mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-27 12:05:03 +00:00
@ -2,10 +2,6 @@
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
llama_hparams::llama_hparams() {
|
||||
swa_layers.fill(false);
|
||||
}
|
||||
|
||||
void llama_hparams::set_swa_pattern(uint32_t n_pattern) {
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
swa_layers[il] = n_pattern == 0 || (il % n_pattern < (n_pattern - 1));
|
||||
|
@ -145,8 +145,6 @@ struct llama_hparams {
|
||||
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
|
||||
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
|
||||
|
||||
llama_hparams();
|
||||
|
||||
// this value n_pattern means that every nth layer is dense (i.e. non-SWA)
|
||||
// note that if n_pattern == 0, all layers are SWA
|
||||
// if n_pattern == 1, all layers are dense
|
||||
|
@ -463,11 +463,14 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
GGML_ASSERT(hparams.n_expert_used == 0);
|
||||
}
|
||||
|
||||
// zero-out the array hparams
|
||||
std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
|
||||
std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
|
||||
std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
|
||||
|
||||
std::fill(hparams.rope_sections.begin(), hparams.rope_sections.end(), 0);
|
||||
|
||||
std::fill(hparams.swa_layers.begin(), hparams.swa_layers.end(), 0);
|
||||
|
||||
ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
|
||||
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
|
||||
|
||||
|
Reference in New Issue
Block a user