mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-26 19:55:04 +00:00
clip : fix pixtral on some GPU backends (#13097)
* clip : fix pixtral on some GPU backends * refactor inp_raw set * rm outdated comment * fix dynamic size * add TODO
This commit is contained in:
@ -554,15 +554,15 @@ static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_im
|
||||
}
|
||||
|
||||
// implementation of the 2D RoPE without adding a new op in ggml
|
||||
// this is not efficient (use double the memory), but works on all backends
|
||||
// TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
|
||||
static ggml_tensor * build_rope_2d(
|
||||
ggml_cgraph * gf,
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * pos_h,
|
||||
ggml_tensor * pos_w,
|
||||
const float freq_base
|
||||
) {
|
||||
ggml_tensor * tmp;
|
||||
const int64_t n_dim = cur->ne[0];
|
||||
const int64_t n_head = cur->ne[1];
|
||||
const int64_t n_pos = cur->ne[2];
|
||||
@ -571,18 +571,23 @@ static ggml_tensor * build_rope_2d(
|
||||
// we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
|
||||
// first half of cur will use 1e-0, 1e-2 (even)
|
||||
// second half of cur will use 1e-1, 1e-3 (odd)
|
||||
//
|
||||
// for the first half, the trick here is to rotate n_dim/2, so inv_freq will be even
|
||||
// the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
|
||||
// ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
|
||||
// then for the second half, we use freq_scale to shift the inv_freq
|
||||
// ^ why? replace (2i) with (2i+1) in the above equation
|
||||
const float freq_scale_odd = std::pow(freq_base, (float)-2/n_dim);
|
||||
|
||||
// first half
|
||||
ggml_tensor * first;
|
||||
{
|
||||
cur = ggml_rope_ext_inplace(
|
||||
first = ggml_view_3d(ctx0, cur,
|
||||
n_dim/2, n_head, n_pos,
|
||||
ggml_row_size(cur->type, n_dim),
|
||||
ggml_row_size(cur->type, n_dim*n_head),
|
||||
0);
|
||||
first = ggml_rope_ext(
|
||||
ctx0,
|
||||
cur,
|
||||
first,
|
||||
pos_h, // positions
|
||||
nullptr, // freq factors
|
||||
n_dim/2, // n_dims
|
||||
@ -592,15 +597,17 @@ static ggml_tensor * build_rope_2d(
|
||||
}
|
||||
|
||||
// second half
|
||||
ggml_tensor * second;
|
||||
{
|
||||
tmp = ggml_view_3d(ctx0, cur,
|
||||
second = ggml_view_3d(ctx0, cur,
|
||||
n_dim/2, n_head, n_pos,
|
||||
ggml_row_size(cur->type, n_dim),
|
||||
ggml_row_size(cur->type, n_dim*n_head),
|
||||
n_dim/2 * ggml_element_size(cur));
|
||||
tmp = ggml_rope_ext_inplace(
|
||||
second = ggml_cont(ctx0, second); // copy, because ggml_rope don't play well with non-contiguous tensors
|
||||
second = ggml_rope_ext(
|
||||
ctx0,
|
||||
tmp,
|
||||
second,
|
||||
pos_w, // positions
|
||||
nullptr, // freq factors
|
||||
n_dim/2, // n_dims
|
||||
@ -608,10 +615,9 @@ static ggml_tensor * build_rope_2d(
|
||||
freq_scale_odd,
|
||||
0.0f, 1.0f, 0.0f, 0.0f
|
||||
);
|
||||
// calculate inplace (modify cur directly)
|
||||
ggml_build_forward_expand(gf, tmp);
|
||||
}
|
||||
|
||||
cur = ggml_concat(ctx0, first, second, 0);
|
||||
return cur;
|
||||
}
|
||||
|
||||
@ -680,13 +686,13 @@ static ggml_cgraph * clip_image_build_graph_pixtral(clip_ctx * ctx, const clip_i
|
||||
struct ggml_tensor * Q = ggml_mul_mat(ctx0, model.layers[il].q_w, cur);
|
||||
|
||||
Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches);
|
||||
Q = build_rope_2d(gf, ctx0, Q, pos_h, pos_w, hparams.rope_theta);
|
||||
Q = build_rope_2d(ctx0, Q, pos_h, pos_w, hparams.rope_theta);
|
||||
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
|
||||
|
||||
struct ggml_tensor * K = ggml_mul_mat(ctx0, model.layers[il].k_w, cur);
|
||||
|
||||
K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches);
|
||||
K = build_rope_2d(gf, ctx0, K, pos_h, pos_w, hparams.rope_theta);
|
||||
K = build_rope_2d(ctx0, K, pos_h, pos_w, hparams.rope_theta);
|
||||
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
|
||||
|
||||
struct ggml_tensor * V = ggml_mul_mat(ctx0, model.layers[il].v_w, cur);
|
||||
@ -2796,10 +2802,15 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
const auto & model = ctx->vision_model;
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
// TODO @ngxson : this is ugly, need to refactor later
|
||||
bool support_dynamic_size = ctx->has_minicpmv_projector
|
||||
|| ctx->has_qwen2vl_merger
|
||||
|| ctx->proj_type == PROJECTOR_TYPE_PIXTRAL;
|
||||
|
||||
const int image_size = hparams.image_size;
|
||||
int image_size_width = image_size;
|
||||
int image_size_height = image_size;
|
||||
if (ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger) {
|
||||
if (support_dynamic_size) {
|
||||
image_size_width = imgs.entries[0]->nx;
|
||||
image_size_height = imgs.entries[0]->ny;
|
||||
}
|
||||
@ -2811,9 +2822,20 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
|
||||
{
|
||||
struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
|
||||
float * data = (float *)malloc(ggml_nbytes(inp_raw));
|
||||
std::vector<float> inp_data(ggml_nelements(inp_raw));
|
||||
float * data = inp_data.data();
|
||||
|
||||
// layout of data (note: the channel dim is unrolled to better visualize the layout):
|
||||
//
|
||||
// ┌──W──┐
|
||||
// │ H │ channel = R
|
||||
// ├─────┤ │
|
||||
// │ H │ channel = G
|
||||
// ├─────┤ │
|
||||
// │ H │ channel = B
|
||||
// └─────┘ │
|
||||
// ──────┘ x B
|
||||
|
||||
// TODO @ngxson : this whole code block is ugly, will need to be refactored
|
||||
for (size_t i = 0; i < imgs.entries.size(); i++) {
|
||||
const int nx = imgs.entries[i]->nx;
|
||||
const int ny = imgs.entries[i]->ny;
|
||||
@ -2828,17 +2850,19 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
const int n = nx * ny;
|
||||
|
||||
for (int b = 0; b < batch_size; b++) {
|
||||
for (int k = 0; k < 3; k++) {
|
||||
float * batch_entry = data + b * (3*n);
|
||||
for (int y = 0; y < ny; y++) {
|
||||
for (int x = 0; x < nx; x++) {
|
||||
data[(b * 3 * n) + k * n + y * nx + x] = imgs.entries[b]->buf[3 * (y * nx + x) + k];
|
||||
}
|
||||
size_t base_src = 3*(y * nx + x); // idx of the first channel
|
||||
size_t base_dst = y * nx + x; // idx of the first channel
|
||||
batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
|
||||
batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
|
||||
batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
|
||||
free(data);
|
||||
}
|
||||
if (ctx->has_minicpmv_projector) {
|
||||
{
|
||||
|
@ -2606,6 +2606,8 @@ struct test_rope : public test_case {
|
||||
} else {
|
||||
out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
|
||||
}
|
||||
|
||||
// TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
|
||||
}
|
||||
ggml_set_name(out, "out");
|
||||
|
||||
|
Reference in New Issue
Block a user