* Update docker.yml
修改docker.yml文件中的内容使其停止周期性的运行该workflow,如果想要运行该workflow可以手动启动
* Remove redundant include path in CMakeLists.txt
The parent directory '..' was removed from the include directories for the ggml-cpu-feats target, to avoid unnecessary include paths.
* Enable scheduled Docker image builds
Uncomments the workflow schedule to trigger daily Docker image rebuilds at 04:12 UTC, improving automation and keeping images up to date.
* initial commit for handling extra template kwargs
* enable_thinking and assistant prefill cannot be enabled at the same time
* can set chat_template_kwargs in command line
* added doc
* fixed formatting
* add support for extra context in generic template init
* coding standard: common/chat.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* coding standard: common/chat.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Apply suggestions from code review
coding standard: cosmetic changes
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix merge conflict
* chat.cpp: simplify calls to apply to ensure systematic propagation of extra_context (+ the odd existing additional_context)
* normalize environment variable name
* simplify code
* prefill cannot be used with thinking models
* compatibility with the new reasoning-budget parameter
* fix prefill for non thinking models
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Olivier Chafik <olivier.chafik@gmail.com>
* SYCL: disable faulty fp16 CPU exponent for now
* Revert "SYCL: disable faulty fp16 CPU exponent for now"
This reverts commit ed0aab1ec3.
* SYCL: disable faulty fp16 CPU exponent for now
* Fix logic of disabling exponent kernel
* implement unary REGLU/GEGLU/SWIGLU cpu ops
* relax constraints
* duplicate shape of source
* fix ggml_vec_geglu_f16
* special case gated ops
* implement unary REGLU/GEGLU/SWIGLU cuda ops
* tighten constraints again
* refactor into GGML_GLU_OP
* metal : add glu kernels
ggml-ci
* add CUDA_GLU_BLOCK_SIZE [no ci]
* more constraints and use 64bit ints
ggml-ci
* 64bit multiplication [no ci]
* implement swapped variants (cpu/cuda)
* update comment [no ci]
ggml-ci
* Vulkan: Add GLU ops and shaders
* SYCL: Implement fused kernel GEGLU, SWIGLU and REGLU for single up+gate
* ggml : implement GLU for split up/gate (#14181)
* implement GLU for split up/gate
* add tests for ggml_glu_split
* Vulkan: Implement glu_split logic and shader support
* add split to logging [no ci]
* SYCL: refactor element_size ops and add split up and gate support to gated kernels
* SYCL: switch GEGLU to use tanh approximation
---------
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>
* GGML: increase OP count in assertion
* Refactor: Optimize SYCL element-wise operations with unary function inlining
This commit refactors the SYCL element-wise operations to improve performance by:
- Inlining unary operations (sgn, abs, elu, gelu, silu, etc.) to reduce kernel launch overhead.
- Introducing helper functions `op_xxx` for each unary operation to encapsulate the logic.
- Replacing direct kernel calls with calls to these inlined functions.
- Using `__dpct_inline__` to encourage compiler inlining.
- Minor code cleanup and consistency improvements.
The changes aim to reduce kernel launch overhead and improve the overall efficiency of element-wise operations on SYCL devices.
* vulkan: Increase workgroup size for GLU, for performance (#14345)
* vulkan: Increase workgroup size for GLU, for performance
* vulkan: change GLU shaders to do one element per invocation rather than one row per workgroup
* merge fix
* metal : add support for split and swap
ggml-ci
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* vulkan: Add fusion support for RMS_NORM+MUL
- Add a use_count to ggml_tensor, so we can detect if an output is used more than once.
- Change the ggml-vulkan rms_norm shader to optionally multiply by another tensor.
- Add detection logic and basic fusion logic in ggml-vulkan.
- Add some testing support for fusion. Rather than computing one node at a time, allow
for computing the whole graph and just testing one node's results. Add rms_norm_mul tests
and enable a llama test.
* extract some common fusion logic
* fix -Winconsistent-missing-override
* move ggml_can_fuse to a common function
* build fix
* C and C++ versions of can_fuse
* move use count to the graph to avoid data races and double increments when used in multiple threads
* use hash table lookup to find node index
* change use_counts to be indexed by hash table slot
* minimize hash lookups
style fixes
* last node doesn't need single use.
fix type.
handle mul operands being swapped.
* remove redundant parameter
---------
Co-authored-by: slaren <slarengh@gmail.com>
* CUDA: add bf16 and f32 support to cublas_mul_mat_batched
* Review: add type traits and make function more generic
* Review: make check more explicit, add back comments, and fix formatting
* Review: fix formatting, remove useless type conversion, fix naming for bools
* ggml : add ggml_set_rows
Add ggml_set_rows(a, b, c) which copies rows from 'b' into 'a' using
indices from 'c'.
ref: #8366
* use I64 for indices
* ggml : add repeat impl for i64
* ggml : add ggml_is_contiguous_rows
* ggml : ggml_set_rows support broadcast
* ggml : ggml_set_rows support quantized dst
ggml-ci
* ggml : support GGML_TYPE_F32 ".from_float" trait
* ggml : ggml_set_rows update comment + better index name
* tests : add ggml_set_rows
* metal : add ggml_set_rows implementation
ggml-ci
* ggml : simplify forward_dup_f32
* ggml : fix supports_op
* tests : add comment to set_rows
* ggml : leave the repeat_i64 for a separate PR
ggml-ci
* ggml : set_rows use std::min instead of MIN
* ggml : better error message for set_rows unsupported type
* metal : perform op->type check only once
* tests : more consistent implementation + more tests
ggml-ci
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Mistral Small 2506 models using Pixtral vision encoder were running out
of GPU memory when processing images larger than 1024x1024 pixels due to
exponential memory growth from unlimited image size.
This fix applies the same 1024x1024 limit used by Qwen2VL models to
prevent OOM issues while maintaining compatibility with existing models.