mtmd : Fix MinicpmV model converter and clip to avoid using hardcode. (#14750)

* Fix MinicpmV model converter and clip to avoid using hardcode.

* Code update for pr/14750

* Remove unused field, update script path in docs.

* Add version 5 for fallback code.

---------

Co-authored-by: lzhang <zhanglei@modelbest.cn>
This commit is contained in:
rainred
2025-08-11 22:12:12 +08:00
committed by GitHub
parent fba5c0d680
commit cf9e5648a7
6 changed files with 116 additions and 78 deletions

View File

@@ -517,6 +517,16 @@ if args.use_f32:
# output in the same directory as the model if output_dir is None
dir_model = args.model_dir
# Read config.json to get actual model configuration
config_path = os.path.join(dir_model, "config.json")
model_config = {}
if os.path.isfile(config_path):
with open(config_path, "r", encoding="utf-8") as f:
model_config = json.load(f)
print(f"Loaded config from {config_path}")
else:
print(f"Warning: config.json not found at {config_path}")
# If minicpmv_projector is not specified but the default path exists, use the default path
if args.minicpmv_projector is None:
default_projector_path = os.path.join(dir_model, "minicpmv.projector")
@@ -555,37 +565,62 @@ if args.use_f32:
# processor = CLIPProcessor.from_pretrained(dir_model)
minicpmv_version = args.minicpmv_version
emb_dim = 4096
block_count = 26
if minicpmv_version == 1: # MiniCPM-V 2.0
emb_dim = 2304
block_count = 26
elif minicpmv_version == 2: # MiniCPM-V 2.5
emb_dim = 4096
block_count = 27
elif minicpmv_version == 3: # MiniCPM-V 2.6
emb_dim = 3584
block_count = 27
elif minicpmv_version == 4: # MiniCPM-o 2.6
emb_dim = 3584
block_count = 27
elif minicpmv_version == 5: # MiniCPM-V 4.0
emb_dim = 2560
block_count = 27
default_vision_config = {
"hidden_size": 1152,
"image_size": 980,
"intermediate_size": 4304,
"model_type": "idefics2",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 14,
# Use actual config values instead of hardcoded ones
if model_config:
# For the projector/resampler, use the main model's hidden_size
emb_dim = model_config.get("hidden_size", 1536)
# For the vision model, use vision_config values
vision_config_dict = model_config.get("vision_config", {})
default_vision_config = {
"hidden_size": vision_config_dict.get("hidden_size", 1152),
"image_size": vision_config_dict.get("image_size", 980),
"intermediate_size": vision_config_dict.get("intermediate_size", 4304),
"model_type": vision_config_dict.get("model_type", "siglip"),
"num_attention_heads": vision_config_dict.get("num_attention_heads", 16),
"num_hidden_layers": vision_config_dict.get("num_hidden_layers", 27),
"patch_size": vision_config_dict.get("patch_size", 14),
}
# Use vision model's num_hidden_layers for block_count
block_count = vision_config_dict.get("num_hidden_layers", 27)
print(f"Using config values: emb_dim={emb_dim}, block_count={block_count}")
print(f"Vision config: {default_vision_config}")
else:
# Fallback to original hardcoded logic if config.json not found
emb_dim = 4096
block_count = 26
if minicpmv_version == 1:
emb_dim = 2304
block_count = 26
elif minicpmv_version == 2:
emb_dim = 4096
block_count = 27
elif minicpmv_version == 3:
emb_dim = 3584
block_count = 27
elif minicpmv_version == 4:
emb_dim = 3584
block_count = 27
elif minicpmv_version == 5:
emb_dim = 2560
block_count = 27
default_vision_config = {
"hidden_size": 1152,
"image_size": 980,
"intermediate_size": 4304,
"model_type": "idefics2",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 14,
}
vision_config = Idefics2VisionConfig(**default_vision_config)
model = Idefics2VisionTransformer(vision_config)
if minicpmv_version == 3:
if minicpmv_version == 3 or (model_config and model_config.get("vision_config", {}).get("model_type") == "siglip"):
vision_config = SiglipVisionConfig(**default_vision_config)
model = SiglipVisionTransformer(vision_config)
elif minicpmv_version == 4:
@@ -644,16 +679,27 @@ else:
fout.add_description("two-tower CLIP model")
if has_vision_encoder:
# vision_model hparams
fout.add_uint32("clip.vision.image_size", 448)
fout.add_uint32("clip.vision.patch_size", 14)
fout.add_uint32(add_key_str(KEY_EMBEDDING_LENGTH, VISION), 1152)
fout.add_uint32(add_key_str(KEY_FEED_FORWARD_LENGTH, VISION), 4304)
# vision_model hparams - use actual config values
vision_image_size = model_config.get("image_size", 448) if model_config else 448
vision_patch_size = default_vision_config.get("patch_size", 14)
vision_hidden_size = default_vision_config.get("hidden_size", 1152)
vision_intermediate_size = default_vision_config.get("intermediate_size", 4304)
vision_attention_heads = default_vision_config.get("num_attention_heads", 16)
fout.add_uint32("clip.vision.image_size", vision_image_size)
fout.add_uint32("clip.vision.patch_size", vision_patch_size)
fout.add_uint32(add_key_str(KEY_EMBEDDING_LENGTH, VISION), vision_hidden_size)
fout.add_uint32(add_key_str(KEY_FEED_FORWARD_LENGTH, VISION), vision_intermediate_size)
fout.add_uint32("clip.vision.projection_dim", 0)
fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), 16)
fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), vision_attention_heads)
fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count)
# Add MiniCPM-V specific parameters
query_num = model_config.get("query_num", 0) if model_config else 0
resampler_emb_dim = model_config.get("hidden_size", 0) if model_config else 0
fout.add_uint32("clip.minicpmv_query_num", query_num)
if processor is not None:
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std