we always use the same type of instruction across all quantizations

* ggml : alternative Q4_3 implementation using modified Q8_0

* ggml : fix Q4_3 scalar imlpementation

* ggml : slight improvement of Q4_3 - no need for loop unrolling

* ggml : fix AVX paths for Q8_0 quantization
2023-04-22 10:55:35 +03:00
c5aa5e5777 ggml : AVX2 optimization for vec_dot_q4_3_q8_0 and refactoring (#1099)
* AVX2 optimization for vec_dot_q4_3_q8_0 and refactoring

* finish AVX vectorization of quantize_row_q8_0

* Rename hsum_int_8 to hsum_i32_8
2023-04-22 10:37:05 +03:00
50cb666b8a Improve cuBLAS performance by using a memory pool (#1094)
* Improve cuBLAS performance by using a memory pool

* Move cuda specific definitions to ggml-cuda.h/cu

* Add CXX flags to nvcc

* Change memory pool synchronization mechanism to a spin lock
General code cleanup
2023-04-21 21:59:17 +02:00
1bfc153e2f ggml : a faster version for Q4_1 x Q8_0 dot products (#1083)
* A faster version for Q4_1 x Q8_0 dot products

The idea nehind being that Q8_0 quantized
values get used many times in the matrix multiplications
where they are involved. In the current implementations,
when we are evaluating the dot products, we need to compute
the sum of the quants in the Q8_0 vector, so the same
operation is repeated many times. Here we pre-compute
the sum during Q8_0 quantization, store it in the
now modified block_q8_0 struct, and then reuse this
result in the subsequent dot products.

In a synthetic benchmark (just compute a bunch of dot
products), this change speeds up the Q4_1 * Q8_0 dot
product by 80%, making the performance identical to
Q4_0 * Q8_0.

In practical application, I see a ~15% gain in speed for
token prediction on M2, and ~5% gain on Ryzen 7950X.
The speed gain in the prompt evaluation is much bigger
(around 50%).

I have only done the change for the scalar version,
ARM_NEON, and AVX2, so we still need an AVX implementation.

* Cleaning up

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-04-21 18:18:26 +03:00
12b5900dbc ggml : sync ggml (add GPT-NeoX RoPE implementation) 2023-04-20 23:32:59 +03:00
9ff334f3c9 ggml : fix bug in ggml_compute_forward_dup_f32() 2023-04-20 21:58:38 +03:00
8a1756abdf ggml : do not break cuBLAS build (Q4_3 is not yet implemented) 2023-04-20 21:43:50 +03:00
66aab46079 ggml : fix Q4_3 quantization
Broke it during conflict resolution in last PR
2023-04-20 20:44:05 +03:00
38de86a711 llama : multi-threaded quantization (#1075)
* Multi-threading quantization.

Not much gain for simple quantizations, bit it will be important
for quantizations that require more CPU cycles.

* Multi-threading for quantize-stats

It now does the job in ~14 seconds on my Mac for
Q4_0, Q4_1 and Q4_2. Single-threaded it was taking
more than 2 minutes after adding the more elaborate
version of Q4_2.

* Reviewer comments

* Avoiding compiler confusion

After changing chunk_size to const int as suggested by
@ggerganov, clang and GCC starting to warn me that I don't
need to capture it in the lambda. So, I removed it from the
capture list. But that makes the MSVC build fail. So,
making it a constexpr to make every compiler happy.

* Still fighting with lambda captures in MSVC

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-20 20:42:27 +03:00
e0305ead3a ggml : add Q4_3 quantization (#1082) 2023-04-20 20:35:53 +03:00
c8c2c52482 AVX2 optimization for vec_dot_q4_2_q8_0 (#1068) 2023-04-20 08:45:41 +02:00
02d6988121 Improve cuBLAS performance by dequantizing on the GPU (#1065) 2023-04-20 03:14:14 +02:00
f7d05095b4 Q4_2 quantization with rmse-optimized scale and quants (#1062)
* Q4_2 quantization with rmse-optimized scale and quants

For quantize-stats we get
q4_2: rmse 0.00159301, maxerr 0.17480469, 95pct<0.0030, median<0.0012

For 7B perplexity with BLAS enabled we get 6.2038 after 655 chunks.

Quantization is slow (~90 seconds on my Mac for 7B) as not
multi-threaded as in PR #896.

* ggml : satisfy the sanitizer builds

Not sure why this makes them fail

* Better follow ggml conventions for function names

* Fixed type as per reviewer comment

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-19 20:20:14 +02:00
884e7d7a2b ggml : use 8-bit precision for Q4_1 intermediate results (#1047)
* ggml : use 8-bit precision for Q4_1 intermediate results (ARM)

* ggml : optimize ggml_vec_dot_q4_1_q8_0() via vmalq_n_f32

56 ms/token with Q4_1 !

* ggml : AVX2 implementation of ggml_vec_dot_q4_1_q8_0 (#1051)

* gitignore : ignore ppl-*.txt files

---------

Co-authored-by: slaren <2141330+slaren@users.noreply.github.com>
2023-04-19 20:10:08 +03:00
f3d4edf504 ggml : Q4 cleanup - remove 4-bit dot product code (#1061)
* Q4 cleanup

* Remove unused AVX512 Q4_0 code
2023-04-19 19:06:37 +03:00
8944a13296 Add NVIDIA cuBLAS support (#1044) 2023-04-19 11:22:45 +02:00
6667401238 Multi-threaded ggml_cpy (#1035)
* Multi-threaded ggml_cpy

* Update ggml.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Also fix wdata offset in ggml_compute_forward_add_q_f32

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-19 00:53:24 +02:00
77a73403ca ggml : add new Q4_2 quantization (ARM only) (#1046)
* ggml : Q4_2 ARM

* ggml : add ggml_is_quantized()

* llama : update llama_type_name() with Q4_2 entry

* ggml : speed-up q4_2

- 4 threads: ~100ms -> ~90ms
- 8 threads:  ~55ms -> ~50ms

* ggml : optimize q4_2 using vmlaq_n_f32 + vmulq_n_f32
2023-04-18 23:54:57 +03:00
50a8a2af97 ggml : scratch that - vmlaq_n_f32 is always better
Had a background process that was messing with the timings
2023-04-18 23:11:23 +03:00
dcdd65e296 ggml : optimize ggml_vec_dot_q4_0_q8_0() using vectorized accumulators 2023-04-18 22:59:17 +03:00
315a95a4d3 Add LoRA support (#820) 2023-04-17 17:28:55 +02:00
69b740289f ggml : avoid using ggml_fp16_to_fp32() and ggml_fp32_to_fp16() in ggml.c 2023-04-17 16:16:23 +03:00
f266259ad9 Speedup the AVX-512 implementation of ggml_vec_dot_q4_0() (#933) 2023-04-17 15:10:57 +02:00
2f7c8e014e Fix potential int8 overflow in non-SIMD vec_dot (#986) 2023-04-15 18:28:56 +00:00
0ad964631f Refactor ggml.c for future tensor types (#1001) 2023-04-15 16:25:38 +00:00
e95b6554b4 ggml : add Q8_0 quantization for intermediate results (#951)
* ggml : add Q8_0 quantization for intermediate results

* quantize-stats : fix test + add it to Makefile default

* Q8: use int8_t, AVX/AVX2 optimizations

* ggml : fix quantize_row_q8_0() ARM_NEON rounding

* minor : updates after rebase to latest master

* quantize-stats : delete obsolete strings

* ggml : fix q4_1 dot func

---------

Co-authored-by: Stephan Walter <stephan@walter.name>
2023-04-15 17:53:22 +03:00
aa485cee33 ggml : use posix_memalign on non-Windows env 2023-04-15 14:25:45 +03:00
c56b715269 Expose type name from ggml (#970)
Avoid duplication of type names in utils

Co-authored-by: Håkon H. Hitland <haakon@likedan.net>
2023-04-14 20:05:37 +02:00
c9a59b70a5 ggml : add unary and binary map operations (#874)
* GGML map ops proof of concept.

* Various cleanups.

Add handling for task setting.

Add handling for ggml_compute_backward.

Rename functions to ggml_map_unary_f32 and ggml_map_binary_f32

Fix compiler warnings related to casting function pointers and `void *`

Reorder functions and definitions based on the GGML op number.

Use typedefs for map op function pointer types.

* Fix position of map ops cases in ggml_compute_forward
2023-04-14 17:43:55 +03:00
1623a6e9b4 ggml : minor 2023-04-14 13:31:29 +03:00
c14e0d2f23 ggml : always allocate buffers with size multiple of GGML_MEM_ALIGN 2023-04-14 13:31:15 +03:00
0f07cacb05 ggml : fix q4_1 dot product types 2023-04-14 09:45:42 +03:00
c5d70f5c9e ggml : optimize rope function to avoid call powf in the tight loop (#807) 2023-04-14 09:24:52 +03:00
a3a2a0eda8 ggml : add GGML_DEFAULT_N_THREADS 2023-04-13 18:36:48 +03:00
d990e3fffc ggml : speed-up ggml_vec_dot_q4_1() ARM_NEON + 32-bit ARM support (#900)
* ggml : speed-up q4_1 ARM_NEON by ~5%

* ggml : implement vaddvq when missing

* ggml : implement vminvq and vmaxvq when missing

* ggml : implement vzip when missing

* ggml : fix comment

* ggml : try to use correct ifdef
2023-04-13 18:32:36 +03:00
6232f2d7fd ggml : optimize non-SIMD Q4_0 vector dot product (#703) 2023-04-13 17:59:50 +03:00