Commit Graph

966 Commits

Author SHA1 Message Date
515fdbf7ed SYCL: revert "sycl: simplify bin_bcast_kernel (#13383)" (#13752)
Temporarily reverted due to failing fp16 DIV operation

This reverts commit 02cdd2d8b0.

ggml-ci
2025-05-25 10:08:37 +03:00
2bd1b30f69 ggml-cpu : set openmp wait time if not set (#13758) 2025-05-24 22:26:47 +02:00
4c32832c59 ggml : add ggml_gelu_erf() CUDA kernel (#13719)
* ggml : add ggml_gelu_erf() CUDA kernel

* missing semicolon
2025-05-24 13:06:47 +02:00
ffd0eae60b CUDA: fix race condition in FA vector kernels (#13742) 2025-05-24 11:46:19 +02:00
faaaff5f94 CANN: Support MUL_MAT_ID for q8_0 and q4_0 (#13705)
* [CANN]Support MUL_MAT_ID Q8 && Q4

Signed-off-by: noemotiovon <757486878@qq.com>

* codestyle adjustment

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
2025-05-23 16:47:53 +08:00
e16c4731c7 ggml : fix the order of ggml_unary_op (#13718) 2025-05-23 08:12:48 +02:00
1dcd01960c vulkan: support CPY from any type to itself (#13695)
Reuse the f16/f32 copy shaders, and just scale the number of elements
according to the type size.
2025-05-23 06:45:02 +02:00
c10ed6cbcc vulkan: Disable coopmat/coopmat2/bfloat extensions if glslc doesn't support it (#13696) 2025-05-23 06:33:45 +02:00
a127ff1780 use LOG_WARN to replace std::cerr (#13657) 2025-05-23 06:33:08 +02:00
d394a9aedc sycl : Remove waits from function calls (#13702)
* removes the waits in async memcpy functions
2025-05-22 12:54:43 +01:00
6b56a64690 SYCL: Avoid using with SYCL-Graph for unsupported nodes (#13587)
Currently on a CUDA backend to SYCL when running
`GGML_SYCL_DISABLE_GRAPH=0 ./bin/test-backend-ops -b SYCL0` there
are two operations that throw an exception from the blocking
waits during queue recording.

* `-o CONCAT` : Use of blocking waits on a queue that's being recorded https://github.com/ggml-org/llama.cpp/blob/master/ggml/src/ggml-sycl/concat.cpp#L185-L187
* `-o MUL_MAT_ID`: Blocking wait on a recording queue for a copy to host memory https://github.com/ggml-org/llama.cpp/blob/master/ggml/src/ggml-sycl/ggml-sycl.cpp#L3072-L3074

We've noticed that `ggml-cuda.cu` has the
[check_node_graph_compatibility_and_refresh_copy_ops](39e73ae0d6/ggml/src/ggml-cuda/ggml-cuda.cu (L2458-L2458))
method for checking if a graph can be used, even if enabled. I've taken a
similar approach in this PR by adding a method to `ggml-sycl.cpp` for checking
if a graph can be used for the operations even if a user has asked for it to be
enabled.
2025-05-22 16:24:09 +08:00
a4e8912dfd opencl: Add support for multiple devices (#12622)
* opencl: Add support for multiple devices

... but limited to one platform. A platform with a GPU will be preferred.

Additionally:

* Filter out devices that lack capabilities needed by the backend
  implementation (half support, OpenCL 2.0+, etc).

* Make ggml_backend_opencl_reg() thread-safe.

* fixup: fix an error in sync_with_other_backends

... when there is only one OpenCL device available.
2025-05-21 16:21:45 -07:00
edbf42edfd opencl: fix couple crashes (#12795)
* opencl: fix couple crashes

* fix kernel launches failed on devices which do not support
  non-uniform work-groups. When non-uniform work-groups are not
  supported, set `local_work_size` to NULL (= let driver choose the
  work-group sizes). This patch does not cover everything - just the
  cases tested by test-backend-ops.

* fix sub-buffer creation failed due to `cl_buffer_region::origin` not
  being aligned to `CL_DEVICE_MEM_BASE_ADDR_ALIGN`.

* OpenCL: query non-uniform WG sizes only on OpenCL 3.0+
2025-05-21 13:21:17 -07:00
cf4cb59e64 ggml : add ggml_gelu_erf() (#13667)
* ggml : add ggml_gelu_na (not approximated)

* fix naming order

* rename na --> erf

* apply review suggesions

* revert naming order
2025-05-21 16:26:33 +02:00
33983057d0 musa: Upgrade MUSA SDK version to rc4.0.1 and use mudnn::Unary::IDENTITY op to accelerate D2D memory copy (#13647)
* musa: fix build warning (unused parameter)

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: upgrade MUSA SDK version to rc4.0.1

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: use mudnn::Unary::IDENTITY op to accelerate D2D memory copy

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Update ggml/src/ggml-cuda/cpy.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* musa: remove MUDNN_CHECK_GEN and use CUDA_CHECK_GEN instead in MUDNN_CHECK

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-05-21 09:58:49 +08:00
Eve
fb1cab201c vulkan: fix warnings (#13626)
* small fixes

* remove ifdef
2025-05-20 21:35:16 +00:00
b69f1647f9 CUDA: skip fully masked-out KV in FA vec kernel (#13584)
* CUDA: skip fully masked-out KV in FA vec kernel
2025-05-20 14:45:07 +02:00
4245e622e0 sycl: disable reorder for sycl mulmat (#13536) 2025-05-20 11:34:15 +02:00
c00a2634be metal : fix typo in FA kernel comments (#13651) 2025-05-20 10:41:40 +03:00
f7c9429c85 sycl : Overcoming workaround for mmap() allocation on Windows (#13482)
* Remove mmap workaround on windows

After some testing I found that mmap is supported on windows and for
many GPUs on Linux. Therefore I remove the workaround for windows since
it is not necessary.

* Update llama-bench README

SYCL backend introduced a workaround that allows execution of
llama-bench also without specifying `--mmp 0` flag
2025-05-20 08:54:43 +08:00
8960efd0a6 Vulkan: Add f32 accumulator support to quantized mul mat to fix GLM4 32B incoherence (#13607) 2025-05-19 17:54:08 +02:00
6c35981a64 mnist: fix segmentation fault (ggml/1227) 2025-05-19 13:29:56 +03:00
8b5e19aea6 ggml : fix apple OS check in ggml_print_backtrace (ggml/1229) 2025-05-19 13:29:56 +03:00
60aea028b5 ggml : Fix missing backtrace on Linux (ggml/1228)
* Modern Linux defaults /proc/sys/kernel/yama/ptrace_scope to 1
* Fixed lldb attach
* Simplify by having the child do ggml_print_backtrace_symbols
2025-05-19 13:29:56 +03:00
33d7aed4a8 CANN: Support MOE Model MUL_MAT_ID (#13042)
Signed-off-by: noemotiovon <757486878@qq.com>
2025-05-19 14:21:17 +08:00
e3a7cf6c5b cmake: use the current build config for vulkan-shaders-gen (#13595)
* fix: use the current build config for `vulkan-shaders-gen`

* fix: only pass a valid build type to `--config`
2025-05-17 15:26:43 -03:00
2f5a4e1e09 vulkan: move common FA code to flash_attn_base.comp (#13556)
* vulkan: move common FA code to flash_attn_base.comp

* vulkan: move common FA index/stride setup code to flash_attn_base.comp

* build fix
2025-05-17 09:14:55 +02:00
4f41ee11d6 vulkan: use scalar FA rather than coopmat2 when N==1 (#13554) 2025-05-17 08:35:47 +02:00
654a67794f metal : add FA-vec kernel for head size 64 (#13583)
ggml-ci
2025-05-16 20:32:58 +03:00
0a338ed013 sycl : fixed compilation warnings (#13582) 2025-05-16 18:15:29 +08:00
c6a2c9e741 gguf : use ggml log system (#13571)
* gguf : use ggml log system

* llama : remove unnecessary new lines in exception messages
2025-05-15 19:13:11 +02:00
02cdd2d8b0 sycl: simplify bin_bcast_kernel (#13383) 2025-05-15 17:39:52 +02:00
64bb51cf90 sycl: reordered Q4_K MMVQ (#13109) 2025-05-15 17:35:44 +02:00
9c404ed54c sycl: use oneDNN for matrices multiplication (#12972) 2025-05-15 16:53:41 +02:00
5ab5d5fb25 arm64: optimize q6_k_q8_k kernel with i8mm (#13519)
This PR improves q6_k_q8_k gemm kernel with arm64 i8mm instruction.

Tested on neoverse-n2 with llama3 8b q6_k quantization model.
- 40% ~ 54% S_PP uplift for all batch sizes
- 16% ~ 47% S_TG uplift for batch size 4 and above

Perplexity doesn't change with this PR.

```
// tested on neoverse-n2
$ llama-batched-bench \
      -m Meta-Llama-3-8B-Instruct-Q6_K.gguf \
      --no-mmap -fa \
      -c 8192 -b 4096 -ub 512 -npp 128 -ntg 128 \
      -npl 1,2,4,8,16,32 \
      -t 64

---------------------------------------------------------------------
|    PP |     TG |    B |       S_PP t/s      |       S_TG t/s      |
|       |        |      | original |  this pr | original |  this pr |
|-------|--------|------|----------|----------|----------|----------|
|   128 |    128 |    1 |    78.52 |   109.18 |    18.63 |    18.88 |
|   128 |    128 |    2 |    84.62 |   123.94 |    34.54 |    36.92 |
|   128 |    128 |    4 |    84.36 |   122.49 |    52.65 |    61.32 |
|   128 |    128 |    8 |    90.52 |   138.87 |    63.46 |    84.41 |
|   128 |    128 |   16 |    90.11 |   138.56 |    71.04 |   101.33 |
|   128 |    128 |   32 |    89.81 |   137.79 |    75.14 |   110.47 |
---------------------------------------------------------------------
```
2025-05-14 21:53:52 +02:00
4696d56749 CUDA: fix crash on large batch size for quant. MoE (#13537) 2025-05-14 16:41:02 +02:00
6da34fa276 CUDA: faster Deepseek FA, add Turing support (#13435) 2025-05-14 16:08:20 +02:00
09d13d94fb cmake: simplify vulkan shader test logic (#13263) 2025-05-14 07:53:57 -03:00
24e86cae72 vulkan: KHR_coopmat flash attention (#13506)
This shader uses coopmat1 to do the Q*K^T multiply. The P*V multiply is more
difficult for various reasons so I haven't done it. Performance for this
shader is around 2.5x better than for the scalar shader when doing prompt
processing. Some of the benefit may be from other optimizations like staging
through shared memory, or splitting by rows.
2025-05-14 11:55:26 +02:00
ab3971f2a0 vulkan: workaround FA compile failures on macos (#13517) 2025-05-14 06:15:50 +02:00
f0995d28ce metal : use FA-vec kernel up to batch size 20 (#13496)
* batched-bench : fix pp batch contents

* metal : optimize multi-sequence FA vec kernel

ggml-ci

* metal : use FA-vec kernel up to batch size 20

ggml-ci
2025-05-13 18:04:39 +03:00
c252e0c409 metal : optimize multi-sequence FA vec kernel (#13493)
* batched-bench : fix pp batch contents

* metal : optimize multi-sequence FA vec kernel

ggml-ci
2025-05-13 18:04:00 +03:00
4f711afed5 ggml-cpu: Update KleidiAI to v1.6 and fix include directives (#13509)
Signed-off-by: Dan Johansson <dan.johansson@arm.com>
2025-05-13 18:02:28 +03:00
f0d46ef157 opencl: remove unnecessary assert for add (#13257) 2025-05-12 13:13:49 -07:00
10d2af0eaa llama/ggml: add LLM training support (#10544)
* llama/ggml: add LLM training support

more compact progress bar

llama_save_model_to_file

llama_opt_param_filter

ggml_graph_dup force_grads

refactor ggml_opt, fix test-opt

* remove logits_all

* refactor CUDA implementation for ACC

* reset graph at beginning of opt period
2025-05-12 14:44:49 +02:00
a71a4075cd ggml-cpu: Integrate fp32=bf16xbf16 SME KleidiAI kernel (#13053)
* ggml-cpu: Integrate fp32=bf16xbf16 SME KleidiAI kernel

Signed-off-by: Dan Johansson <dan.johansson@arm.com>

* * code review fixes

Signed-off-by: Dan Johansson <dan.johansson@arm.com>

* * adds a comment that clarifies barrier usage

Signed-off-by: Dan Johansson <dan.johansson@arm.com>

---------

Signed-off-by: Dan Johansson <dan.johansson@arm.com>
Co-authored-by: Charles Xu <charles.xu@arm.com>
2025-05-12 13:06:19 +02:00
95e18884fc CUDA: fix misaligned synchronization in FA (#13469) 2025-05-12 10:51:21 +02:00
df8491922f ggml : add mrope kernel for metal (#13457) 2025-05-12 10:29:13 +02:00
14492144c2 enable dpcpp nightly builds with libraries (#13406) 2025-05-12 13:15:32 +08:00
7474e00b34 CUDA: fix crash with partial offloading of MoE (#13439) 2025-05-11 16:09:33 +02:00