Commit Graph

85 Commits

Author SHA1 Message Date
dad5c44398 kv-cache : avoid modifying recurrent cells when setting inputs (#13834)
* kv-cache : avoid modifying recurrent cells when setting inputs

* kv-cache : remove inp_s_mask

It was replaced with equivalent and simpler functionality
with rs_z (the first zeroed state) and the already-existing inp_s_copy.

* kv-cache : fix non-consecutive token pos warning for recurrent models

The problem was apparently caused by how the tail cells were swapped.

* graph : simplify logic for recurrent state copies

* kv-cache : use cell without src refs for rs_z in recurrent cache

* llama-graph : fix recurrent state copy

The `state_copy` shuffle assumes everything is moved at once,
which is not true when `states_extra` is copied back to the cache
before copying the range of states between `head` and `head + n_seqs`.
This is only a problem if any of the cells in [`head`, `head + n_seqs`)
have an `src` in [`head + n_seqs`, `head + n_kv`),
which does happen when `n_ubatch > 1` in the `llama-parallel` example.

Changing the order of the operations avoids the potential overwrite
before use, although when copies are avoided (like with Mamba2),
this will require further changes.

* llama-graph : rename n_state to state_size in build_recurrent_state

This naming should reduce confusion between the state size
and the number of states.
2025-06-10 18:20:14 -04:00
3678b838bb llama : support GEGLU for jina-bert-v2 (#14090) 2025-06-10 18:02:08 +02:00
0974ad7a7c llama : fix llama_model_chat_template with template name (LLM_KV with suffix) (#14050) 2025-06-07 14:13:12 +02:00
d17a809ef0 llama : support multiple classifier outputs and labels (#13940) 2025-06-06 09:03:25 +02:00
5582c49c39 gemma : more consistent attention scaling for v2 and v3 (#13951)
* gemma : fix attn scale for 27B

* cont : apply scale before attn

* cont : consistent attention scaling
2025-06-02 20:54:26 +03:00
0fc16b42e8 kv-cache : split implementation in separate sources (#13920)
ggml-ci
2025-06-01 11:39:27 +03:00
3600cc2886 llama : use n_swa + n_ubatch cells for SWA cache (#13833)
* llama : use n_swa + n_ubatch cells for SWA cache

ggml-ci

* llama : add warning about multi-sqeuence SWA contexts
2025-05-31 15:57:44 +03:00
12d0188c0d kv-cache : refactor + add llama_memory_state_i (#13746)
* kv-cache : simplify the "struct llama_kv_cache" interface

ggml-ci

* kv-cache : revert the (n_swa + n_ubatch) change (for next PR)

ggml-ci

* kv-cache : some comments

ggml-ci

* context : fix graph reserve for multiple sequences

ggml-ci

* kv-cache : fix typo [no ci]

* kv-cache : fix find_slot() logic for free slots

ggml-ci

* llama : add TODO for deprecating the defrag API in the future

* kv-cache : improve find_slot() using min/max seq pos info

ggml-ci

* llama : handle aborts and compute errors

ggml-ci

* memory : extract state into llama_memory_state

ggml-ci

* kv-cache : add comments

ggml-ci

* server : update batching logic to reset n_batch on successful decode

* server : upon full re-processing, remove the sequence from the cache

* kv-cache : add TODO for doing split_equal when split_simple fails

ggml-ci
2025-05-31 10:24:04 +03:00
291f2b6913 llama : add support for DistilBert (#13907)
* add distilbert

* small fixes

* add note for LLM_ARCH_DISTIL_BERT

* Use MODEL_ARCH.BERT for DistilBert

---------

Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
2025-05-30 11:56:02 +02:00
2c90da4c7e llama : use llm_build_granite for minicpm (#13911) 2025-05-30 10:31:48 +02:00
e83ba3e460 llama : add support for jina-reranker-v2 (#13900) 2025-05-29 21:42:31 +02:00
6385b843a8 llama : add RobertaForSequenceClassification reranker support (#13875) 2025-05-29 08:15:01 +02:00
4032ca4066 llama : add support for Qwen3 MoE tied word embeddings (#13768) 2025-05-25 10:29:43 +02:00
d13d0f6135 hparams : initialize arrays (#13728)
ggml-ci
2025-05-23 20:16:13 +03:00
8a2afb7520 llama : allow custom list of swa_layers (#13726) 2025-05-23 17:07:04 +02:00
8a1d206f1d tts : fix n_ubatch + make WavTokenizer cache-less (#13713)
ggml-ci
2025-05-22 22:21:07 +03:00
797f2ac062 kv-cache : simplify the interface (#13660)
* kv-cache : simplify the interface

ggml-ci

* context : revert llama_batch_allocr position change

ggml-ci
2025-05-21 15:11:13 +03:00
b44890df2e model : disable SWA for Phi models (#13676)
* model : disable SWA for Phi models

ggml-ci

* model : update warning message

* model : print warning only if n_swa > 0

* model : fix typo
2025-05-21 13:09:21 +03:00
be0239693c model : fix llama4 graph (#13663)
ggml-ci
2025-05-20 19:21:04 +03:00
e298d2fbd0 kv-cache : add SWA support (#13194)
* kv-cache : prepare for SWA

ggml-ci

* kv-cache : initial iSWA implementation

ggml-ci

* kv-cache : rework error recovery logic

ggml-ci

* models : fix Phi-3 SWA parameters

ggml-ci

* model : adjust Granite to rope factor changes

ggml-ci

* server : check if context can do shifts

ggml-ci

* iswa : for now, always enable shifts (experiment)

ggml-ci

* kv-cache : simplify SWA logic

ggml-ci

* kv-cache : apply defrag when we fail to find slots for the batch

ggml-ci

* llama : update docs about llama_decode

ggml-ci

* kv-cache : update warning logs when no space for the batch is available

ggml-ci

* llama : add llama_kv_self_seq_pos_min()

* kv-cache : keep track of partial SWA computes and print warnings

* server : disallow use cases involving partial SWA context

ggml-ci

* llama : add param to control SWA cache size

ggml-ci

* minor : clean-up

ggml-ci
2025-05-20 08:05:46 +03:00
5e7d95e22e fix: Move build_inp_pos to the top of the graph section for build_granite (#13538)
This matches how others do it, but will still avoid the extra
initialization when rope is disabled.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-05-14 15:53:59 +03:00
d590cd4c24 model : Granite MoE shared (#13269)
* feat: Add GGUF conversion for granitemoeshared

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: hparam and arch plumbing for granitemoeshared

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Split MoE fused tensors for shared experts in conversion

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First WIP cut at model arch in cpp

The hparam and architecture plumbing should be correct, but the
implementation of the shared experts seems to still be broken.

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Cleaner (maybe more correct?) splitting for gate/up

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix the input to the shared experts

I had misread that the shared experts take the inputs _before_ the standard
MoE layer and was feeding the output of the MoE to the shared experts.

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Avoid architecture-specific checks for Granite MoE Shared

This is a cleaner way that will allow more flexibility in architecture
strings going forward.

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Split granite architectures out of llm_build_llama

This helps de-clutter the llama-family graph construction and allows
granite to diverge further (in preparation for Granite 4).

NOTE: I removed the granite scale factors from llm_build_deci because they
appear to only be there as copy-paste from llm_build_llama. The HF config
does not seem to set those values:
https://huggingface.co/Deci/DeciLM-7B/blob/main/config.json

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix compiler warning about uninitialized inp_pos

This should not have been reachable, but it warns on some compliers

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Consoladate GraniteMoEShared into GraniteMoE for conversion

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Consolidate GraniteMoEShared into GraniteMoE on the c++ side

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-05-13 15:12:01 +02:00
10d2af0eaa llama/ggml: add LLM training support (#10544)
* llama/ggml: add LLM training support

more compact progress bar

llama_save_model_to_file

llama_opt_param_filter

ggml_graph_dup force_grads

refactor ggml_opt, fix test-opt

* remove logits_all

* refactor CUDA implementation for ACC

* reset graph at beginning of opt period
2025-05-12 14:44:49 +02:00
27ebfcacba llama : do not crash if there is no CPU backend (#13395)
* llama : do not crash if there is no CPU backend

* add checks to examples
2025-05-09 13:02:07 +02:00
3f96aeff39 llama : one-off chat template fix for Mistral-Small-2503 (#13398)
* llama : one-off chat template fix for Mistral-Small-2503

* update readme

* add mistral-v7-tekken
2025-05-09 11:17:51 +02:00
6562e5a4d6 context : allow cache-less context for embeddings (#13108)
* context : allow cache-less context for embeddings

ggml-ci

* context : enable reranking with encode()

ggml-ci

* context : encode() clears embd_seq

ggml-ci

* examples : use llama_encode() when appropriate

ggml-ci

* models : nomic bert moe does not require KV cache

* llama : update comments for llama_decode/llama_encode

ggml-ci

* context : update warning log [no ci]
2025-05-08 14:28:33 +03:00
f061021206 llama : print size and type of overridden tensors (#13364) 2025-05-08 13:15:15 +02:00
bc4e1128f7 llama : deci : support ffn-free with attention (#13296) 2025-05-07 12:49:27 +02:00
6c7fd67b64 llama : support tie embedding for chatglm models (#13328) 2025-05-07 09:23:11 +02:00
3bf785f3ef llama : Llama-3_1-Nemotron-Ultra-253B-v1 support (#12843) 2025-05-03 17:39:51 +02:00
2f567611c0 llama-model : support Qwen2 embedding models and pooling_mode_lasttoken (#13245) 2025-05-02 11:42:30 -04:00
c642bc014c kv-cache : separate recurrent vs non-recurrent impl (#12799)
* kv-cache : serparate recurrent vs non-recurrent impl (wip)

ggml-ci

* kv-cache : init -> contructor + add llama_memory_params

ggml-ci

* kv-cache : fix callback reference

ggml-ci

* context : llama_kv_cache -> llama_memory_i

ggml-ci

* context : move memory creation logic to model

ggml-ci

* llama : remove reference of memory during encode

ggml-ci

* kv-cache : hide padding details in the implementation

ggml-ci

* kv-cache : add ubatch_next()

ggml-ci

* context : simplify sbatch logic

ggml-ci

* kv-cache : hide defrag logic in the implementation

ggml-ci

* context : hide kv cache details in implementation

ggml-ci

* build : fix

ggml-ci

* cont : another fix

ggml-ci

* kv-cache : simplify interface (wip)

ggml-ci

* kv-cache : use separate KV cell structs for unified/recurrent

ggml-ci

* kv-cache : clean-up

ggml-ci

* model : better llama_model::create_model() signature

ggml-ci

* kv-cache : fix recurrent seq_rm()

ggml-ci

* kv-cache : replace `struct callbacks` with `llama_model &`

ggml-ci

* kv-cache : replace `struct graph_params` with `llama_context &`

ggml-ci

* kv-cache : fix offload check

ggml-ci

* context : avoid passing unique_ptr

ggml-ci

* kv-cache : avoid using the backends from the llama_context

ref #13113

ggml-ci

* kv-cache : more consistent debug logs [no ci]

* kv-cache : do not pass the full llama_context for kv graphs

ggml-ci

* kv-cache : remove comment

* kv-cache : ggml_rope_ext_inplace -> ggml_rope_ext

ggml-ci

* kv-cache : fix recurrent multi-user case

ggml-ci

* memory : remove comments [no ci]
2025-05-02 17:48:36 +03:00
cb06a3c363 llama : orion rope type is neox (#13261) 2025-05-02 12:44:24 +02:00
626083faf7 llama : plamo rope type is neox (#13260) 2025-05-02 12:40:56 +02:00
a70183eb00 llama-model : fix the reported size class for nomic-embed-text-v2-moe (#13223) 2025-05-01 10:09:41 +03:00
cdf76586b2 CUDA: fix non-cont. inputs for batched mat mul (#13155) 2025-04-29 16:00:27 +02:00
7d3af70b08 llama : llm_type order by size (#13177) 2025-04-29 13:25:53 +02:00
e98b3692be llama : set qwen3 model type sizes (#13175) 2025-04-29 11:00:31 +02:00
AT
5f5e39e1ba model : Nomic Embed Text V2 with Mixture-of-Experts (MoE) architecture (#12466)
* Nomic Embed Text V2 with Mixture-of-Experts (MoE) architecture

- Adds MoE-based embedding model supporting multilingual embeddings.
- Selects architecture variant based on hyperparameter detection (MoE layers).
- Removes unnecessary subclass initialization checks for clarity.

https://www.nomic.ai/blog/posts/nomic-embed-text-v2

Co-authored-by: Jared Van Bortel <jared@nomic.ai>

* fix tokenizer

* don't rename this tensor

---------

Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2025-04-28 22:52:15 +03:00
69699be48a CUDA: fix q_nope_absorbed prec for DS 2 Lite f16 (#13137) 2025-04-28 09:29:26 +02:00
2f74c354c0 graph : make FA compatible with MLA + add initial Metal kernels (#12953)
* graph : make mla compatible with FA

* metal : add exp FA kernels for DeepSeek models

ggml-ci

* llama : minor naming updates

ggml-ci

* ggml : disable FA for DS head sizes

* tests : add FA tests for MLA shapes

ggml-ci
2025-04-17 18:16:36 +03:00
daa422881a llama : DeepSeek V2/V3 MLA implementation (#12801)
* Merged using squash to remove all noise commit messages

* Force flash attention off for `LLM_ARCH_DEEPSEEK2` - embedding too large

* Removed 3 conts (2x RoPE and 1x RMS-norm)

* Changed to use `<cmath>` instead of `<math.h>`

* Reverted removal of the 3 conts

* Used `reshape` in `llm_graph_context::build_attn_mha()`

* Use `k_pe = ggml_reshape`

* Removed the 3 conts again

* Removed the 3D views of `wk_b` and `wv_b`, and just save and 3D in GGUF

* Removed MQA optimisation from `build_attn_mha()` as no gains now

* Simplified `is_mla` branch in `llm_build_deepseek2()`

* Removed `build_attn_mla` and added `nullptr` to all `build_atnn` calls

* Fixed call to `build_attn` in `llm_build_t5_enc`
2025-04-15 09:49:57 +03:00
06bb53ad9b llama-model : add Glm4Model implementation for GLM-4-0414 (#12867)
* GLM-4-0414

* use original one

* Using with tensor map

* fix bug

* change order

* change order

* format with flask8
2025-04-11 12:10:10 +02:00
8b91d5355a llama : correct rms norm for llama 4 (#12882) 2025-04-11 08:49:50 +02:00
d3bd7193ba llama : Support Qwen3 and Qwen3MoE (#12828)
* add qwen3 & qwen3moe support.

* fix

---------

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
2025-04-09 11:47:36 +02:00
1466621e73 llama : Support llama 4 text-only (#12791)
* llama4 conversion

* initial support, no chat template

* clean up a bit

* fix tokenizer conversion

* correct hparams

* try this

* fix shexp

* ffn_inp_normed

* chat template

* clean up model conversion

* add_bos

* add scale_before_ffn

* fix order

* weight_before_ffn

* llm_graph_input_attn_temp

* add chunk attn mask

* build_inp_attn_scale()

* add comment about ggml_repeat

* clarify comments

* fix build
2025-04-07 23:06:44 +02:00
e0e912f49b llama : add option to override model tensor buffers (#11397)
* llama : add option to override tensor buffers

* ggml : fix possible underflow in ggml_nbytes
2025-04-02 14:52:01 +02:00
2c3f8b850a llama : support BailingMoE (Ling) (#12634) 2025-03-30 22:21:03 +02:00
0bb2919335 llama : change cpu_buft_list order: ACCEL -> GPU host -> CPU extra -> CPU (#12632)
this allow to use GPU host when possible over CPU repack.
this have the same effect to resolve this issues (#12498) without
completely disable CPU extra buffer.

Co-authored-by: philou <philou@framework>
2025-03-29 14:07:37 +01:00
3714c3ee1a llama : fix incorrect Qwen2Moe ffn_moe_out graph callback (#12631) 2025-03-28 22:13:02 +01:00