mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-08-04 16:23:49 -04:00
llama : refactor llama_context, llama_kv_cache, llm_build_context (#12181)
* llama : refactor llama_context, llama_kv_cache, llm_build_context ggml-ci * graph : don't mutate the KV cache during defrag ggml-ci * context : reduce virtuals + remove test function ggml-ci * context : move interface implementation to source file + factory ggml-ci * graph : move KV cache build functions to llama_context impl ggml-ci * graph : remove model reference from build_pooling ggml-ci * graph : remove llama_model reference ggml-ci * kv_cache : provide rope factors ggml-ci * graph : rework inputs to use only unique_ptr, remove attn input abstraction ggml-ci * context : remove llama_context_i abstraction ggml-ci * context : clean-up ggml-ci * graph : clean-up ggml-ci * llama : remove redundant keywords (struct, enum) ggml-ci * model : adapt gemma3 ggml-ci * graph : restore same attention ops as on master ggml-ci * llama : remove TODO + fix indent ggml-ci
This commit is contained in:
@@ -1,12 +1,29 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
#include "llama-io.h"
|
||||
#include "llama-memory.h"
|
||||
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include <functional>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
|
||||
struct llama_cparams;
|
||||
struct llama_hparams;
|
||||
struct llama_ubatch;
|
||||
|
||||
struct llama_kv_cache : public llama_memory_i {
|
||||
using llama_memory_i::llama_memory_i;
|
||||
|
||||
virtual int32_t get_n_tokens() const = 0;
|
||||
virtual uint32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache
|
||||
|
||||
virtual bool get_can_shift() const = 0;
|
||||
|
||||
bool get_can_edit() const override { return get_can_shift(); }
|
||||
};
|
||||
|
||||
struct llama_kv_cell {
|
||||
llama_pos pos = -1;
|
||||
@@ -29,11 +46,105 @@ struct llama_kv_cell {
|
||||
}
|
||||
};
|
||||
|
||||
// a structure holds information about the slot found in llama_kv_cache_find_slot
|
||||
struct llama_kv_cache_slot_info {
|
||||
std::pair<uint32_t, uint32_t> boundaries; // slot boundaries [begin, end)
|
||||
bool found = false; // the slot was found
|
||||
|
||||
explicit llama_kv_cache_slot_info(bool found_) : found{found_} {}
|
||||
llama_kv_cache_slot_info(uint32_t begin, uint32_t end) : boundaries{begin, end}, found{true} {}
|
||||
|
||||
operator bool() const { return found; }
|
||||
};
|
||||
|
||||
// ring-buffer of cached KV data
|
||||
struct llama_kv_cache {
|
||||
// TODO: pimpl
|
||||
// TODO: add notion of max sequences
|
||||
class llama_kv_cache_unified : public llama_kv_cache {
|
||||
public:
|
||||
// can be used to query data from the model if needed
|
||||
struct callbacks {
|
||||
std::function<ggml_tensor * (uint32_t n_ctx_per_seq, int il)> get_rope_factors;
|
||||
};
|
||||
|
||||
llama_kv_cache_unified(
|
||||
const llama_hparams & hparams,
|
||||
callbacks cbs);
|
||||
|
||||
virtual ~llama_kv_cache_unified() = default;
|
||||
|
||||
// TODO: become constructor
|
||||
bool init(
|
||||
const llama_model & model, // TODO: do not reference the model
|
||||
const llama_cparams & cparams,
|
||||
ggml_type type_k,
|
||||
ggml_type type_v,
|
||||
uint32_t kv_size,
|
||||
bool offload);
|
||||
|
||||
int32_t get_n_tokens() const override;
|
||||
uint32_t get_used_cells() const override;
|
||||
|
||||
size_t total_size() const;
|
||||
|
||||
// TODO: better data structures to reduce the cost of this operation
|
||||
llama_pos pos_max() const;
|
||||
|
||||
void clear() override;
|
||||
void defrag() override;
|
||||
|
||||
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
|
||||
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
|
||||
void seq_keep(llama_seq_id seq_id) override;
|
||||
void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) override;
|
||||
void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override;
|
||||
|
||||
llama_pos seq_pos_max(llama_seq_id seq_id) override;
|
||||
|
||||
bool get_can_shift() const override;
|
||||
|
||||
// find an empty slot of size "n_tokens" in the cache
|
||||
// updates the cache head
|
||||
// returns a structure holding information about the slot found
|
||||
// Note: On success, it's important that cache.head points
|
||||
// to the first cell of the slot.
|
||||
llama_kv_cache_slot_info find_slot(const llama_ubatch & batch);
|
||||
|
||||
// TODO: maybe not needed
|
||||
uint32_t get_padding(const llama_cparams & cparams) const;
|
||||
|
||||
// find how many cells are currently in use
|
||||
uint32_t cell_max() const;
|
||||
|
||||
size_t size_k_bytes() const;
|
||||
size_t size_v_bytes() const;
|
||||
|
||||
// defrag
|
||||
|
||||
struct {
|
||||
std::vector<uint32_t> ids;
|
||||
} defrag_info;
|
||||
|
||||
// return true if cells have been moved
|
||||
bool defrag_prepare(int32_t n_max_nodes);
|
||||
|
||||
// state save/load
|
||||
|
||||
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const;
|
||||
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1);
|
||||
|
||||
// members
|
||||
|
||||
const llama_hparams & hparams;
|
||||
|
||||
callbacks cbs;
|
||||
|
||||
bool has_shift = false;
|
||||
bool do_defrag = false;
|
||||
|
||||
// TODO: remove this and implement llama_kv_cache_recurrent instead
|
||||
bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
|
||||
|
||||
bool v_trans = true; // the value tensor is transposed
|
||||
bool can_shift = false;
|
||||
|
||||
@@ -47,124 +158,30 @@ struct llama_kv_cache {
|
||||
// computed before each graph build
|
||||
uint32_t n = 0;
|
||||
|
||||
std::vector<llama_kv_cell> cells;
|
||||
|
||||
std::vector<ggml_tensor *> k_l; // per layer
|
||||
std::vector<ggml_tensor *> v_l;
|
||||
|
||||
private:
|
||||
ggml_type type_k = GGML_TYPE_F16;
|
||||
ggml_type type_v = GGML_TYPE_F16;
|
||||
|
||||
std::vector<llama_kv_cell> cells;
|
||||
|
||||
std::vector<struct ggml_tensor *> k_l; // per layer
|
||||
std::vector<struct ggml_tensor *> v_l;
|
||||
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
size_t total_size() const {
|
||||
size_t size = 0;
|
||||
for (const auto & buf : bufs) {
|
||||
size += ggml_backend_buffer_get_size(buf.get());
|
||||
}
|
||||
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
|
||||
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
|
||||
|
||||
return size;
|
||||
}
|
||||
|
||||
// TODO: better data structures to reduce the cost of this operation
|
||||
llama_pos max_pos() const {
|
||||
llama_pos max_pos = -1;
|
||||
for (const auto & cell : cells) {
|
||||
max_pos = std::max(max_pos, cell.pos);
|
||||
}
|
||||
|
||||
return max_pos;
|
||||
}
|
||||
bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
|
||||
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
|
||||
};
|
||||
|
||||
// a structure holds information about the slot found in llama_kv_cache_find_slot
|
||||
struct llama_kv_cache_slot_info {
|
||||
std::pair<uint32_t, uint32_t> boundaries; // slot boundaries [begin, end)
|
||||
bool found = false; // the slot was found
|
||||
|
||||
explicit llama_kv_cache_slot_info(bool found_) : found{found_} {}
|
||||
llama_kv_cache_slot_info(uint32_t begin, uint32_t end) : boundaries{begin, end}, found{true} {}
|
||||
|
||||
operator bool() const { return found; }
|
||||
};
|
||||
|
||||
// TODO: maybe not needed
|
||||
uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams);
|
||||
|
||||
bool llama_kv_cache_init(
|
||||
struct llama_kv_cache & cache,
|
||||
const llama_model & model,
|
||||
const llama_cparams & cparams,
|
||||
ggml_type type_k,
|
||||
ggml_type type_v,
|
||||
uint32_t kv_size,
|
||||
bool offload);
|
||||
|
||||
// find an empty slot of size "n_tokens" in the cache
|
||||
// updates the cache head
|
||||
// returns a structure holding information about the slot found
|
||||
// Note: On success, it's important that cache.head points
|
||||
// to the first cell of the slot.
|
||||
struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
||||
struct llama_kv_cache & cache,
|
||||
const struct llama_ubatch & batch);
|
||||
|
||||
// find how many cells are currently in use
|
||||
uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache);
|
||||
|
||||
void llama_kv_cache_clear(struct llama_kv_cache & cache);
|
||||
|
||||
bool llama_kv_cache_seq_rm(
|
||||
struct llama_kv_cache & cache,
|
||||
llama_seq_id seq_id,
|
||||
llama_pos p0,
|
||||
llama_pos p1);
|
||||
|
||||
void llama_kv_cache_seq_cp(
|
||||
struct llama_kv_cache & cache,
|
||||
llama_seq_id seq_id_src,
|
||||
llama_seq_id seq_id_dst,
|
||||
llama_pos p0,
|
||||
llama_pos p1);
|
||||
|
||||
void llama_kv_cache_seq_keep(
|
||||
struct llama_kv_cache & cache,
|
||||
llama_seq_id seq_id);
|
||||
|
||||
void llama_kv_cache_seq_add(
|
||||
struct llama_kv_cache & cache,
|
||||
llama_seq_id seq_id,
|
||||
llama_pos p0,
|
||||
llama_pos p1,
|
||||
llama_pos delta);
|
||||
|
||||
void llama_kv_cache_seq_div(
|
||||
struct llama_kv_cache & cache,
|
||||
llama_seq_id seq_id,
|
||||
llama_pos p0,
|
||||
llama_pos p1,
|
||||
int d);
|
||||
|
||||
llama_pos llama_kv_cache_seq_pos_max(
|
||||
struct llama_kv_cache & cache,
|
||||
llama_seq_id seq_id);
|
||||
|
||||
void llama_kv_cache_defrag(struct llama_kv_cache & cache);
|
||||
|
||||
int32_t llama_get_kv_cache_token_count(const struct llama_kv_cache & kv);
|
||||
|
||||
int32_t llama_get_kv_cache_used_cells(const struct llama_kv_cache & kv);
|
||||
|
||||
bool llama_kv_cache_can_shift(const struct llama_kv_cache & kv);
|
||||
|
||||
//
|
||||
// kv cache view
|
||||
//
|
||||
|
||||
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_kv_cache & kv, int32_t n_seq_max);
|
||||
|
||||
void llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_kv_cache & kv);
|
||||
// TODO: temporary reusing llama_kv_cache_unified -- implement recurrent cache and simplify llama_kv_cache_unified
|
||||
//class llama_kv_cache_recurrent : public llama_kv_cache_unified {
|
||||
//public:
|
||||
// using llama_kv_cache_unified::llama_kv_cache_unified;
|
||||
//};
|
||||
|
||||
//
|
||||
// kv cache restore
|
||||
@@ -184,13 +201,15 @@ struct llama_kv_slot_restorer {
|
||||
|
||||
bool do_restore = false;
|
||||
|
||||
explicit llama_kv_slot_restorer(const struct llama_kv_cache & cache) {
|
||||
llama_kv_cache_unified & cache;
|
||||
|
||||
explicit llama_kv_slot_restorer(llama_kv_cache_unified & cache) : cache(cache) {
|
||||
old_state.head = cache.head;
|
||||
old_state.n = cache.n;
|
||||
}
|
||||
|
||||
// saves a slot information for future restoration
|
||||
void save(const struct llama_kv_cache_slot_info & slot) {
|
||||
void save(const llama_kv_cache_slot_info & slot) {
|
||||
if (slot) {
|
||||
do_restore = true;
|
||||
if (slot.boundaries.first != slot.boundaries.second) {
|
||||
@@ -201,19 +220,68 @@ struct llama_kv_slot_restorer {
|
||||
|
||||
// must be explicitly called to restore the kv_cache state
|
||||
// and rollback changes from all llama_kv_cache_find_slot calls
|
||||
void restore(struct llama_kv_cache & cache) {
|
||||
void restore() {
|
||||
if (do_restore) {
|
||||
cache.head = old_state.head;
|
||||
cache.n = old_state.n;
|
||||
|
||||
if (cache.recurrent) { // recurrent models like Mamba or RWKV can't have a state partially erased
|
||||
llama_kv_cache_seq_rm(cache, -1, -1, -1);
|
||||
cache.seq_rm(-1, -1, -1);
|
||||
} else {
|
||||
for (auto & slot : slot_boundaries) {
|
||||
llama_kv_cache_seq_rm(cache, -1, slot.first, slot.second);
|
||||
cache.seq_rm(-1, slot.first, slot.second);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// TODO: maybe become part of the public llama_kv_cache in the future
|
||||
int32_t llama_kv_cache_n_tokens(const llama_kv_cache * kv);
|
||||
|
||||
int32_t llama_kv_cache_used_cells(const llama_kv_cache * kv);
|
||||
|
||||
void llama_kv_cache_clear(llama_kv_cache * kv);
|
||||
|
||||
bool llama_kv_cache_seq_rm(
|
||||
llama_kv_cache * kv,
|
||||
llama_seq_id seq_id,
|
||||
llama_pos p0,
|
||||
llama_pos p1);
|
||||
|
||||
void llama_kv_cache_seq_cp(
|
||||
llama_kv_cache * kv,
|
||||
llama_seq_id seq_id_src,
|
||||
llama_seq_id seq_id_dst,
|
||||
llama_pos p0,
|
||||
llama_pos p1);
|
||||
|
||||
void llama_kv_cache_seq_keep(llama_kv_cache * kv, llama_seq_id seq_id);
|
||||
|
||||
void llama_kv_cache_seq_add(
|
||||
llama_kv_cache * kv,
|
||||
llama_seq_id seq_id,
|
||||
llama_pos p0,
|
||||
llama_pos p1,
|
||||
llama_pos delta);
|
||||
|
||||
void llama_kv_cache_seq_div(
|
||||
llama_kv_cache * kv,
|
||||
llama_seq_id seq_id,
|
||||
llama_pos p0,
|
||||
llama_pos p1,
|
||||
int d);
|
||||
|
||||
llama_pos llama_kv_cache_seq_pos_max(llama_kv_cache * kv, llama_seq_id seq_id);
|
||||
|
||||
void llama_kv_cache_defrag(llama_kv_cache * kv);
|
||||
|
||||
bool llama_kv_cache_can_shift(const llama_kv_cache * kv);
|
||||
|
||||
//
|
||||
// kv cache view
|
||||
//
|
||||
|
||||
llama_kv_cache_view llama_kv_cache_view_init(const llama_kv_cache & kv, int32_t n_seq_max);
|
||||
|
||||
void llama_kv_cache_view_update(llama_kv_cache_view * view, const llama_kv_cache * kv);
|
||||
|
Reference in New Issue
Block a user