mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-07-10 13:30:27 +00:00
kv-cache : prepare K/V buffers for separation
ggml-ci
This commit is contained in:
@ -65,6 +65,46 @@ uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
|
||||
return n_embd_head_v * n_head_kv;
|
||||
}
|
||||
|
||||
bool llama_hparams::is_n_embd_k_gqa_variable() const {
|
||||
const uint32_t val = n_embd_k_gqa();
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
if (val != n_embd_k_gqa(il)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool llama_hparams::is_n_embd_v_gqa_variable() const {
|
||||
const uint32_t val = n_embd_v_gqa();
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
if (val != n_embd_v_gqa(il)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_k_gqa_max() const {
|
||||
uint32_t val = n_embd_k_gqa();
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
val = std::max(val, n_embd_k_gqa(il));
|
||||
}
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_v_gqa_max() const {
|
||||
uint32_t val = n_embd_v_gqa();
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
val = std::max(val, n_embd_v_gqa(il));
|
||||
}
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_r() const {
|
||||
if (wkv_head_size != 0) {
|
||||
// for RWKV models
|
||||
|
@ -189,6 +189,14 @@ struct llama_hparams {
|
||||
// dimension of value embeddings across all k-v heads
|
||||
uint32_t n_embd_v_gqa(uint32_t il = 0) const;
|
||||
|
||||
// true if any layer has a different n_embd_k_gqa/n_embd_v_gqa
|
||||
bool is_n_embd_k_gqa_variable() const;
|
||||
bool is_n_embd_v_gqa_variable() const;
|
||||
|
||||
// return the maximum n_embd_k_gqa/n_embd_v_gqa across all layers
|
||||
uint32_t n_embd_k_gqa_max() const;
|
||||
uint32_t n_embd_v_gqa_max() const;
|
||||
|
||||
// dimension of the rolling state embeddings
|
||||
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
|
||||
uint32_t n_embd_r() const;
|
||||
|
@ -68,14 +68,21 @@ llama_kv_cache_unified::llama_kv_cache_unified(
|
||||
|
||||
cells.resize(kv_size);
|
||||
|
||||
// [TAG_V_CACHE_VARIABLE]
|
||||
if (v_trans && hparams.is_n_embd_v_gqa_variable()) {
|
||||
LLAMA_LOG_WARN("%s: the V embeddings have different sizes across layers and FA is not enabled - padding V cache to %d\n",
|
||||
__func__, hparams.n_embd_v_gqa_max());
|
||||
}
|
||||
|
||||
for (uint32_t il = 0; il < n_layer_cache; il++) {
|
||||
if (filter && !filter(il)) {
|
||||
LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, il);
|
||||
continue;
|
||||
}
|
||||
|
||||
// [TAG_V_CACHE_VARIABLE]
|
||||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
||||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
|
||||
const uint32_t n_embd_v_gqa = !v_trans ? hparams.n_embd_v_gqa(il) : hparams.n_embd_v_gqa_max();
|
||||
|
||||
const char * dev_name = "CPU";
|
||||
|
||||
@ -98,8 +105,8 @@ llama_kv_cache_unified::llama_kv_cache_unified(
|
||||
ggml_tensor * k;
|
||||
ggml_tensor * v;
|
||||
|
||||
k = ggml_new_tensor_2d(ctx, type_k, n_embd_k_gqa, kv_size);
|
||||
v = ggml_new_tensor_2d(ctx, type_v, n_embd_v_gqa, kv_size);
|
||||
k = ggml_new_tensor_3d(ctx, type_k, n_embd_k_gqa, kv_size, 1);
|
||||
v = ggml_new_tensor_3d(ctx, type_v, n_embd_v_gqa, kv_size, 1);
|
||||
|
||||
ggml_format_name(k, "cache_k_l%d", il);
|
||||
ggml_format_name(v, "cache_v_l%d", il);
|
||||
@ -785,11 +792,17 @@ ggml_tensor * llama_kv_cache_unified::get_k(ggml_context * ctx, int32_t il, uint
|
||||
|
||||
auto * k = layers[ikv].k;
|
||||
|
||||
return ggml_view_3d(ctx, k,
|
||||
hparams.n_embd_head_k, hparams.n_head_kv(il), n_kv,
|
||||
const uint64_t kv_size = get_size();
|
||||
const uint64_t n_embd_k_gqa = k->ne[0];
|
||||
|
||||
assert(n_embd_k_gqa == hparams.n_embd_k_gqa(il));
|
||||
|
||||
return ggml_view_4d(ctx, k,
|
||||
hparams.n_embd_head_k, hparams.n_head_kv(il), n_kv, 1,
|
||||
ggml_row_size(k->type, hparams.n_embd_head_k),
|
||||
ggml_row_size(k->type, hparams.n_embd_k_gqa(il)),
|
||||
0);
|
||||
ggml_row_size(k->type, n_embd_k_gqa),
|
||||
ggml_row_size(k->type, n_embd_k_gqa*kv_size),
|
||||
ggml_row_size(k->type, n_embd_k_gqa*kv_size)*0);
|
||||
}
|
||||
|
||||
ggml_tensor * llama_kv_cache_unified::get_v(ggml_context * ctx, int32_t il, uint32_t n_kv) const {
|
||||
@ -797,21 +810,29 @@ ggml_tensor * llama_kv_cache_unified::get_v(ggml_context * ctx, int32_t il, uint
|
||||
|
||||
auto * v = layers[ikv].v;
|
||||
|
||||
const uint64_t kv_size = get_size();
|
||||
const uint64_t n_embd_v_gqa = v->ne[0];
|
||||
|
||||
// [TAG_V_CACHE_VARIABLE]
|
||||
assert(n_embd_v_gqa >= hparams.n_embd_v_gqa(il));
|
||||
|
||||
if (!v_trans) {
|
||||
// note: v->nb[1] <= v->nb[2]
|
||||
return ggml_view_3d(ctx, v,
|
||||
hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv,
|
||||
return ggml_view_4d(ctx, v,
|
||||
hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv, 1,
|
||||
ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1]
|
||||
ggml_row_size(v->type, hparams.n_embd_v_gqa(il)), // v->nb[2]
|
||||
0);
|
||||
ggml_row_size(v->type, n_embd_v_gqa), // v->nb[2]
|
||||
ggml_row_size(v->type, n_embd_v_gqa*kv_size), // v->nb[3]
|
||||
ggml_row_size(v->type, n_embd_v_gqa*kv_size)*0);
|
||||
}
|
||||
|
||||
// note: v->nb[1] > v->nb[2]
|
||||
return ggml_view_3d(ctx, v,
|
||||
n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v,
|
||||
ggml_row_size(v->type, v->ne[1]*hparams.n_embd_head_v), // v->nb[1]
|
||||
ggml_row_size(v->type, v->ne[1]), // v->nb[2]
|
||||
0);
|
||||
return ggml_view_4d(ctx, v,
|
||||
n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v, 1,
|
||||
ggml_row_size(v->type, kv_size*hparams.n_embd_head_v), // v->nb[1]
|
||||
ggml_row_size(v->type, kv_size), // v->nb[2]
|
||||
ggml_row_size(v->type, kv_size*n_embd_v_gqa), // v->nb[3]
|
||||
ggml_row_size(v->type, kv_size*n_embd_v_gqa)*0);
|
||||
}
|
||||
|
||||
ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const {
|
||||
@ -825,6 +846,10 @@ ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_
|
||||
k_cur = ggml_reshape_2d(ctx, k_cur, k->ne[0], n_tokens);
|
||||
|
||||
if (k_idxs && supports_set_rows) {
|
||||
if (k->ne[2] > 1) {
|
||||
k = ggml_reshape_2d(ctx, k, k->ne[0], k->ne[1]*k->ne[2]);
|
||||
}
|
||||
|
||||
return ggml_set_rows(ctx, k, k_cur, k_idxs);
|
||||
}
|
||||
|
||||
@ -843,31 +868,30 @@ ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_
|
||||
|
||||
auto * v = layers[ikv].v;
|
||||
|
||||
const int64_t n_embd_v_gqa = v->ne[0];
|
||||
const int64_t n_embd_v_gqa = v_cur->ne[0]*v_cur->ne[1];
|
||||
const int64_t n_tokens = v_cur->ne[2];
|
||||
|
||||
v_cur = ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens);
|
||||
|
||||
if (v_idxs && supports_set_rows) {
|
||||
if (!v_trans) {
|
||||
if (v->ne[2] > 1) {
|
||||
v = ggml_reshape_2d(ctx, v, v->ne[0], v->ne[1]*v->ne[2]);
|
||||
}
|
||||
|
||||
return ggml_set_rows(ctx, v, v_cur, v_idxs);
|
||||
}
|
||||
|
||||
// [TAG_V_CACHE_VARIABLE]
|
||||
if (n_embd_v_gqa < v->ne[0]) {
|
||||
v_cur = ggml_pad(ctx, v_cur, v->ne[0] - n_embd_v_gqa, 0, 0, 0);
|
||||
}
|
||||
|
||||
// the row becomes a single element
|
||||
ggml_tensor * v_view = ggml_reshape_3d(ctx, v, 1, v->ne[1], v->ne[0]);
|
||||
ggml_tensor * v_view = ggml_reshape_2d(ctx, v, 1, v->ne[0]*v->ne[1]*v->ne[2]);
|
||||
|
||||
// note: the V cache is transposed when not using flash attention
|
||||
v_cur = ggml_permute(ctx, ggml_reshape_3d(ctx, v_cur, v_cur->ne[0], 1, v_cur->ne[1]), 2, 0, 1, 3);
|
||||
v_cur = ggml_reshape_2d(ctx, v_cur, 1, v_cur->ne[0]*v_cur->ne[1]);
|
||||
|
||||
// note: we can be more explicit here at the cost of extra cont
|
||||
// however, above we take advantage that a row of single element is always continuous regardless of the row stride
|
||||
//v_cur = ggml_transpose(ctx, v_cur);
|
||||
//v_cur = ggml_cont_3d(ctx, v_cur, 1, v_cur->ne[0], v_cur->ne[1]);
|
||||
|
||||
// we broadcast the KV indices n_embd_v_gqa times
|
||||
// v [1, n_kv, n_embd_v_gqa]
|
||||
// v_cur [1, n_tokens, n_embd_v_gqa]
|
||||
// v_idxs [n_tokens, 1, 1]
|
||||
return ggml_set_rows(ctx, v_view, v_cur, v_idxs);
|
||||
}
|
||||
|
||||
@ -904,7 +928,13 @@ ggml_tensor * llama_kv_cache_unified::build_input_k_idxs(ggml_context * ctx, con
|
||||
ggml_tensor * llama_kv_cache_unified::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
|
||||
const uint32_t n_tokens = ubatch.n_tokens;
|
||||
|
||||
ggml_tensor * v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
|
||||
ggml_tensor * v_idxs;
|
||||
|
||||
if (!v_trans) {
|
||||
v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
|
||||
} else {
|
||||
v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens*hparams.n_embd_v_gqa_max());
|
||||
}
|
||||
|
||||
ggml_set_input(v_idxs);
|
||||
|
||||
@ -921,7 +951,7 @@ void llama_kv_cache_unified::set_input_k_idxs(ggml_tensor * dst, const llama_uba
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
|
||||
int64_t * data = (int64_t *) dst->data;
|
||||
|
||||
for (int64_t i = 0; i < n_tokens; ++i) {
|
||||
for (uint32_t i = 0; i < n_tokens; ++i) {
|
||||
data[i] = sinfo.idxs.at(i);
|
||||
}
|
||||
}
|
||||
@ -936,9 +966,22 @@ void llama_kv_cache_unified::set_input_v_idxs(ggml_tensor * dst, const llama_uba
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
|
||||
int64_t * data = (int64_t *) dst->data;
|
||||
|
||||
for (int64_t i = 0; i < n_tokens; ++i) {
|
||||
if (!v_trans) {
|
||||
for (uint32_t i = 0; i < n_tokens; ++i) {
|
||||
data[i] = sinfo.idxs.at(i);
|
||||
}
|
||||
} else {
|
||||
// note: the V cache is transposed when not using flash attention
|
||||
const int64_t kv_size = get_size();
|
||||
|
||||
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa_max();
|
||||
|
||||
for (uint32_t i = 0; i < n_tokens; ++i) {
|
||||
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
||||
data[i*n_embd_v_gqa + j] = j*kv_size + sinfo.idxs.at(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
|
||||
|
Reference in New Issue
Block a user