mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-07-30 06:03:37 -04:00
CANN: weight format to NZ for Ascend310P3 (#14407)
* weight format to nz for 310p * remove quant weight format to nz * clean code * fix * make the conditions for converting weights to NZ format consistent * clean code
This commit is contained in:
@@ -1785,8 +1785,27 @@ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx,
|
||||
size_t transpose_nb[] = {bcast_weight_nb[1], bcast_weight_nb[0],
|
||||
bcast_weight_nb[2], bcast_weight_nb[3],
|
||||
bcast_weight_nb[4], bcast_weight_nb[5]};
|
||||
aclTensor* acl_weight_tensor =
|
||||
ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, n_dims);
|
||||
aclTensor* acl_weight_tensor;
|
||||
|
||||
bool weightToNZ = false;
|
||||
#ifdef ASCEND_310P
|
||||
weightToNZ = (getenv("GGML_CANN_WEIGHT_NZ") != nullptr);
|
||||
#endif
|
||||
if (weightToNZ && is_matmul_weight(weight)) {
|
||||
int64_t acl_stride[2] = {1, transpose_ne[1]};
|
||||
|
||||
// Reverse ne.
|
||||
std::reverse(transpose_ne, transpose_ne + n_dims);
|
||||
|
||||
std::vector<int64_t> storageDims = {transpose_ne[0], transpose_ne[1]};
|
||||
|
||||
acl_weight_tensor = aclCreateTensor(
|
||||
transpose_ne, n_dims, ggml_cann_type_mapping(weight->type), acl_stride,
|
||||
0, ACL_FORMAT_FRACTAL_NZ, storageDims.data(), 2, weight->data);
|
||||
} else {
|
||||
acl_weight_tensor =
|
||||
ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, n_dims, ACL_FORMAT_ND);
|
||||
}
|
||||
aclTensor* acl_dst =
|
||||
ggml_cann_create_tensor(dst, bcast_dst_ne, bcast_dst_nb, n_dims);
|
||||
|
||||
|
@@ -23,6 +23,7 @@
|
||||
#ifndef CANN_ACLNN_OPS
|
||||
#define CANN_ACLNN_OPS
|
||||
|
||||
#include <unordered_set>
|
||||
#include <functional>
|
||||
#include <aclnnop/aclnn_abs.h>
|
||||
#include <aclnnop/aclnn_neg.h>
|
||||
@@ -1020,6 +1021,37 @@ inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffe
|
||||
*/
|
||||
void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Check whether a tensor is a weight tensor for matrix multiplication.
|
||||
*
|
||||
* @details Checks whether the given tensor serves as weight parameters in matrix multiplication operations,
|
||||
* typically within neural network layers. The function maintains a static set of canonical weight
|
||||
* naming suffixes from Transformer-based architectures. Uses substring matching to identify weight
|
||||
* tensors even with hierarchical naming patterns.
|
||||
*
|
||||
* @param tensor Pointer to the target ggml_tensor object (const-qualified).
|
||||
*/
|
||||
static bool is_matmul_weight(const ggml_tensor* tensor) {
|
||||
std::string name = ggml_get_name(tensor);
|
||||
static const std::unordered_set<std::string> weight_suffixes{
|
||||
"output.weight",
|
||||
"attn_q.weight",
|
||||
"attn_k.weight",
|
||||
"attn_v.weight",
|
||||
"attn_output.weight",
|
||||
"ffn_gate.weight",
|
||||
"ffn_up.weight",
|
||||
"ffn_down.weight"
|
||||
};
|
||||
|
||||
for (const auto& suffix : weight_suffixes) {
|
||||
if (name.find(suffix) != std::string::npos) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Applies a element-wise operation to two input tensors using the CANN
|
||||
* backend.
|
||||
|
@@ -24,6 +24,7 @@
|
||||
|
||||
#include <acl/acl.h>
|
||||
#include <stdarg.h>
|
||||
#include <aclnnop/aclnn_trans_matmul_weight.h>
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
@@ -1115,6 +1116,63 @@ static enum ggml_status ggml_backend_cann_buffer_init_tensor(
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static int CreateAclTensorWeight(const void *hostData, const std::vector<int64_t> &shape, void **deviceAddr,
|
||||
aclDataType dataType, aclTensor **tensor)
|
||||
{
|
||||
uint64_t size = 1;
|
||||
for (auto i : shape) {
|
||||
size *= i;
|
||||
}
|
||||
|
||||
const aclIntArray *mat2Size = aclCreateIntArray(shape.data(), shape.size());
|
||||
ACL_CHECK(aclnnCalculateMatmulWeightSizeV2(mat2Size, dataType, &size));
|
||||
|
||||
size *= sizeof(int16_t);
|
||||
|
||||
ACL_CHECK(aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
aclrtMemcpy(*deviceAddr, size, hostData, size, ACL_MEMCPY_HOST_TO_DEVICE);
|
||||
|
||||
std::vector<int64_t> strides(shape.size(), 1);
|
||||
for (int64_t i = shape.size() - 2; i >= 0; i--) {
|
||||
strides[i] = shape[i + 1] * strides[i + 1];
|
||||
}
|
||||
|
||||
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
|
||||
shape.data(), shape.size(), *deviceAddr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void weight_format_to_nz(ggml_tensor *tensor, const void *data, size_t offset) {
|
||||
aclrtStream stream;
|
||||
ACL_CHECK(aclrtCreateStream(&stream));
|
||||
|
||||
std::vector<int64_t> weightTransposedShape = {tensor->ne[1], tensor->ne[0]};
|
||||
void *weightTransposedDeviceAddr = nullptr;
|
||||
aclTensor *weightTransposed = nullptr;
|
||||
CreateAclTensorWeight(data, weightTransposedShape, &weightTransposedDeviceAddr,
|
||||
ggml_cann_type_mapping(tensor->type), &weightTransposed);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
void *workspaceAddr = nullptr;
|
||||
|
||||
// TransMatmulWeight
|
||||
ACL_CHECK(aclnnTransMatmulWeightGetWorkspaceSize(weightTransposed, &workspaceSize, &executor));
|
||||
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrTrans(nullptr, aclrtFree);
|
||||
if (workspaceSize > 0) {
|
||||
ACL_CHECK(aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
workspaceAddrPtrTrans.reset(workspaceAddr);
|
||||
}
|
||||
ACL_CHECK(aclnnTransMatmulWeight(workspaceAddr, workspaceSize, executor, stream));
|
||||
|
||||
size_t size = ggml_nelements(tensor) * ggml_element_size(tensor);
|
||||
|
||||
aclrtMemcpy((char *)tensor->data + offset, size,
|
||||
weightTransposedDeviceAddr, size, ACL_MEMCPY_HOST_TO_DEVICE);
|
||||
ACL_CHECK(aclDestroyTensor(weightTransposed));
|
||||
aclrtFree(weightTransposedDeviceAddr);
|
||||
}
|
||||
|
||||
// TODO: need handle tensor which has paddings.
|
||||
/**
|
||||
* @brief Set tensor data in a CANN buffer.
|
||||
@@ -1139,9 +1197,16 @@ static void ggml_backend_cann_buffer_set_tensor(
|
||||
// For acl, synchronous functions use this default stream.
|
||||
// Why aclrtSynchronizeDevice?
|
||||
|
||||
bool weightToNZ = false;
|
||||
#ifdef ASCEND_310P
|
||||
weightToNZ = (getenv("GGML_CANN_WEIGHT_NZ") != nullptr);
|
||||
#endif
|
||||
if (!need_transform(tensor->type)) {
|
||||
ACL_CHECK(aclrtMemcpy((char *)tensor->data + offset, size, data, size,
|
||||
ACL_MEMCPY_HOST_TO_DEVICE));
|
||||
if (weightToNZ && is_matmul_weight((const ggml_tensor*)tensor)) {
|
||||
weight_format_to_nz(tensor, data, offset);
|
||||
}
|
||||
} else {
|
||||
void *transform_buffer = malloc(size);
|
||||
ggml_backend_cann_transform(tensor, data, transform_buffer);
|
||||
|
Reference in New Issue
Block a user