mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-28 12:25:03 +00:00
adapt common
This commit is contained in:
@ -1047,7 +1047,8 @@ struct common_init_result common_init_from_params(common_params & params) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
if (llama_model_has_encoder(model)) {
|
if (llama_model_has_encoder(model)) {
|
||||||
llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size()));
|
llama_batch_ext_ptr batch(llama_batch_ext_init_from_text(tmp.data(), tmp.size(), 0, 0));
|
||||||
|
llama_encode_ext(lctx, batch.get());
|
||||||
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
|
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
|
||||||
if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
|
if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
|
||||||
decoder_start_token_id = bos;
|
decoder_start_token_id = bos;
|
||||||
@ -1056,7 +1057,8 @@ struct common_init_result common_init_from_params(common_params & params) {
|
|||||||
tmp.push_back(decoder_start_token_id);
|
tmp.push_back(decoder_start_token_id);
|
||||||
}
|
}
|
||||||
if (llama_model_has_decoder(model)) {
|
if (llama_model_has_decoder(model)) {
|
||||||
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
|
llama_batch_ext_ptr batch(llama_batch_ext_init_from_text(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
|
||||||
|
llama_encode_ext(lctx, batch.get());
|
||||||
}
|
}
|
||||||
llama_kv_cache_clear(lctx);
|
llama_kv_cache_clear(lctx);
|
||||||
llama_synchronize(lctx);
|
llama_synchronize(lctx);
|
||||||
|
@ -13,7 +13,7 @@ struct common_speculative {
|
|||||||
struct llama_context * ctx;
|
struct llama_context * ctx;
|
||||||
struct common_sampler * smpl;
|
struct common_sampler * smpl;
|
||||||
|
|
||||||
llama_batch batch;
|
llama_batch_ext_ptr batch;
|
||||||
llama_tokens prompt;
|
llama_tokens prompt;
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -22,7 +22,7 @@ struct common_speculative * common_speculative_init(
|
|||||||
auto * result = new common_speculative {
|
auto * result = new common_speculative {
|
||||||
/* .ctx = */ ctx_dft,
|
/* .ctx = */ ctx_dft,
|
||||||
/* .smpl = */ nullptr,
|
/* .smpl = */ nullptr,
|
||||||
/* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
|
/* .batch = */ llama_batch_ext_ptr(llama_batch_ext_init(llama_n_batch(ctx_dft), 1)),
|
||||||
/* .prompt = */ {},
|
/* .prompt = */ {},
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -68,8 +68,6 @@ void common_speculative_free(struct common_speculative * spec) {
|
|||||||
|
|
||||||
common_sampler_free(spec->smpl);
|
common_sampler_free(spec->smpl);
|
||||||
|
|
||||||
llama_batch_free(spec->batch);
|
|
||||||
|
|
||||||
delete spec;
|
delete spec;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -150,6 +148,8 @@ llama_tokens common_speculative_gen_draft(
|
|||||||
|
|
||||||
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
|
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
|
||||||
|
|
||||||
|
const llama_seq_id seq_id = 0;
|
||||||
|
|
||||||
// reuse as much as possible from the old draft context
|
// reuse as much as possible from the old draft context
|
||||||
// ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
|
// ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
|
||||||
for (int i = 0; i < (int) prompt.size(); ++i) {
|
for (int i = 0; i < (int) prompt.size(); ++i) {
|
||||||
@ -205,40 +205,40 @@ llama_tokens common_speculative_gen_draft(
|
|||||||
}
|
}
|
||||||
|
|
||||||
// prepare a batch to evaluate any new tokens in the prompt
|
// prepare a batch to evaluate any new tokens in the prompt
|
||||||
common_batch_clear(batch);
|
llama_batch_ext_clear(batch.get());
|
||||||
|
|
||||||
for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) {
|
for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) {
|
||||||
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
|
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
|
||||||
common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
|
llama_batch_ext_add_text_token(batch.get(), prompt_tgt[i], i - i_start, &seq_id, 1, false);
|
||||||
|
|
||||||
prompt.push_back(prompt_tgt[i]);
|
prompt.push_back(prompt_tgt[i]);
|
||||||
}
|
}
|
||||||
|
|
||||||
// we should rarely end-up here during normal decoding
|
// we should rarely end-up here during normal decoding
|
||||||
if (batch.n_tokens > 0) {
|
if (llama_batch_ext_get_n_tokens(batch.get()) > 0) {
|
||||||
//LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
|
//LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
|
||||||
|
|
||||||
llama_decode(ctx, batch);
|
llama_decode_ext(ctx, batch.get());
|
||||||
}
|
}
|
||||||
|
|
||||||
const llama_pos n_past = prompt.size();
|
const llama_pos n_past = prompt.size();
|
||||||
|
|
||||||
LOG_DBG("%s: n_past = %d\n", __func__, n_past);
|
LOG_DBG("%s: n_past = %d\n", __func__, n_past);
|
||||||
|
|
||||||
common_batch_clear(batch);
|
llama_batch_ext_clear(batch.get());
|
||||||
common_batch_add (batch, id_last, n_past, { 0 }, true);
|
llama_batch_ext_add_text_token(batch.get(), id_last, n_past, &seq_id, 1, true);
|
||||||
|
|
||||||
prompt.push_back(id_last);
|
prompt.push_back(id_last);
|
||||||
|
|
||||||
//LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str());
|
//LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str());
|
||||||
|
|
||||||
llama_decode(ctx, batch);
|
llama_decode_ext(ctx, batch.get());
|
||||||
|
|
||||||
common_sampler_reset(smpl);
|
common_sampler_reset(smpl);
|
||||||
|
|
||||||
// sample n_draft tokens from the draft model
|
// sample n_draft tokens from the draft model
|
||||||
for (int i = 0; i < params.n_draft; ++i) {
|
for (int i = 0; i < params.n_draft; ++i) {
|
||||||
common_batch_clear(batch);
|
llama_batch_ext_clear(batch.get());
|
||||||
|
|
||||||
common_sampler_sample(smpl, ctx, 0, true);
|
common_sampler_sample(smpl, ctx, 0, true);
|
||||||
|
|
||||||
@ -265,10 +265,10 @@ llama_tokens common_speculative_gen_draft(
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
|
llama_batch_ext_add_text_token(batch.get(), id, n_past + i + 1, &seq_id, 1, true);
|
||||||
|
|
||||||
// evaluate the drafted tokens on the draft model
|
// evaluate the drafted tokens on the draft model
|
||||||
llama_decode(ctx, batch);
|
llama_decode_ext(ctx, batch.get());
|
||||||
|
|
||||||
prompt.push_back(id);
|
prompt.push_back(id);
|
||||||
}
|
}
|
||||||
|
Reference in New Issue
Block a user