* kv-cache : avoid modifying recurrent cells when setting inputs
* kv-cache : remove inp_s_mask
It was replaced with equivalent and simpler functionality
with rs_z (the first zeroed state) and the already-existing inp_s_copy.
* kv-cache : fix non-consecutive token pos warning for recurrent models
The problem was apparently caused by how the tail cells were swapped.
* graph : simplify logic for recurrent state copies
* kv-cache : use cell without src refs for rs_z in recurrent cache
* llama-graph : fix recurrent state copy
The `state_copy` shuffle assumes everything is moved at once,
which is not true when `states_extra` is copied back to the cache
before copying the range of states between `head` and `head + n_seqs`.
This is only a problem if any of the cells in [`head`, `head + n_seqs`)
have an `src` in [`head + n_seqs`, `head + n_kv`),
which does happen when `n_ubatch > 1` in the `llama-parallel` example.
Changing the order of the operations avoids the potential overwrite
before use, although when copies are avoided (like with Mamba2),
this will require further changes.
* llama-graph : rename n_state to state_size in build_recurrent_state
This naming should reduce confusion between the state size
and the number of states.
* kv-cache : simplify the "struct llama_kv_cache" interface
ggml-ci
* kv-cache : revert the (n_swa + n_ubatch) change (for next PR)
ggml-ci
* kv-cache : some comments
ggml-ci
* context : fix graph reserve for multiple sequences
ggml-ci
* kv-cache : fix typo [no ci]
* kv-cache : fix find_slot() logic for free slots
ggml-ci
* llama : add TODO for deprecating the defrag API in the future
* kv-cache : improve find_slot() using min/max seq pos info
ggml-ci
* llama : handle aborts and compute errors
ggml-ci
* memory : extract state into llama_memory_state
ggml-ci
* kv-cache : add comments
ggml-ci
* server : update batching logic to reset n_batch on successful decode
* server : upon full re-processing, remove the sequence from the cache
* kv-cache : add TODO for doing split_equal when split_simple fails
ggml-ci
* add distilbert
* small fixes
* add note for LLM_ARCH_DISTIL_BERT
* Use MODEL_ARCH.BERT for DistilBert
---------
Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
This matches how others do it, but will still avoid the extra
initialization when rope is disabled.
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add GGUF conversion for granitemoeshared
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: hparam and arch plumbing for granitemoeshared
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Split MoE fused tensors for shared experts in conversion
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: First WIP cut at model arch in cpp
The hparam and architecture plumbing should be correct, but the
implementation of the shared experts seems to still be broken.
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Cleaner (maybe more correct?) splitting for gate/up
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Fix the input to the shared experts
I had misread that the shared experts take the inputs _before_ the standard
MoE layer and was feeding the output of the MoE to the shared experts.
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Avoid architecture-specific checks for Granite MoE Shared
This is a cleaner way that will allow more flexibility in architecture
strings going forward.
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Split granite architectures out of llm_build_llama
This helps de-clutter the llama-family graph construction and allows
granite to diverge further (in preparation for Granite 4).
NOTE: I removed the granite scale factors from llm_build_deci because they
appear to only be there as copy-paste from llm_build_llama. The HF config
does not seem to set those values:
https://huggingface.co/Deci/DeciLM-7B/blob/main/config.json
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Fix compiler warning about uninitialized inp_pos
This should not have been reachable, but it warns on some compliers
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Consoladate GraniteMoEShared into GraniteMoE for conversion
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Consolidate GraniteMoEShared into GraniteMoE on the c++ side
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* llama/ggml: add LLM training support
more compact progress bar
llama_save_model_to_file
llama_opt_param_filter
ggml_graph_dup force_grads
refactor ggml_opt, fix test-opt
* remove logits_all
* refactor CUDA implementation for ACC
* reset graph at beginning of opt period
* Nomic Embed Text V2 with Mixture-of-Experts (MoE) architecture
- Adds MoE-based embedding model supporting multilingual embeddings.
- Selects architecture variant based on hyperparameter detection (MoE layers).
- Removes unnecessary subclass initialization checks for clarity.
https://www.nomic.ai/blog/posts/nomic-embed-text-v2
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
* fix tokenizer
* don't rename this tensor
---------
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
* graph : make mla compatible with FA
* metal : add exp FA kernels for DeepSeek models
ggml-ci
* llama : minor naming updates
ggml-ci
* ggml : disable FA for DS head sizes
* tests : add FA tests for MLA shapes
ggml-ci
* Merged using squash to remove all noise commit messages
* Force flash attention off for `LLM_ARCH_DEEPSEEK2` - embedding too large
* Removed 3 conts (2x RoPE and 1x RMS-norm)
* Changed to use `<cmath>` instead of `<math.h>`
* Reverted removal of the 3 conts
* Used `reshape` in `llm_graph_context::build_attn_mha()`
* Use `k_pe = ggml_reshape`
* Removed the 3 conts again
* Removed the 3D views of `wk_b` and `wv_b`, and just save and 3D in GGUF
* Removed MQA optimisation from `build_attn_mha()` as no gains now
* Simplified `is_mla` branch in `llm_build_deepseek2()`
* Removed `build_attn_mla` and added `nullptr` to all `build_atnn` calls
* Fixed call to `build_attn` in `llm_build_t5_enc`
this allow to use GPU host when possible over CPU repack.
this have the same effect to resolve this issues (#12498) without
completely disable CPU extra buffer.
Co-authored-by: philou <philou@framework>