* Nomic Embed Text V2 with Mixture-of-Experts (MoE) architecture
- Adds MoE-based embedding model supporting multilingual embeddings.
- Selects architecture variant based on hyperparameter detection (MoE layers).
- Removes unnecessary subclass initialization checks for clarity.
https://www.nomic.ai/blog/posts/nomic-embed-text-v2
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
* fix tokenizer
* don't rename this tensor
---------
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
* graph : make mla compatible with FA
* metal : add exp FA kernels for DeepSeek models
ggml-ci
* llama : minor naming updates
ggml-ci
* ggml : disable FA for DS head sizes
* tests : add FA tests for MLA shapes
ggml-ci
* Merged using squash to remove all noise commit messages
* Force flash attention off for `LLM_ARCH_DEEPSEEK2` - embedding too large
* Removed 3 conts (2x RoPE and 1x RMS-norm)
* Changed to use `<cmath>` instead of `<math.h>`
* Reverted removal of the 3 conts
* Used `reshape` in `llm_graph_context::build_attn_mha()`
* Use `k_pe = ggml_reshape`
* Removed the 3 conts again
* Removed the 3D views of `wk_b` and `wv_b`, and just save and 3D in GGUF
* Removed MQA optimisation from `build_attn_mha()` as no gains now
* Simplified `is_mla` branch in `llm_build_deepseek2()`
* Removed `build_attn_mla` and added `nullptr` to all `build_atnn` calls
* Fixed call to `build_attn` in `llm_build_t5_enc`
this allow to use GPU host when possible over CPU repack.
this have the same effect to resolve this issues (#12498) without
completely disable CPU extra buffer.
Co-authored-by: philou <philou@framework>
* add edgellm model arch[conversation feature doesn't work]
* remove output.weight layer for edgellm arch
* [Model] update the name of the model
* update the name of model arch in convert gguf
* [Model] Refarctor the model arch into llama-model
* [Bug] Fix the bug in create attn kv
* [Code] Fix editorconfig erros
* [Code] Remove Trailing whitespace
* [Code] Remove Trailing whitespace
* [Code] Change the order of model arch in list
* [Code] Fix flake8 Lint errors
* Remove trailing white space
* [Code] Remove call in model arch
* Add support for GPT2, Bloom and CodeShell tied word embeddings
* Deduplicate tied word embeddings weights
* Workaround for incorrect weight map
It appears transformer.wte.weight is in the weight map even though the weights are not there, remove it if output weights are encountered first.
* check++
* fatfingers--
* graph : normalize Q, K, V shapes and add comments
ggml-ci
* context : synchronize before getting cross attention data
* model : fix command-r attention norm check
* Added Phi-4-mini-instruct support
* Update regex per ngxson
* Change the vocab base to Xenova/gpt-4o
* fix conversion update script
* no need to check longrope
* minor style fix
* fix python style
---------
Co-authored-by: Nicholas Sparks <nisparks@microsoft.com>
It's useful to be able to have this from the library layer as it's a key
parameter of the model (e.g. to figure out how much KV cache memory is
needed).
* add glm edge chat model
* use config partial_rotary_factor as rope ratio
* support for glm edge model
* vision model support
* remove debug info
* fix format
* llava.cpp trailing whitespace
* remove unused AutoTokenizer
* Update src/llama.cpp for not contain <|end|> or </s>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* add edge template
* fix chat template
* fix confict
* fix confict
* fix ci err
* fix format err
* fix template err
* 9b hf chat support
* format
* format clip.cpp
* fix format
* Apply suggestions from code review
* Apply suggestions from code review
* Update examples/llava/clip.cpp
* fix format
* minor : style
---------
Co-authored-by: liyuhang <yuhang.li@zhipuai.cn>
Co-authored-by: piDack <pcdack@hotmail.co>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: liyuhang <yuhang.li@aminer.cn>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>