CUDA: set_rows + cpy.cu refactor (#14712)

This commit is contained in:
Aman Gupta
2025-07-18 14:54:18 +08:00
committed by GitHub
parent 8f974bc1e9
commit f9a31eea06
4 changed files with 396 additions and 244 deletions

View File

@ -0,0 +1,251 @@
#pragma once
#include "ggml-common.h"
static __device__ __forceinline__ void convert_f32_f32(const float * src, float * dst) {
*dst = *src;
}
static __device__ __forceinline__ void convert_f32_f16(const float * src, half * dst) {
*dst = __float2half(*src);
}
static __device__ __forceinline__ void convert_f32_bf16(const float * src, nv_bfloat16 * dst) {
*dst = *src;
}
static __device__ __forceinline__ void convert_f16_f16(const half * src, half * dst) {
*dst = *src;
}
static __device__ __forceinline__ void convert_f16_f32(const half * src, float * dst) {
*dst = *src;
}
static __device__ __forceinline__ int best_index_int8(int n, const int8_t * val, float x) {
if (x <= val[0]) return 0;
if (x >= val[n-1]) return n-1;
int ml = 0, mu = n-1;
while (mu-ml > 1) {
int mav = (ml+mu)/2;
if (x < val[mav]) mu = mav; else ml = mav;
}
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
}
static __device__ void quantize_f32_q4_0_block(const float * __restrict__ x, block_q4_0 * __restrict__ y) {
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK4_0; ++j) {
const float v = x[j];
if (amax < fabsf(v)) {
amax = fabsf(v);
vmax = v;
}
}
const float d = vmax / -8;
const float id = d ? 1.0f/d : 0.0f;
y->d = d;
for (int j = 0; j < QK4_0/2; ++j) {
const float x0 = x[0 + j]*id;
const float x1 = x[QK4_0/2 + j]*id;
const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f));
const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f));
y->qs[j] = xi0;
y->qs[j] |= xi1 << 4;
}
}
static __device__ void quantize_f32_q4_1_block(const float * __restrict__ x, block_q4_1 * __restrict__ y) {
float vmin = FLT_MAX;
float vmax = -FLT_MAX;
for (int j = 0; j < QK4_1; ++j) {
const float v = x[j];
if (v < vmin) vmin = v;
if (v > vmax) vmax = v;
}
const float d = (vmax - vmin) / ((1 << 4) - 1);
const float id = d ? 1.0f/d : 0.0f;
y->dm.x = d;
y->dm.y = vmin;
for (int j = 0; j < QK4_1/2; ++j) {
const float x0 = (x[0 + j] - vmin)*id;
const float x1 = (x[QK4_1/2 + j] - vmin)*id;
const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f));
const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f));
y->qs[j] = xi0;
y->qs[j] |= xi1 << 4;
}
}
static __device__ void quantize_f32_q5_0_block(const float * __restrict__ x, block_q5_0 * __restrict__ y) {
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK5_0; ++j) {
const float v = x[j];
if (amax < fabsf(v)) {
amax = fabsf(v);
vmax = v;
}
}
const float d = vmax / -16;
const float id = d ? 1.0f/d : 0.0f;
y->d = d;
uint32_t qh = 0;
for (int j = 0; j < QK5_0/2; ++j) {
const float x0 = x[0 + j]*id;
const float x1 = x[QK5_0/2 + j]*id;
const uint8_t xi0 = min(31, (int8_t)(x0 + 16.5f));
const uint8_t xi1 = min(31, (int8_t)(x1 + 16.5f));
y->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
}
memcpy(y->qh, &qh, sizeof(qh));
}
static __device__ void quantize_f32_q5_1_block(const float * __restrict__ x, block_q5_1 * __restrict__ y) {
float min = x[0];
float max = x[0];
for (int j = 1; j < QK5_1; ++j) {
const float v = x[j];
min = v < min ? v : min;
max = v > max ? v : max;
}
const float d = (max - min) / 31;
const float id = d ? 1.0f/d : 0.0f;
y->dm.x = d;
y->dm.y = min;
uint32_t qh = 0;
for (int j = 0; j < QK5_1/2; ++j) {
const float x0 = (x[0 + j] - min)*id;
const float x1 = (x[QK5_1/2 + j] - min)*id;
const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
y->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
}
memcpy(y->qh, &qh, sizeof(qh));
}
static __device__ void quantize_f32_q8_0_block(const float * __restrict__ x, block_q8_0 * __restrict__ y) {
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
const float v = x[j];
amax = fmaxf(amax, fabsf(v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
y->d = d;
for (int j = 0; j < QK8_0; ++j) {
const float x0 = x[j]*id;
y->qs[j] = roundf(x0);
}
}
static __device__ void quantize_f32_iq4_nl_block(const float * __restrict__ x, block_iq4_nl * __restrict__ y) {
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK4_NL; ++j) {
const float v = x[j];
if (amax < fabsf(v)) {
amax = fabsf(v);
vmax = v;
}
}
float d = vmax / kvalues_iq4nl[0];
const float id = d ? 1.0f/d : 0.0f;
float sumqx = 0, sumq2 = 0;
for (int j = 0; j < QK4_NL/2; ++j) {
const float x0 = x[0 + j]*id;
const float x1 = x[QK4_NL/2 + j]*id;
const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl, x0);
const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl, x1);
y->qs[j] = xi0 | (xi1 << 4);
const float v0 = kvalues_iq4nl[xi0];
const float v1 = kvalues_iq4nl[xi1];
const float w0 = x[0 + j]*x[0 + j];
const float w1 = x[QK4_NL/2 + j]*x[QK4_NL/2 + j];
sumqx += w0*v0*x[j] + w1*v1*x[QK4_NL/2 + j];
sumq2 += w0*v0*v0 + w1*v1*v1;
}
y->d = sumq2 > 0 ? sumqx/sumq2 : d;
}
// Wrapper functions for cpy.cu compatibility
static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
quantize_f32_q4_0_block((const float *)cxi, (block_q4_0 *)cdsti);
}
static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
quantize_f32_q4_1_block((const float *)cxi, (block_q4_1 *)cdsti);
}
static __device__ void cpy_blck_f32_q5_0(const char * cxi, char * cdsti) {
quantize_f32_q5_0_block((const float *)cxi, (block_q5_0 *)cdsti);
}
static __device__ void cpy_blck_f32_q5_1(const char * cxi, char * cdsti) {
quantize_f32_q5_1_block((const float *)cxi, (block_q5_1 *)cdsti);
}
static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
quantize_f32_q8_0_block((const float *)cxi, (block_q8_0 *)cdsti);
}
static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
quantize_f32_iq4_nl_block((const float *)cxi, (block_iq4_nl *)cdsti);
}
static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
convert_f32_f32((const float *)cxi, (float *)cdsti);
}
static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
convert_f32_f16((const float *)cxi, (half *)cdsti);
}
static __device__ void cpy_1_f32_bf16(const char * cxi, char * cdsti) {
convert_f32_bf16((const float *)cxi, (nv_bfloat16 *)cdsti);
}
static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
convert_f16_f16((const half *)cxi, (half *)cdsti);
}
static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
convert_f16_f32((const half *)cxi, (float *)cdsti);
}

View File

@ -1,46 +1,12 @@
#include "cpy.cuh" #include "cpy.cuh"
#include "dequantize.cuh" #include "dequantize.cuh"
#include "cpy-utils.cuh"
#ifdef GGML_USE_MUSA #ifdef GGML_USE_MUSA
#include "ggml-musa/mudnn.cuh" #include "ggml-musa/mudnn.cuh"
#endif // GGML_USE_MUSA #endif // GGML_USE_MUSA
typedef void (*cpy_kernel_t)(const char * cx, char * cdst); typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
float * dsti = (float *) cdsti;
*dsti = *xi;
}
static __device__ void cpy_1_f32_bf16(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
nv_bfloat16 * dsti = (nv_bfloat16 *) cdsti;
*dsti = *xi;
}
static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
half * dsti = (half *) cdsti;
*dsti = __float2half(*xi);
}
static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
const half * xi = (const half *) cxi;
half * dsti = (half *) cdsti;
*dsti = *xi;
}
static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
const half * xi = (const half *) cxi;
float * dsti = (float *) cdsti;
*dsti = *xi;
}
template <cpy_kernel_t cpy_1> template <cpy_kernel_t cpy_1>
static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const int ne, static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
@ -71,29 +37,6 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const in
cpy_1(cx + x_offset, cdst + dst_offset); cpy_1(cx + x_offset, cdst + dst_offset);
} }
static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q8_0 * dsti = (block_q8_0 *) cdsti;
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
const float v = xi[j];
amax = fmaxf(amax, fabsf(v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
dsti->d = d;
for (int j = 0; j < QK8_0; ++j) {
const float x0 = xi[j]*id;
dsti->qs[j] = roundf(x0);
}
}
static __device__ void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) { static __device__ void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) {
float * cdstf = (float *)(cdsti); float * cdstf = (float *)(cdsti);
@ -106,139 +49,6 @@ static __device__ void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) {
} }
} }
static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q4_0 * dsti = (block_q4_0 *) cdsti;
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK4_0; ++j) {
const float v = xi[j];
if (amax < fabsf(v)) {
amax = fabsf(v);
vmax = v;
}
}
const float d = vmax / -8;
const float id = d ? 1.0f/d : 0.0f;
dsti->d = d;
for (int j = 0; j < QK4_0/2; ++j) {
const float x0 = xi[0 + j]*id;
const float x1 = xi[QK4_0/2 + j]*id;
const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f));
const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f));
dsti->qs[j] = xi0;
dsti->qs[j] |= xi1 << 4;
}
}
static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q4_1 * dsti = (block_q4_1 *) cdsti;
float vmin = FLT_MAX;
float vmax = -FLT_MAX;
for (int j = 0; j < QK4_1; ++j) {
const float v = xi[j];
if (v < vmin) vmin = v;
if (v > vmax) vmax = v;
}
const float d = (vmax - vmin) / ((1 << 4) - 1);
const float id = d ? 1.0f/d : 0.0f;
dsti->dm.x = d;
dsti->dm.y = vmin;
for (int j = 0; j < QK4_1/2; ++j) {
const float x0 = (xi[0 + j] - vmin)*id;
const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f));
const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f));
dsti->qs[j] = xi0;
dsti->qs[j] |= xi1 << 4;
}
}
static __device__ void cpy_blck_f32_q5_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q5_0 * dsti = (block_q5_0 *) cdsti;
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK5_0; ++j) {
const float v = xi[j];
if (amax < fabsf(v)) {
amax = fabsf(v);
vmax = v;
}
}
const float d = vmax / -16;
const float id = d ? 1.0f/d : 0.0f;
dsti->d = d;
uint32_t qh = 0;
for (int j = 0; j < QK5_0/2; ++j) {
const float x0 = xi[0 + j]*id;
const float x1 = xi[QK5_0/2 + j]*id;
const uint8_t xi0 = min(31, (int8_t)(x0 + 16.5f));
const uint8_t xi1 = min(31, (int8_t)(x1 + 16.5f));
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
}
memcpy(dsti->qh, &qh, sizeof(qh));
}
static __device__ void cpy_blck_f32_q5_1(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q5_1 * dsti = (block_q5_1 *) cdsti;
float min = xi[0];
float max = xi[0];
for (int j = 1; j < QK5_1; ++j) {
const float v = xi[j];
min = v < min ? v : min;
max = v > max ? v : max;
}
const float d = (max - min) / 31;
const float id = d ? 1.0f/d : 0.0f;
dsti->dm.x = d;
dsti->dm.y = min;
uint32_t qh = 0;
for (int j = 0; j < QK5_1/2; ++j) {
const float x0 = (xi[0 + j] - min)*id;
const float x1 = (xi[QK5_1/2 + j] - min)*id;
const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
}
memcpy(dsti->qh, &qh, sizeof(qh));
}
template<dequantize_kernel_t dequant, int qk> template<dequantize_kernel_t dequant, int qk>
static __device__ void cpy_blck_q_f32(const char * cxi, char * cdsti) { static __device__ void cpy_blck_q_f32(const char * cxi, char * cdsti) {
float * cdstf = (float *)(cdsti); float * cdstf = (float *)(cdsti);
@ -252,53 +62,6 @@ static __device__ void cpy_blck_q_f32(const char * cxi, char * cdsti) {
} }
} }
static __device__ __forceinline__ int best_index_int8(int n, const int8_t * val, float x) {
if (x <= val[0]) return 0;
if (x >= val[n-1]) return n-1;
int ml = 0, mu = n-1;
while (mu-ml > 1) {
int mav = (ml+mu)/2;
if (x < val[mav]) mu = mav; else ml = mav;
}
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
}
static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_iq4_nl * dsti = (block_iq4_nl *) cdsti;
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK4_NL; ++j) {
const float v = xi[j];
if (amax < fabsf(v)) {
amax = fabsf(v);
vmax = v;
}
}
float d = vmax / kvalues_iq4nl[0];
const float id = d ? 1.0f/d : 0.0f;
float sumqx = 0, sumq2 = 0;
for (int j = 0; j < QK4_NL/2; ++j) {
const float x0 = xi[0 + j]*id;
const float x1 = xi[QK4_NL/2 + j]*id;
const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl, x0);
const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl, x1);
dsti->qs[j] = xi0 | (xi1 << 4);
const float v0 = kvalues_iq4nl[xi0];
const float v1 = kvalues_iq4nl[xi1];
const float w0 = xi[0 + j]*xi[0 + j];
const float w1 = xi[QK4_NL/2 + j]*xi[QK4_NL/2 + j];
sumqx += w0*v0*xi[j] + w1*v1*xi[QK4_NL/2 + j];
sumq2 += w0*v0*v0 + w1*v1*v1;
}
dsti->d = sumq2 > 0 ? sumqx/sumq2 : d;
}
template <cpy_kernel_t cpy_blck, int qk> template <cpy_kernel_t cpy_blck, int qk>
static __global__ void cpy_f32_q(const char * cx, char * cdst_direct, const int ne, static __global__ void cpy_f32_q(const char * cx, char * cdst_direct, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,

View File

@ -3226,8 +3226,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
} break; } break;
case GGML_OP_SET_ROWS: case GGML_OP_SET_ROWS:
{ {
#pragma message("TODO: implement Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)") return (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_BF16 ||
return (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_BF16) && op->type == GGML_TYPE_Q4_0 || op->type == GGML_TYPE_Q4_1 || op->type == GGML_TYPE_Q5_0 ||
op->type == GGML_TYPE_Q5_1 || op->type == GGML_TYPE_Q8_0 || op->type == GGML_TYPE_IQ4_NL) &&
op->src[0]->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 &&
op->src[1]->type == GGML_TYPE_I64; op->src[1]->type == GGML_TYPE_I64;
} break; } break;

View File

@ -1,4 +1,5 @@
#include "set-rows.cuh" #include "set-rows.cuh"
#include "cpy-utils.cuh"
typedef void (*set_rows_kernel_t)(const char * src, char * dst); typedef void (*set_rows_kernel_t)(const char * src, char * dst);
@ -10,17 +11,93 @@ __device__ void set_rows_1(const src_t * src_f, dst_t * dst_f) {
template<> template<>
__device__ __forceinline__ void set_rows_1<float, half>(const float * src_f, half * dst_h) { __device__ __forceinline__ void set_rows_1<float, half>(const float * src_f, half * dst_h) {
*dst_h = __float2half(*src_f); convert_f32_f16(src_f, dst_h);
} }
template<> template<>
__device__ __forceinline__ void set_rows_1<float, nv_bfloat16>(const float * src_f, nv_bfloat16 * dst_b) { __device__ __forceinline__ void set_rows_1<float, nv_bfloat16>(const float * src_f, nv_bfloat16 * dst_b) {
*dst_b = *src_f; convert_f32_bf16(src_f, dst_b);
} }
template<> template<>
__device__ __forceinline__ void set_rows_1<float, float>(const float * src_f, float * dst_f) { __device__ __forceinline__ void set_rows_1<float, float>(const float * src_f, float * dst_f) {
*dst_f = *src_f; convert_f32_f32(src_f, dst_f);
}
// Generic quantized set_rows kernel template
template<typename block_type, int qk, void (*quantize_func)(const float*, block_type*)>
static __global__ void k_set_rows_quant(
const float * __restrict__ src0, const int64_t * __restrict__ src1, block_type * __restrict__ dst,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
const int64_t s01, const int64_t s02, const int64_t s03,
const int64_t s10, const int64_t s11, const int64_t s12,
const int64_t s1, const int64_t s2, const int64_t s3) {
const int64_t i = int64_t(blockDim.x) * blockIdx.x + threadIdx.x;
const int64_t ne_total = (ne00 * ne01 * ne02 * ne03) / qk;
if (i >= ne_total) {
return;
}
const int64_t i_base = i * qk;
const int64_t i03 = i_base / (ne00 * ne01 * ne02);
const int64_t i02 = (i_base - i03 * ne00 * ne01 * ne02) / (ne00 * ne01);
const int64_t i01 = (i_base - i03 * ne00 * ne01 * ne02 - i02 * ne00 * ne01) / ne00;
const int64_t i00 = i_base - i03 * ne00 * ne01 * ne02 - i02 * ne00 * ne01 - i01 * ne00;
const int64_t i12 = i03 % ne12;
const int64_t i11 = i02 % ne11;
const int64_t i10 = i01;
const int64_t dst_row = *(src1 + i10*s10 + i11*s11 + i12*s12);
const float * src0_row = src0 + i01*s01 + i02*s02 + i03*s03;
block_type * dst_row_ptr = dst + (dst_row*s1 + i02*s2 + i03*s3) / sizeof(block_type);
const float * src_block = src0_row + i00;
block_type * dst_block = dst_row_ptr + i00 / qk;
quantize_func(src_block, dst_block);
}
// Template dispatch function for quantized set_rows
template<typename block_type, int qk, void (*quantize_func)(const float*, block_type*)>
static void set_rows_cuda_quant(
const float * src0_d, const int64_t * src1_d, block_type * dst_d,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
const size_t nb01, const size_t nb02, const size_t nb03,
const size_t nb10, const size_t nb11, const size_t nb12,
const size_t nb1, const size_t nb2, const size_t nb3,
cudaStream_t stream) {
GGML_ASSERT(ne00 % qk == 0);
const int64_t ne_total = (ne00 * ne01 * ne02 * ne03) / qk;
const int num_blocks = (ne_total + CUDA_SET_ROWS_BLOCK_SIZE - 1) / CUDA_SET_ROWS_BLOCK_SIZE;
const dim3 block_size(CUDA_SET_ROWS_BLOCK_SIZE);
const dim3 grid_size(num_blocks);
const int64_t s01 = nb01/sizeof(float);
const int64_t s02 = nb02/sizeof(float);
const int64_t s03 = nb03/sizeof(float);
const int64_t s10 = nb10/sizeof(int64_t);
const int64_t s11 = nb11/sizeof(int64_t);
const int64_t s12 = nb12/sizeof(int64_t);
const int64_t s1 = nb1;
const int64_t s2 = nb2;
const int64_t s3 = nb3;
if (ne_total > 0) {
k_set_rows_quant<block_type, qk, quantize_func><<<grid_size, block_size, 0, stream>>>(
src0_d, src1_d, dst_d,
ne00, ne01, ne02, ne03,
ne10, ne11, ne12, ne13,
s01, s02, s03,
s10, s11, s12,
s1, s2, s3);
}
} }
template<typename src_t, typename dst_t> template<typename src_t, typename dst_t>
@ -145,7 +222,67 @@ void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
nb1, nb2, nb3, nb1, nb2, nb3,
stream stream
); );
} else if (dst->type == GGML_TYPE_Q4_0) {
set_rows_cuda_quant<block_q4_0, QK4_0, quantize_f32_q4_0_block>(
src0_d, src1_d, (block_q4_0*)dst->data,
ne00, ne01, ne02, ne03,
ne10, ne11, ne12, ne13,
nb01, nb02, nb03,
nb10, nb11, nb12,
nb1, nb2, nb3,
stream
);
} else if (dst->type == GGML_TYPE_Q4_1) {
set_rows_cuda_quant<block_q4_1, QK4_1, quantize_f32_q4_1_block>(
src0_d, src1_d, (block_q4_1*)dst->data,
ne00, ne01, ne02, ne03,
ne10, ne11, ne12, ne13,
nb01, nb02, nb03,
nb10, nb11, nb12,
nb1, nb2, nb3,
stream
);
} else if (dst->type == GGML_TYPE_Q5_0) {
set_rows_cuda_quant<block_q5_0, QK5_0, quantize_f32_q5_0_block>(
src0_d, src1_d, (block_q5_0*)dst->data,
ne00, ne01, ne02, ne03,
ne10, ne11, ne12, ne13,
nb01, nb02, nb03,
nb10, nb11, nb12,
nb1, nb2, nb3,
stream
);
} else if (dst->type == GGML_TYPE_Q5_1) {
set_rows_cuda_quant<block_q5_1, QK5_1, quantize_f32_q5_1_block>(
src0_d, src1_d, (block_q5_1*)dst->data,
ne00, ne01, ne02, ne03,
ne10, ne11, ne12, ne13,
nb01, nb02, nb03,
nb10, nb11, nb12,
nb1, nb2, nb3,
stream
);
} else if (dst->type == GGML_TYPE_Q8_0) {
set_rows_cuda_quant<block_q8_0, QK8_0, quantize_f32_q8_0_block>(
src0_d, src1_d, (block_q8_0*)dst->data,
ne00, ne01, ne02, ne03,
ne10, ne11, ne12, ne13,
nb01, nb02, nb03,
nb10, nb11, nb12,
nb1, nb2, nb3,
stream
);
} else if (dst->type == GGML_TYPE_IQ4_NL) {
set_rows_cuda_quant<block_iq4_nl, QK4_NL, quantize_f32_iq4_nl_block>(
src0_d, src1_d, (block_iq4_nl*)dst->data,
ne00, ne01, ne02, ne03,
ne10, ne11, ne12, ne13,
nb01, nb02, nb03,
nb10, nb11, nb12,
nb1, nb2, nb3,
stream
);
} else { } else {
GGML_ABORT("unsupported type"); GGML_ABORT("unsupported type %s", ggml_type_name(dst->type));
} }
} }