vulkan: Add fusion support for RMS_NORM+MUL (#14366)

* vulkan: Add fusion support for RMS_NORM+MUL

- Add a use_count to ggml_tensor, so we can detect if an output is used more than once.
- Change the ggml-vulkan rms_norm shader to optionally multiply by another tensor.
- Add detection logic and basic fusion logic in ggml-vulkan.
- Add some testing support for fusion. Rather than computing one node at a time, allow
for computing the whole graph and just testing one node's results. Add rms_norm_mul tests
and enable a llama test.

* extract some common fusion logic

* fix -Winconsistent-missing-override

* move ggml_can_fuse to a common function

* build fix

* C and C++ versions of can_fuse

* move use count to the graph to avoid data races and double increments when used in multiple threads

* use hash table lookup to find node index

* change use_counts to be indexed by hash table slot

* minimize hash lookups

style fixes

* last node doesn't need single use.
fix type.
handle mul operands being swapped.

* remove redundant parameter

---------

Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
Jeff Bolz
2025-06-29 02:43:36 -05:00
committed by GitHub
parent 27208bf657
commit bd9c981d72
8 changed files with 263 additions and 56 deletions

View File

@ -339,7 +339,7 @@ extern "C" {
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
// Compare the output of two backends
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor * test_node);
// Tensor initialization
GGML_API enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);

View File

@ -817,8 +817,9 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
}
if (sched->debug > 1) {
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s] use=%d:", i, ggml_op_name(node->op), node->name,
fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node),
graph->use_counts[ggml_hash_find(&graph->visited_hash_set, node)]);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
@ -1826,7 +1827,7 @@ void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
ggml_free(copy.ctx_unallocated);
}
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor * test_node) {
struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
if (copy.buffer == NULL) {
return false;
@ -1837,6 +1838,23 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
assert(g1->n_nodes == g2->n_nodes);
if (test_node != nullptr) {
// Compute the whole graph and only test the output for a specific tensor
ggml_backend_graph_compute(backend1, g1);
ggml_backend_graph_compute(backend2, g2);
int test_node_idx = -1;
for (int i = 0; i < g1->n_nodes; i++) {
struct ggml_tensor * t1 = g1->nodes[i];
if (t1 == test_node) {
test_node_idx = i;
break;
}
}
GGML_ASSERT(test_node_idx != -1);
callback(test_node_idx, g1->nodes[test_node_idx], g2->nodes[test_node_idx], user_data);
} else {
for (int i = 0; i < g1->n_nodes; i++) {
struct ggml_tensor * t1 = g1->nodes[i];
struct ggml_tensor * t2 = g2->nodes[i];
@ -1858,7 +1876,7 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
break;
}
}
}
ggml_backend_graph_copy_free(copy);
return true;

View File

@ -301,6 +301,7 @@ struct ggml_cgraph {
struct ggml_tensor ** grads; // the outputs of these tensors are the gradients of the nodes
struct ggml_tensor ** grad_accs; // accumulators for node gradients
struct ggml_tensor ** leafs; // tensors with constant data
int32_t * use_counts;// number of uses of each tensor, indexed by hash table slot
struct ggml_hash_set visited_hash_set;
@ -467,13 +468,76 @@ static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
// return true if the node's results are only used by N other nodes
// and can be fused into their calculations.
static inline bool ggml_node_has_n_uses(const struct ggml_cgraph * cgraph, int node_idx, int32_t n_uses) {
const struct ggml_tensor * node = cgraph->nodes[node_idx];
// check the use count against how many we're replacing
size_t hash_pos = ggml_hash_find(&cgraph->visited_hash_set, node);
if (!ggml_bitset_get(cgraph->visited_hash_set.used, hash_pos) || cgraph->use_counts[hash_pos] != n_uses) {
return false;
}
// if node is a view, some other node might be using the intermediate result
// via the view source.
if (node->view_src) {
return false;
}
// If the user requested output for the node, can't fuse
if (node->flags & GGML_TENSOR_FLAG_OUTPUT) {
return false;
}
return true;
}
// Returns true if nodes [i, i+ops.size()) are the sequence of ggml_ops in ops[]
// and are fusable. Nodes are considered fusable according to this function if:
// - all nodes except the last have only one use and are not views/outputs (see ggml_node_has_N_uses).
// - all nodes except the last are a src of the following node.
// - all nodes are the same shape.
// TODO: Consider allowing GGML_OP_NONE nodes in between
static inline bool ggml_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, const enum ggml_op * ops, int num_ops) {
if (node_idx + num_ops > cgraph->n_nodes) {
return false;
}
for (int i = 0; i < num_ops; ++i) {
struct ggml_tensor * node = cgraph->nodes[node_idx + i];
if (node->op != ops[i]) {
return false;
}
if (i < num_ops - 1 && !ggml_node_has_n_uses(cgraph, node_idx + i, 1)) {
return false;
}
if (i > 0) {
struct ggml_tensor * prev = cgraph->nodes[node_idx + i - 1];
if (node->src[0] != prev && node->src[1] != prev) {
return false;
}
if (!ggml_are_same_shape(node, prev)) {
return false;
}
}
}
return true;
}
#ifdef __cplusplus
}
#endif
#ifdef __cplusplus
#include <initializer_list>
#include <vector>
// nicer C++ syntax for ggml_can_fuse
inline bool ggml_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
return ggml_can_fuse(cgraph, node_idx, ops.begin(), (int)ops.size());
}
// expose GGUF internals for test code
GGML_API size_t gguf_type_size(enum gguf_type type);
GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params);

View File

@ -425,6 +425,7 @@ struct vk_device_struct {
vk_pipeline pipeline_norm_f32;
vk_pipeline pipeline_group_norm_f32;
vk_pipeline pipeline_rms_norm_f32;
vk_pipeline pipeline_rms_norm_mul_f32;
vk_pipeline pipeline_rms_norm_back_f32;
vk_pipeline pipeline_l2_norm_f32;
@ -978,6 +979,10 @@ struct ggml_backend_vk_context {
vk_command_pool compute_cmd_pool;
vk_command_pool transfer_cmd_pool;
// number of additional consecutive nodes that are being fused with the
// node currently being processed
uint32_t num_additional_fused_ops {};
};
static void * const vk_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
@ -2655,7 +2660,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_norm_f32, "norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_group_norm_f32, "group_norm_f32", group_norm_f32_len, group_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rms_norm_f32, "rms_norm_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rms_norm_f32, "rms_norm_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {0, 0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rms_norm_mul_f32, "rms_norm_mul_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {0, 1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rms_norm_back_f32, "rms_norm_back_f32", rms_norm_back_f32_len, rms_norm_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_l2_norm_f32, "l2_norm_f32", l2_norm_f32_len, l2_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
@ -6430,7 +6436,7 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return nullptr;
case GGML_OP_RMS_NORM:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_rms_norm_f32;
return ctx->num_additional_fused_ops > 0 ? ctx->device->pipeline_rms_norm_mul_f32 : ctx->device->pipeline_rms_norm_f32;
}
return nullptr;
case GGML_OP_RMS_NORM_BACK:
@ -7530,18 +7536,19 @@ static void ggml_vk_group_norm(ggml_backend_vk_context * ctx, vk_context& subctx
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_GROUP_NORM, { group_size, 0, eps, 0.0f }, dryrun);
}
static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, {
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_RMS_NORM, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
op_params[0], 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
op_params[0], 0.0f, 0,
}, dryrun);
}
@ -8736,7 +8743,8 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_tensor* t
// Returns true if node has enqueued work into the queue, false otherwise
// If submit is true the current all operations queued so far are being submitted to Vulkan to overlap cmdlist creation and GPU execution.
static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, int node_idx, ggml_tensor *node_begin, int node_idx_begin, bool dryrun, bool last_node, bool almost_ready, bool submit){
static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int node_idx, ggml_tensor *node_begin, int node_idx_begin, bool dryrun, bool last_node, bool almost_ready, bool submit){
ggml_tensor * node = cgraph->nodes[node_idx];
if (ggml_is_empty(node) || !node->buffer) {
return false;
}
@ -8974,8 +8982,14 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
break;
case GGML_OP_RMS_NORM:
ggml_vk_rms_norm(ctx, compute_ctx, src0, node, dryrun);
if (ctx->num_additional_fused_ops > 0) {
// fused rms_norm + mul
ggml_tensor *mul = cgraph->nodes[node_idx + 1];
ggml_tensor *other_src = mul->src[0] == node ? mul->src[1] : mul->src[0];
ggml_vk_rms_norm(ctx, compute_ctx, src0, other_src, mul, dryrun);
} else {
ggml_vk_rms_norm(ctx, compute_ctx, src0, src0, node, dryrun);
}
break;
case GGML_OP_RMS_NORM_BACK:
ggml_vk_rms_norm_back(ctx, compute_ctx, src0, src1, node, dryrun);
@ -9710,10 +9724,15 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
uint64_t total_mat_mul_bytes = 0;
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_vk_build_graph(ctx, cgraph->nodes[i], i, nullptr, 0, true, false, false, false);
if (ggml_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
ctx->num_additional_fused_ops = 1;
}
ggml_vk_build_graph(ctx, cgraph, i, nullptr, 0, true, false, false, false);
if (cgraph->nodes[i]->op == GGML_OP_MUL_MAT || cgraph->nodes[i]->op == GGML_OP_MUL_MAT_ID) {
total_mat_mul_bytes += ggml_nbytes(cgraph->nodes[i]->src[0]);
}
i += ctx->num_additional_fused_ops;
ctx->num_additional_fused_ops = 0;
}
if (ctx->device->need_compiles) {
ggml_vk_load_shaders(ctx->device);
@ -9775,14 +9794,18 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
mul_mat_bytes += ggml_nbytes(cgraph->nodes[i]->src[0]);
}
if (ggml_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
ctx->num_additional_fused_ops = 1;
}
// Signal the almost_ready fence when the graph is mostly complete (< 20% remaining)
bool almost_ready = (cgraph->n_nodes - i) < cgraph->n_nodes / 5;
bool submit = (submitted_nodes >= nodes_per_submit) ||
(mul_mat_bytes >= mul_mat_bytes_per_submit) ||
(i == last_node) ||
(i + ctx->num_additional_fused_ops == last_node) ||
(almost_ready && !ctx->almost_ready_fence_pending);
bool enqueued = ggml_vk_build_graph(ctx, cgraph->nodes[i], i, cgraph->nodes[submit_node_idx], submit_node_idx, false, i == last_node, almost_ready, submit);
bool enqueued = ggml_vk_build_graph(ctx, cgraph, i, cgraph->nodes[submit_node_idx], submit_node_idx, false, i + ctx->num_additional_fused_ops == last_node, almost_ready, submit);
if (vk_perf_logger_enabled) {
if (ctx->compute_ctx.expired()) {
@ -9792,7 +9815,10 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
} else {
compute_ctx = ctx->compute_ctx.lock();
}
compute_ctx->s->buffer.writeTimestamp(vk::PipelineStageFlagBits::eAllCommands, ctx->device->query_pool, i+1);
// If there are fused ops, just write out timestamps for all nodes to keep the accounting simple
for (int j = 0; j < ctx->num_additional_fused_ops + 1; ++j) {
compute_ctx->s->buffer.writeTimestamp(vk::PipelineStageFlagBits::eAllCommands, ctx->device->query_pool, i+j+1);
}
}
if (enqueued) {
@ -9814,6 +9840,8 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
}
submit_count++;
}
i += ctx->num_additional_fused_ops;
ctx->num_additional_fused_ops = 0;
}
if (vk_perf_logger_enabled) {

View File

@ -1,11 +1,13 @@
#version 450
#include "generic_unary_head.comp"
#include "generic_binary_head.comp"
#include "types.comp"
#extension GL_EXT_control_flow_attributes : enable
#define BLOCK_SIZE 512
layout (constant_id = 1) const bool do_multiply = false;
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE sum[BLOCK_SIZE];
@ -25,6 +27,7 @@ void main() {
const uint stride_sample = p.nb03;
uint32_t a_offset = samp*stride_sample + channel*stride_channel + row*stride_row + get_aoffset();
uint32_t b_offset = src1_idx(0, row, channel, samp) + get_boffset();
uint32_t d_offset = ((samp*nchannels + channel)*nrows + row)*ncols + get_doffset();
sum[tid] = FLOAT_TYPE(0.0f); // partial sum for thread in warp
@ -46,7 +49,13 @@ void main() {
const FLOAT_TYPE mean = sum[0] / FLOAT_TYPE(ncols);
const FLOAT_TYPE scale = inversesqrt(mean + FLOAT_TYPE(p.param1));
if (do_multiply) {
[[unroll]] for (uint col = tid; col < ncols; col += BLOCK_SIZE) {
data_d[d_offset + col] = D_TYPE(scale * FLOAT_TYPE(data_a[a_offset + col]) * FLOAT_TYPE(data_b[b_offset + col]));
}
} else {
[[unroll]] for (uint col = tid; col < ncols; col += BLOCK_SIZE) {
data_d[d_offset + col] = D_TYPE(scale * FLOAT_TYPE(data_a[a_offset + col]));
}
}
}

View File

@ -497,7 +497,7 @@ void process_shaders() {
// Norms
string_to_spv("norm_f32", "norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("group_norm_f32", "group_norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("rms_norm_f32", "rms_norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("rms_norm_f32", "rms_norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("rms_norm_back_f32", "rms_norm_back.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("l2_norm_f32", "l2_norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));

View File

@ -5841,10 +5841,18 @@ static void ggml_compute_backward(
GGML_ASSERT(!src2_needs_grads || ggml_are_same_shape(src2, cgraph->grads[isrc2]));
}
static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
static size_t ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
// check if already visited
if (ggml_hash_insert(&cgraph->visited_hash_set, node) == GGML_HASHSET_ALREADY_EXISTS) {
return;
size_t node_hash_pos = ggml_hash_find(&cgraph->visited_hash_set, node);
GGML_ASSERT(node_hash_pos != GGML_HASHSET_FULL);
if (!ggml_bitset_get(cgraph->visited_hash_set.used, node_hash_pos)) {
// This is the first time we see this node in the current graph.
cgraph->visited_hash_set.keys[node_hash_pos] = node;
ggml_bitset_set(cgraph->visited_hash_set.used, node_hash_pos);
cgraph->use_counts[node_hash_pos] = 0;
} else {
// already visited
return node_hash_pos;
}
for (int i = 0; i < GGML_MAX_SRC; ++i) {
@ -5852,8 +5860,13 @@ static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor *
(cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
(cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
/* unknown order, just fall back to using i */ i;
if (node->src[k]) {
ggml_visit_parents(cgraph, node->src[k]);
struct ggml_tensor * src = node->src[k];
if (src) {
size_t src_hash_pos = ggml_visit_parents(cgraph, src);
// Update the use count for this operand.
cgraph->use_counts[src_hash_pos]++;
}
}
@ -5877,6 +5890,8 @@ static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor *
cgraph->nodes[cgraph->n_nodes] = node;
cgraph->n_nodes++;
}
return node_hash_pos;
}
static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
@ -6014,6 +6029,7 @@ static size_t ggml_graph_nbytes(size_t size, bool grads) {
incr_ptr_aligned(&p, sizeof(struct ggml_cgraph), 1);
incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // nodes
incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // leafs
incr_ptr_aligned(&p, hash_size * sizeof(int32_t), sizeof(int32_t)); // use_counts
incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // hash keys
if (grads) {
incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grads
@ -6045,6 +6061,7 @@ struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t siz
struct ggml_tensor ** nodes_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
struct ggml_tensor ** leafs_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
int32_t * use_counts_ptr = incr_ptr_aligned(&p, hash_size * sizeof(int32_t), sizeof(int32_t));
struct ggml_tensor ** hash_keys_ptr = incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
struct ggml_tensor ** grads_ptr = grads ? incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
struct ggml_tensor ** grad_accs_ptr = grads ? incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
@ -6062,6 +6079,7 @@ struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t siz
/*.grads =*/ grads_ptr,
/*.grad_accs =*/ grad_accs_ptr,
/*.leafs =*/ leafs_ptr,
/*.use_counts =*/ use_counts_ptr,
/*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr },
/*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
};
@ -6088,7 +6106,8 @@ struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1)
/*.grads =*/ NULL, // gradients would need visited_hash_set
/*.grad_accs =*/ NULL,
/*.leafs =*/ NULL,
/*.visited_hash_set =*/ { 0, NULL, NULL },
/*.use_counts =*/ cgraph0->use_counts,
/*.visited_hash_set =*/ cgraph0->visited_hash_set,
/*.order =*/ cgraph0->order,
};
@ -6115,7 +6134,8 @@ void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
for (size_t i = 0; i < src->visited_hash_set.size; ++i) {
// copy all hashset keys (tensors) that are in use
if (ggml_bitset_get(src->visited_hash_set.used, i)) {
ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]);
size_t new_hash_pos = ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]);
dst->use_counts[new_hash_pos] = src->use_counts[i];
}
}

View File

@ -382,6 +382,8 @@ struct test_case {
return 0;
}
virtual bool run_whole_graph() { return false; }
ggml_cgraph * gf = nullptr;
ggml_cgraph * gb = nullptr;
@ -574,7 +576,7 @@ struct test_case {
GGML_UNUSED(index);
};
const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
if (!cmp_ok) {
printf("compare failed ");
@ -1896,6 +1898,63 @@ struct test_rms_norm_back : public test_case {
}
};
// GGML_OP_RMS_NORM + GGML_OP_MUL
struct test_rms_norm_mul : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const float eps;
std::string op_desc(ggml_tensor * t) override {
GGML_UNUSED(t);
return "RMS_NORM_MUL";
}
bool run_whole_graph() override { return true; }
std::string vars() override {
return VARS_TO_STR3(type, ne, eps);
}
test_rms_norm_mul(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {64, 5, 4, 3},
float eps = 1e-6f)
: type(type), ne(ne), eps(eps) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(a);
ggml_set_name(a, "a");
ggml_set_param(b);
ggml_set_name(b, "b");
// Use a and b early, so we don't end up with an OP_NONE between rms_norm and mul
a = ggml_add(ctx, a, b);
ggml_tensor * out = ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
init_tensor_uniform(t, -10.f, 10.f);
}
}
double max_nmse_err() override {
return 1e-6;
}
float grad_eps() override {
return 1.0f;
}
bool grad_precise() override {
return true;
}
};
// GGML_OP_SSM_CONV
struct test_ssm_conv : public test_case {
const ggml_type type;
@ -3736,6 +3795,7 @@ struct test_llama : public test_llm {
static constexpr float attn_factor = 1.0f;
static constexpr float beta_fast = 32.0f;
static constexpr float beta_slow = 1.0f;
bool fused;
std::string op_desc(ggml_tensor * t) override {
GGML_UNUSED(t);
@ -3751,7 +3811,9 @@ struct test_llama : public test_llm {
return 2e-3;
}
test_llama(int n_tokens = 1)
bool run_whole_graph() override { return fused; }
test_llama(int n_tokens = 1, bool fused = false)
: test_llm({
/*n_vocab =*/ 32000,
/*n_embd =*/ 3200,
@ -3763,7 +3825,9 @@ struct test_llama : public test_llm {
/*f_norm_eps =*/ 0.f,
/*f_norm_rms_eps =*/ 1e-5f,
/*n_tokens =*/ n_tokens,
}) {
})
, fused(fused)
{
}
ggml_tensor * build_graph(ggml_context * ctx) override {
@ -4306,6 +4370,9 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
}
for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
test_cases.emplace_back(new test_rms_norm_mul(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
}
test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
@ -4677,6 +4744,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
test_cases.emplace_back(new test_llama(2, true));
// these tests are disabled to save execution time, but they can be handy for debugging
#if 0
test_cases.emplace_back(new test_llama(1));