* graph : make mla compatible with FA
* metal : add exp FA kernels for DeepSeek models
ggml-ci
* llama : minor naming updates
ggml-ci
* ggml : disable FA for DS head sizes
* tests : add FA tests for MLA shapes
ggml-ci
* Merged using squash to remove all noise commit messages
* Force flash attention off for `LLM_ARCH_DEEPSEEK2` - embedding too large
* Removed 3 conts (2x RoPE and 1x RMS-norm)
* Changed to use `<cmath>` instead of `<math.h>`
* Reverted removal of the 3 conts
* Used `reshape` in `llm_graph_context::build_attn_mha()`
* Use `k_pe = ggml_reshape`
* Removed the 3 conts again
* Removed the 3D views of `wk_b` and `wv_b`, and just save and 3D in GGUF
* Removed MQA optimisation from `build_attn_mha()` as no gains now
* Simplified `is_mla` branch in `llm_build_deepseek2()`
* Removed `build_attn_mla` and added `nullptr` to all `build_atnn` calls
* Fixed call to `build_attn` in `llm_build_t5_enc`
* ggml : FA with different K, V head sizes (CPU)
ggml-ci
* metal : add FA with HS=192
* metal : extend FA to support different K and V head sizes
ggml-ci
* metal : add FA vector kernels for heads K 192 and V 128
ggml-ci
* ggml : restrict op on other backends to equal head sizes
ggml-ci
* metal : optimize FA-vec kernel
ggml-ci
* metal : FA remove mq registers
* metal : improve MoE mul_mat_id condition
ggml-ci
* metal : fix comments + remove unnecessary addition
ggml-ci
* metal : avoid too much shared memory usage with mul_mat_id
ggml-ci
* graph : normalize Q, K, V shapes and add comments
ggml-ci
* context : synchronize before getting cross attention data
* model : fix command-r attention norm check
* llama : introduce llama_set_warmup() API call that controls warmup mode; use all MoE experts during warmup
* common : use new API to enable warmup mode during model warmup
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>