mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-26 19:55:04 +00:00
* 1. add "integrated" in ggml_cuda_device_info for distinguish whether it is Intergrate_gpu or discrete_gpu 2. Adjust the func:"ggml_backend_cuda_device_supports_buft" for this new feature * Update ggml/src/ggml-cuda/ggml-cuda.cu Adjusted code indentation Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * Update ggml/src/ggml-cuda/ggml-cuda.cu Fixed incorrect setting of variable types Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * Update ggml/src/ggml-cuda/ggml-cuda.cu Adjusted the judgment logic Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * add a host_buft assert in case of integrated_cuda_device with func:'evaluate_and_capture_cuda_graph()' * Update ggml/src/ggml-cuda/ggml-cuda.cu Add a defensive security assert Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * Update ggml/src/ggml-cuda/ggml-cuda.cu Adjusted the support judgment logic. Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * revoke the suggest commit changes due to it's not applicable in jetson_device * Update ggml/src/ggml-cuda/ggml-cuda.cu Add parentheses to enforce operator precedence Co-authored-by: Diego Devesa <slarengh@gmail.com> * Update ggml/src/ggml-cuda/ggml-cuda.cu Fix ci bug: add a spaces Co-authored-by: Johannes Gäßler <johannesg@5d6.de> --------- Co-authored-by: yangxiao <yang_xl@tju.edu.cn> Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: yangxiao <yangxl_zz@qq.com> Co-authored-by: Diego Devesa <slarengh@gmail.com>
This commit is contained in:
@ -635,6 +635,7 @@ struct ggml_cuda_device_info {
|
||||
int nsm; // number of streaming multiprocessors
|
||||
size_t smpb; // max. shared memory per block
|
||||
size_t smpbo; // max. shared memory per block (with opt-in)
|
||||
bool integrated; // Device is integrated as opposed to discrete
|
||||
bool vmm; // virtual memory support
|
||||
size_t vmm_granularity; // granularity of virtual memory
|
||||
size_t total_vram;
|
||||
|
@ -243,10 +243,10 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
|
||||
info.default_tensor_split[id] = total_vram;
|
||||
total_vram += prop.totalGlobalMem;
|
||||
|
||||
info.devices[id].nsm = prop.multiProcessorCount;
|
||||
info.devices[id].smpb = prop.sharedMemPerBlock;
|
||||
info.devices[id].warp_size = prop.warpSize;
|
||||
info.devices[id].integrated = prop.integrated;
|
||||
info.devices[id].nsm = prop.multiProcessorCount;
|
||||
info.devices[id].smpb = prop.sharedMemPerBlock;
|
||||
info.devices[id].warp_size = prop.warpSize;
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
info.devices[id].smpbo = prop.sharedMemPerBlock;
|
||||
|
||||
@ -1065,6 +1065,10 @@ static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static bool ggml_backend_buft_is_cuda_host(ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
CUDA_CHECK(cudaFreeHost(buffer->context));
|
||||
}
|
||||
@ -2641,6 +2645,8 @@ static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
|
||||
|
||||
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
|
||||
bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
|
||||
// flag used to determine whether it is an integrated_gpu
|
||||
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
|
||||
|
||||
while (!graph_evaluated_or_captured) {
|
||||
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
|
||||
@ -2659,7 +2665,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
if (node->src[j] != nullptr) {
|
||||
assert(node->src[j]->buffer);
|
||||
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) ||
|
||||
ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft));
|
||||
ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft) || (integrated && ggml_backend_buft_is_cuda_host(node->src[j]->buffer->buft)));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
@ -3266,7 +3272,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
}
|
||||
|
||||
static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
return (ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev;
|
||||
ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context;
|
||||
const bool integrated = ggml_cuda_info().devices[dev_ctx->device].integrated;
|
||||
return (((ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev) || (integrated && ggml_backend_buft_is_cuda_host(buft)));
|
||||
}
|
||||
|
||||
static int64_t get_op_batch_size(const ggml_tensor * op) {
|
||||
|
Reference in New Issue
Block a user