Commit Graph

4999 Commits

Author SHA1 Message Date
7296c961d9 ggml : add CLBlast support (#1164)
* Allow use of OpenCL GPU-based BLAS using ClBlast instead of OpenBLAS for context processing

* Improve ClBlast implementation, avoid recreating buffers, remove redundant transfers

* Finish merge of ClBlast support

* Move CLBlast implementation to separate file

Add buffer reuse code (adapted from slaren's cuda implementation)

* Add q4_2 and q4_3 CLBlast support, improve code

* Double CLBlast speed by disabling OpenBLAS thread workaround

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <2141330+slaren@users.noreply.github.com>

* Fix device selection env variable names

* Fix cast in opencl kernels

* Add CLBlast to CMakeLists.txt

* Replace buffer pool with static buffers a, b, qb, c

Fix compile warnings

* Fix typos, use GGML_TYPE defines, improve code

* Improve btype dequant kernel selection code, add error if type is unsupported

* Improve code quality

* Move internal stuff out of header
* Use internal enums instead of CLBlast enums
* Remove leftover C++ includes and defines
* Make event use easier to read

Co-authored-by: Henri Vasserman <henv@hot.ee>

* Use c compiler for opencl files

* Simplify code, fix include

* First check error, then release event

* Make globals static, fix indentation

* Rename dequant kernels file to conform with other file names

* Fix import cl file name

---------

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <2141330+slaren@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
master-7296c96
2023-04-28 17:57:16 +03:00
78ec543733 Correcting link to w64devkit (#1214)
Correcting link to w64devkit (change seeto to skeeto).
2023-04-28 16:22:48 +02:00
92a6e13a31 Add Manjaro CUDA include and lib dirs to Makefile (#1212) master-92a6e13 2023-04-28 15:40:32 +02:00
04aaae1d79 add avx2 for dot_q8_0_q8_0, 2x faster than scalar (#1211) master-04aaae1 2023-04-28 11:59:48 +00:00
0b2da20538 ggml : slightly faster AVX2 implementation for Q5 (#1197) master-0b2da20 2023-04-26 23:26:42 +03:00
f9be42add0 readme : add quantization info 2023-04-26 23:24:42 +03:00
574406dc7e ggml : add Q5_0 and Q5_1 quantization (#1187)
* ggml : add Q5_0 quantization (cuBLAS only)

* ggml : fix Q5_0 qh -> uint32_t

* ggml : fix q5_0 histogram stats

* ggml : q5_0 scalar dot product

* ggml : q5_0 ARM NEON dot

* ggml : q5_0 more efficient ARM NEON using uint64_t masks

* ggml : rename Q5_0 -> Q5_1

* ggml : adding Q5_0 mode

* quantize : add Q5_0 and Q5_1 to map

* ggml : AVX2 optimizations for Q5_0, Q5_1 (#1195)

---------

Co-authored-by: Stephan Walter <stephan@walter.name>
master-574406d
2023-04-26 23:14:13 +03:00
87a6f846d3 Allow setting the rng seed after initialization. (#1184)
The llama_set_state_data function restores the rng state to what it
was at the time llama_copy_state_data was called. But users may want
to restore the state and proceed with a different seed.
master-87a6f84
2023-04-26 22:08:43 +02:00
ea3ad7eb60 Updating build instructions to include BLAS support (#1183)
* Updated build information

First update to the build instructions to include BLAS.

* Update README.md

* Update information about BLAS

* Better BLAS explanation

Adding a clearer BLAS explanation and adding a link to download the CUDA toolkit.

* Better BLAS explanation

* BLAS for Mac

Specifying that BLAS is already supported on Macs using the Accelerate Framework.

* Clarify the effect of BLAS

* Windows Make instructions

Added the instructions to build with Make on Windows

* Fixing typo

* Fix trailing whitespace
2023-04-26 22:03:03 +02:00
859fee6dfb quantize : use map to assign quantization type from string (#1191)
instead of `int` (while `int` option still being supported)

This allows the following usage:

`./quantize ggml-model-f16.bin ggml-model-q4_0.bin q4_0`

instead of:

`./quantize ggml-model-f16.bin ggml-model-q4_0.bin 2`
master-859fee6
2023-04-26 18:43:27 +02:00
4afcc37869 Update SHA256SUMS after quantization change (#1181)
Co-authored-by: Pavol Rusnak <pavol@rusnak.io>
2023-04-25 23:41:56 +02:00
667c501334 py : cast lora_alpha to int in convert-lora-to-ggml (#1170)
Co-authored-by: Pavol Rusnak <pavol@rusnak.io>
2023-04-25 23:33:08 +02:00
bb98e77be7 nix: use convert.py instead of legacy wrapper convert-pth-to-ggml.py (#981) 2023-04-25 23:19:57 +02:00
7a32fcb3b2 ggml : add Q8_0 quantization format (rename the old one to Q8_1) (ARM NEON) (#1179)
* ggml : add Q8_0 quantization format (rename the old one to Q8_1)

* tests : fix test-quantize-fns

* ggml : finalize Q8_0 implementation

* ggml : use q4_0_q8_0 and q4_2_q8_0

* ggml : fix Q8_0 dot product bug (ARM)

* ggml : Q8_0 unroll x2

* ggml : fix bug - using wrong block type

* ggml : extend quantize_fns_t with "vec_dot_type"

* ggml : fix Q8_0 to use 255 values out of 256

* ggml : fix assert using wrong QK4_2 instead of QK4_3
master-7a32fcb
2023-04-25 23:40:51 +03:00
dd0eabc049 ggml : use full range for Q4_0 and Q4_2 quantization (#729)
* Use full range for q4_0 quantization

By keeping the sign of the highest magnitude, we can make sure the
highest value maps to -8, which is currently unused.
This is a bit of a freebie since it is fully backwards compatible with
the current format.

* Update quantize_row_q4_0 for AVX/AVX2

* Update quantize_row_q4_0 for WASM

Untested

* Update quantize_row_q4_0 for Arm NEON

* Update quantize_row_q4_0 for PowerPC

Untested

* Use full range for q4_2 quantization
master-dd0eabc
2023-04-25 20:20:46 +03:00
54bb60e268 ggml : fix bug in ggml_compute_forward_sum_f32 (#1162)
The sum over all rows is now computed instead of just the last row
master-54bb60e
2023-04-24 23:02:02 +02:00
8a0f8673ba ggml : export symbols (#1155) master-8a0f867 2023-04-24 22:18:25 +03:00
0c5692345d examples : add save_load_state example (#1150)
* add save_load_state example

* use <cstdio> instead of <iostream> and fprintf / printf instead of cout

* renamed save-load-state example files replacing underscores by dashes
master-0c56923
2023-04-24 19:23:31 +03:00
957c8ae21d llama : increase scratch buffer size for 65B (ref #1152)
Temporary solution
master-957c8ae
2023-04-24 18:47:30 +03:00
9b0a4d4214 examples/main README improvements and some light refactoring (#1131) master-9b0a4d4 2023-04-24 15:45:32 +00:00
2ec83428de Fix build for gcc 8 and test in CI (#1154) master-2ec8342 2023-04-24 15:38:26 +00:00
e4cf982e0d Fix cuda compilation (#1128)
* Fix: Issue with CUBLAS compilation error due to missing -fPIC flag

---------

Co-authored-by: B1gM8c <89020353+B1gM8c@users.noreply.github.com>
master-e4cf982
2023-04-24 17:29:58 +02:00
c4fe84fb0d llama : refactor get / set state + remove redundant kv cache API (#1143) master-c4fe84f 2023-04-24 07:40:02 +03:00
1d78fecdab Fix LoRA acronym (#1145) 2023-04-23 23:03:44 +02:00
284685f169 scripts : add helper scripts to synch ggml repo 2023-04-23 19:57:09 +03:00
edce63baa9 Added README.md for main with examples and explanations (#1139) 2023-04-23 15:37:02 +00:00
ec9cdb6752 ggml : do not print perf ops that have not been used at all master-ec9cdb6 2023-04-23 18:32:52 +03:00
e4422e299c ggml : better PERF prints + support "LLAMA_PERF=1 make" master-e4422e2 2023-04-23 18:15:39 +03:00
53c8434398 Improve AVX2 for vec_dot_q4_3_q8_0 (#1138) master-53c8434 2023-04-23 11:01:03 +00:00
c6524f46eb readme : update gpt4all instructions (#980) 2023-04-23 10:21:26 +02:00
c9e2c26f41 A better packNibbles and mul_sum_i8_pairs_float implementation using AVX512 (#1119) master-c9e2c26 2023-04-23 07:57:05 +00:00
0e018fe008 ggml : fix Q4_3 cuBLAS master-0e018fe 2023-04-22 16:32:07 +03:00
857308d1e8 ci : trigger CI for drafts, but not most PR actions (#1125) master-857308d 2023-04-22 16:12:29 +03:00
c50b628810 Fix CI: ARM NEON, quantization unit tests, editorconfig (#1122) master-c50b628 2023-04-22 10:54:13 +00:00
5f939498d5 ggml : unit test for quantization functions (#953)
* Unit test for quantization functions

Use the ggml_internal_get_quantize_fn function to loop through all
quantization formats and run a sanity check on the result.

Also add a microbenchmark that times these functions directly without
running the rest of the GGML graph.

* test-quantize-fns: CI fixes

Fix issues uncovered in CI
 - need to use sizes divisible by 32*8 for loop unrolling
 - use intrinsic header that should work on Mac

* test-quantize: remove

Per PR comment, subsumed by test-quantize-fns

* test-quantize: fix for q8_0 intermediates
2023-04-22 12:10:39 +03:00
36b4f7e064 llama : print timings on ctrl+c exit (#1021)
* print timings on ctrl+c exit

* remove redundant free memory call.

* add global pointer to ctx.
master-36b4f7e
2023-04-22 11:56:35 +03:00
10f19c1121 llama : have n_batch default to 512 (#1091)
* set default n_batch to 512 when using BLAS

* spacing

* alternate implementation of setting different n_batch for BLAS

* set n_batch to 512 for all cases
master-10f19c1
2023-04-22 11:27:05 +03:00
7e312f165c cmake : fix build under Windows when enable BUILD_SHARED_LIBS (#1100)
* Fix build under Windows when enable BUILD_SHARED_LIBS

* Make AVX512 test on Windows to build the shared libs
master-7e312f1
2023-04-22 11:18:20 +03:00
872c365a91 ggml : fix AVX build + update to new Q8_0 format master-872c365 2023-04-22 11:08:12 +03:00
955ef9a5d5 ggml : alternative Q4_3 implementation using modified Q8_0 (#1109)
* ggml : prefer vzip to vuzp

This way we always use the same type of instruction across all quantizations

* ggml : alternative Q4_3 implementation using modified Q8_0

* ggml : fix Q4_3 scalar imlpementation

* ggml : slight improvement of Q4_3 - no need for loop unrolling

* ggml : fix AVX paths for Q8_0 quantization
2023-04-22 10:55:35 +03:00
c5aa5e5777 ggml : AVX2 optimization for vec_dot_q4_3_q8_0 and refactoring (#1099)
* AVX2 optimization for vec_dot_q4_3_q8_0 and refactoring

* finish AVX vectorization of quantize_row_q8_0

* Rename hsum_int_8 to hsum_i32_8
master-c5aa5e5
2023-04-22 10:37:05 +03:00
e9a9cb0c54 examples : Improve Alpaca Default Repeat Penalty: Better Match Alpaca.cpp Experience (#1107)
* Moving parameters to separate lines for readability.

* Increasing repeate_penalty to 1.1 to make alpaca more usable by default.

* Adding trailing newline.
2023-04-22 09:54:33 +03:00
b6e7f9b09e llama : add api for getting/setting the complete state: rng, logits, embedding and kv_cache (#1105)
* reserve correct size for logits

* add functions to get and set the whole llama state:

including rng, logits, embedding and kv_cache

* remove unused variables

* remove trailing whitespace

* fix comment
master-b6e7f9b
2023-04-22 09:21:32 +03:00
50cb666b8a Improve cuBLAS performance by using a memory pool (#1094)
* Improve cuBLAS performance by using a memory pool

* Move cuda specific definitions to ggml-cuda.h/cu

* Add CXX flags to nvcc

* Change memory pool synchronization mechanism to a spin lock
General code cleanup
master-50cb666
2023-04-21 21:59:17 +02:00
25d7abbd1f llama : fixed rlimit error message (#888) master-25d7abb 2023-04-21 21:48:06 +03:00
018f2279f5 cmake : link threads publicly to ggml (#1042)
* fix: ld link test-tokenizer-0 error

```
cmake3 --build . --config Release
[  5%] Built target ggml
[ 16%] Built target llama
[ 22%] Linking CXX executable ../bin/test-tokenizer-0
../libllama.a(ggml.c.o):在函数‘ggml_graph_compute’中:
ggml.c:(.text+0xf2db):对‘pthread_create’未定义的引用
ggml.c:(.text+0xf9d4):对‘pthread_join’未定义的引用
collect2: error: ld returned 1 exit status
gmake[2]: *** [bin/test-tokenizer-0] 错误 1
gmake[1]: *** [tests/CMakeFiles/test-tokenizer-0.dir/all] 错误 2
gmake: *** [all] 错误 2
```

* Update CMakeLists.txt

* Update CMakeLists.txt

* Update CMakeLists.txt
master-018f227
2023-04-21 21:27:06 +03:00
9411288271 main : evaluate tokens in batches after swapping context (#1014)
* examples : evaluate tokens in batches after swapping context

* Update examples/main/main.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
master-9411288
2023-04-21 21:18:09 +03:00
8687c1f258 llama : remember and restore kv cache data pointers (#1104)
because their value is stored in buf and overwritten by memcpy
master-8687c1f
2023-04-21 18:25:21 +03:00
1bfc153e2f ggml : a faster version for Q4_1 x Q8_0 dot products (#1083)
* A faster version for Q4_1 x Q8_0 dot products

The idea nehind being that Q8_0 quantized
values get used many times in the matrix multiplications
where they are involved. In the current implementations,
when we are evaluating the dot products, we need to compute
the sum of the quants in the Q8_0 vector, so the same
operation is repeated many times. Here we pre-compute
the sum during Q8_0 quantization, store it in the
now modified block_q8_0 struct, and then reuse this
result in the subsequent dot products.

In a synthetic benchmark (just compute a bunch of dot
products), this change speeds up the Q4_1 * Q8_0 dot
product by 80%, making the performance identical to
Q4_0 * Q8_0.

In practical application, I see a ~15% gain in speed for
token prediction on M2, and ~5% gain on Ryzen 7950X.
The speed gain in the prompt evaluation is much bigger
(around 50%).

I have only done the change for the scalar version,
ARM_NEON, and AVX2, so we still need an AVX implementation.

* Cleaning up

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
master-1bfc153
2023-04-21 18:18:26 +03:00
3d59769c3b Show perplexity ETA in hours and minutes (#1096) master-3d59769 2023-04-21 14:57:57 +02:00