mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-07-27 03:33:46 -04:00
context : perform output reorder lazily upon access after sync (#14853)
* context : perform output reorder after lazily upon access after sync ggml-ci * cont : add TODO
This commit is contained in:
@ -956,6 +956,7 @@ extern "C" {
|
||||
// in the order they have appeared in the batch.
|
||||
// Rows: number of tokens for which llama_batch.logits[i] != 0
|
||||
// Cols: n_vocab
|
||||
// TODO: deprecate in favor of llama_get_logits_ith() (ref: https://github.com/ggml-org/llama.cpp/pull/14853#issuecomment-3113143522)
|
||||
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
|
||||
|
||||
// Logits for the ith token. For positive indices, Equivalent to:
|
||||
@ -970,6 +971,7 @@ extern "C" {
|
||||
// in the order they have appeared in the batch.
|
||||
// shape: [n_outputs*n_embd]
|
||||
// Otherwise, returns NULL.
|
||||
// TODO: deprecate in favor of llama_get_embeddings_ith() (ref: https://github.com/ggml-org/llama.cpp/pull/14853#issuecomment-3113143522)
|
||||
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||||
|
||||
// Get the embeddings for the ith token. For positive indices, Equivalent to:
|
||||
|
@ -508,12 +508,16 @@ enum llama_pooling_type llama_context::pooling_type() const {
|
||||
}
|
||||
|
||||
float * llama_context::get_logits() {
|
||||
output_reorder();
|
||||
|
||||
return logits;
|
||||
}
|
||||
|
||||
float * llama_context::get_logits_ith(int32_t i) {
|
||||
int64_t j = -1;
|
||||
|
||||
output_reorder();
|
||||
|
||||
try {
|
||||
if (logits == nullptr) {
|
||||
throw std::runtime_error("no logits");
|
||||
@ -550,12 +554,16 @@ float * llama_context::get_logits_ith(int32_t i) {
|
||||
}
|
||||
|
||||
float * llama_context::get_embeddings() {
|
||||
output_reorder();
|
||||
|
||||
return embd;
|
||||
}
|
||||
|
||||
float * llama_context::get_embeddings_ith(int32_t i) {
|
||||
int64_t j = -1;
|
||||
|
||||
output_reorder();
|
||||
|
||||
try {
|
||||
if (embd == nullptr) {
|
||||
throw std::runtime_error("no embeddings");
|
||||
@ -970,6 +978,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
||||
|
||||
// TODO: this clear of the buffer can easily be forgotten - need something better
|
||||
embd_seq.clear();
|
||||
output_swaps.clear();
|
||||
|
||||
bool did_optimize = false;
|
||||
|
||||
@ -1189,9 +1198,6 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
||||
// make the outputs have the same order they had in the user-provided batch
|
||||
// note: this is mostly relevant for recurrent models atm
|
||||
if (!sorted_output) {
|
||||
const uint32_t n_vocab = model.vocab.n_tokens();
|
||||
const uint64_t n_embd = model.hparams.n_embd;
|
||||
|
||||
GGML_ASSERT((size_t) n_outputs == out_ids.size());
|
||||
|
||||
// TODO: is there something more efficient which also minimizes swaps?
|
||||
@ -1207,16 +1213,9 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
||||
continue;
|
||||
}
|
||||
std::swap(out_ids[i], out_ids[j_min]);
|
||||
if (logits_size > 0) {
|
||||
for (uint32_t k = 0; k < n_vocab; k++) {
|
||||
std::swap(logits[i*n_vocab + k], logits[j_min*n_vocab + k]);
|
||||
}
|
||||
}
|
||||
if (embd_size > 0) {
|
||||
for (uint32_t k = 0; k < n_embd; k++) {
|
||||
std::swap(embd[i*n_embd + k], embd[j_min*n_embd + k]);
|
||||
}
|
||||
}
|
||||
|
||||
// remember the swaps and apply them lazily upon logits/embeddings access
|
||||
output_swaps.push_back({ i, j_min });
|
||||
}
|
||||
|
||||
std::fill(output_ids.begin(), output_ids.end(), -1);
|
||||
@ -1307,6 +1306,30 @@ uint32_t llama_context::output_reserve(int32_t n_outputs) {
|
||||
return n_outputs_max;
|
||||
}
|
||||
|
||||
void llama_context::output_reorder() {
|
||||
const uint32_t n_vocab = model.vocab.n_tokens();
|
||||
const uint64_t n_embd = model.hparams.n_embd;
|
||||
|
||||
for (uint32_t s = 0; s < output_swaps.size(); ++s) {
|
||||
const uint32_t i0 = output_swaps[s].i0;
|
||||
const uint32_t i1 = output_swaps[s].i1;
|
||||
|
||||
if (logits_size > 0) {
|
||||
for (uint32_t k = 0; k < n_vocab; k++) {
|
||||
std::swap(logits[i0*n_vocab + k], logits[i1*n_vocab + k]);
|
||||
}
|
||||
}
|
||||
|
||||
if (embd_size > 0) {
|
||||
for (uint32_t k = 0; k < n_embd; k++) {
|
||||
std::swap(embd[i0*n_embd + k], embd[i1*n_embd + k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
output_swaps.clear();
|
||||
}
|
||||
|
||||
//
|
||||
// graph
|
||||
//
|
||||
|
@ -181,6 +181,8 @@ private:
|
||||
// Returns max number of outputs for which space was reserved.
|
||||
uint32_t output_reserve(int32_t n_outputs);
|
||||
|
||||
void output_reorder();
|
||||
|
||||
//
|
||||
// graph
|
||||
//
|
||||
@ -250,6 +252,13 @@ private:
|
||||
|
||||
std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
|
||||
|
||||
struct swap_info {
|
||||
uint32_t i0;
|
||||
uint32_t i1;
|
||||
};
|
||||
|
||||
std::vector<swap_info> output_swaps;
|
||||
|
||||
ggml_backend_sched_ptr sched;
|
||||
|
||||
ggml_backend_t backend_cpu = nullptr;
|
||||
|
Reference in New Issue
Block a user