mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-27 12:05:03 +00:00
model : disable SWA for Phi models (#13676)
* model : disable SWA for Phi models ggml-ci * model : update warning message * model : print warning only if n_swa > 0 * model : fix typo
This commit is contained in:
@ -853,43 +853,16 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
|
||||
// for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931
|
||||
if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) {
|
||||
// default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct
|
||||
LLAMA_LOG_WARN("%s: assuming n_swa = 2047 for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct\n", __func__);
|
||||
const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
|
||||
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
|
||||
hparams.n_swa = 2047;
|
||||
} else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) {
|
||||
// default value for Phi-3-mini-128k-instruct
|
||||
LLAMA_LOG_WARN("%s: assuming no SWA for Phi-3-mini-128k-instruct\n", __func__);
|
||||
if (found_swa && hparams.n_swa > 0) {
|
||||
LLAMA_LOG_WARN("%s: Phi SWA is currently disabled - results might be suboptimal for some models (see %s)\n",
|
||||
__func__, "https://github.com/ggml-org/llama.cpp/pull/13676");
|
||||
|
||||
// TODO: fix conversion scripts to correctly populate `n_swa` and `n_swa_pattern`
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
|
||||
|
||||
hparams.n_swa = hparams.n_ctx_train;
|
||||
hparams.n_swa_pattern = 1;
|
||||
} else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) {
|
||||
// default value for Phi-3-medium-128k-instruct
|
||||
LLAMA_LOG_WARN("%s: assuming no SWA for Phi-3-medium-128k-instruct\n", __func__);
|
||||
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
|
||||
|
||||
hparams.n_swa = hparams.n_ctx_train;
|
||||
hparams.n_swa_pattern = 1;
|
||||
}
|
||||
|
||||
bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
|
||||
if (!found_swa && hparams.n_swa == 0) {
|
||||
throw std::runtime_error("invalid value for sliding_window");
|
||||
}
|
||||
|
||||
if (hparams.n_swa > hparams.n_ctx_train) {
|
||||
LLAMA_LOG_WARN("%s: unexpected n_swa: %d >= %d, disabling SWA\n", __func__, hparams.n_swa, hparams.n_ctx_train);
|
||||
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
|
||||
|
||||
hparams.n_swa = hparams.n_ctx_train;
|
||||
hparams.n_swa = 0;
|
||||
hparams.n_swa_pattern = 1;
|
||||
}
|
||||
} break;
|
||||
@ -7368,8 +7341,9 @@ struct llm_build_phi2 : public llm_graph_context {
|
||||
}
|
||||
};
|
||||
|
||||
struct llm_build_phi3_iswa : public llm_graph_context {
|
||||
llm_build_phi3_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
template<bool iswa>
|
||||
struct llm_build_phi3 : public llm_graph_context {
|
||||
llm_build_phi3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
||||
@ -7383,7 +7357,14 @@ struct llm_build_phi3_iswa : public llm_graph_context {
|
||||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
auto * inp_attn = build_attn_inp_kv_unified_iswa();
|
||||
using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_unified_iswa, llm_graph_input_attn_kv_unified>;
|
||||
inp_attn_type * inp_attn = nullptr;
|
||||
|
||||
if constexpr (iswa) {
|
||||
inp_attn = build_attn_inp_kv_unified_iswa();
|
||||
} else {
|
||||
inp_attn = build_attn_inp_kv_unified();
|
||||
}
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
auto * residual = inpL;
|
||||
@ -13232,7 +13213,9 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
|
||||
|
||||
if (hparams.n_swa > 0) {
|
||||
if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
|
||||
GGML_ASSERT(hparams.n_swa_pattern != 1);
|
||||
|
||||
res = new llama_kv_cache_unified_iswa(
|
||||
*this,
|
||||
params.type_k,
|
||||
@ -13245,6 +13228,8 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
||||
cparams.n_batch,
|
||||
padding);
|
||||
} else {
|
||||
GGML_ASSERT(hparams.n_swa_pattern == 1);
|
||||
|
||||
res = new llama_kv_cache_unified(
|
||||
*this,
|
||||
nullptr,
|
||||
@ -13353,7 +13338,11 @@ llm_graph_result_ptr llama_model::build_graph(
|
||||
case LLM_ARCH_PHI3:
|
||||
case LLM_ARCH_PHIMOE:
|
||||
{
|
||||
llm = std::make_unique<llm_build_phi3_iswa>(*this, params, gf);
|
||||
if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
|
||||
llm = std::make_unique<llm_build_phi3<true>> (*this, params, gf);
|
||||
} else {
|
||||
llm = std::make_unique<llm_build_phi3<false>>(*this, params, gf);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_PLAMO:
|
||||
{
|
||||
|
Reference in New Issue
Block a user