mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-08-09 02:12:45 -04:00
vulkan: scale caching for k quants + misc fixes (#11081)
* q6_k scale caching * 16 bit unpack * q4_k test (slow) * revert it * q3_k * q2_k * little stuff * try precalculating products of a and q2_k scales * Revert "try precalculating products of a and q2_k scales" This reverts commit 65110b81f23f66331a50c6e889a7c1ab9470a86b. * unpack should be u16, add vim swap to gitignore (about time) * better q4_k scales * q5_k * better q6_k with separate paths for all threads and partial threads in use, plus some more optimizations * q2_k better dequant * q3_k optimizations * q3_k use hmask simd from cpu avx version * make the caches happy * q3_k separate out calculation * q2_k separate out * little stuff * use calc_superblock everywhere * q2_k optimize scale calculation * more barriers
This commit is contained in:
@@ -5,6 +5,74 @@
|
||||
|
||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
shared FLOAT_TYPE sccache[BLOCK_SIZE/16][2][8];
|
||||
|
||||
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
|
||||
|
||||
void calc_superblock(const uint a_offset, const uint b_offset, const uint ix, const uint itid8, const uint v_im, const uint v_im4, const uint v_in, const uint32_t hm_m[4], const uint q_offset, const uint y_offset, const uint s_shift, const uint i, const uint num_blocks_per_row, const uint first_row, const uint num_rows, const bool all_threads) {
|
||||
const uint y_idx = i * QUANT_K + y_offset;
|
||||
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
|
||||
|
||||
if (!all_threads) { // when we don't have enough blocks to use all threads
|
||||
barrier();
|
||||
if (i < num_blocks_per_row)
|
||||
sccache[ix][v_im][itid8] = FLOAT_TYPE(int8_t(((data_a[ib0+i].scales[itid8] >> v_im4) & 0xF) | (((data_a[ib0+i].scales[itid8%4+8] >> s_shift) & 3) << 4)) - 32);
|
||||
barrier();
|
||||
|
||||
if (i >= num_blocks_per_row)
|
||||
continue;
|
||||
}
|
||||
|
||||
const uint32_t hmk = ~(uint32_t(data_a_packed16[ib0 + i].hmask[v_in]) | (uint32_t(data_a_packed16[ib0 + i].hmask[v_in + 8]) << 16));
|
||||
const vec4 hmk_0 = vec4(unpack8(((hmk & hm_m[0]) >> ( v_im4)) << 2));
|
||||
const vec4 hmk_1 = vec4(unpack8(((hmk & hm_m[1]) >> (1 + v_im4)) << 2));
|
||||
const vec4 hmk_2 = vec4(unpack8(((hmk & hm_m[2]) >> (2 + v_im4)) << 2));
|
||||
const vec4 hmk_3 = vec4(unpack8(((hmk & hm_m[3]) >> (3 + v_im4)) << 2));
|
||||
|
||||
// 0, 1, 16, 17
|
||||
uint32_t qs_u32 = uint32_t(data_a[ib0 + i].qs[q_offset]) | (uint32_t(data_a[ib0 + i].qs[q_offset + 1]) << 8);
|
||||
qs_u32 |= (uint32_t(data_a[ib0 + i].qs[q_offset + 16]) | (uint32_t(data_a[ib0 + i].qs[q_offset + 17]) << 8)) << 16;
|
||||
const vec4 qs_u32_0 = vec4(unpack8(qs_u32 & 0x03030303));
|
||||
const vec4 qs_u32_2 = vec4(unpack8((qs_u32 >> 2) & 0x03030303));
|
||||
const vec4 qs_u32_4 = vec4(unpack8((qs_u32 >> 4) & 0x03030303));
|
||||
const vec4 qs_u32_6 = vec4(unpack8((qs_u32 >> 6) & 0x03030303));
|
||||
|
||||
if (all_threads) {
|
||||
barrier();
|
||||
sccache[ix][v_im][itid8] = FLOAT_TYPE(int8_t(((data_a[ib0+i].scales[itid8] >> v_im4) & 0xF) | (((data_a[ib0+i].scales[itid8%4+8] >> s_shift) & 3) << 4)) - 32);
|
||||
barrier();
|
||||
}
|
||||
|
||||
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
|
||||
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
vec2 b0 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0]);
|
||||
vec2 b16 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8]);
|
||||
vec2 b32 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16]);
|
||||
vec2 b48 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24]);
|
||||
vec2 b64 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32]);
|
||||
vec2 b80 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40]);
|
||||
vec2 b96 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48]);
|
||||
vec2 b112 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56]);
|
||||
|
||||
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
|
||||
[[unroll]] for (int l = 0; l < 2; ++l) {
|
||||
sum = fma(FLOAT_TYPE( b0[l]) * sccache[ix][v_im][0], qs_u32_0[l ] - hmk_0[l ],
|
||||
fma(FLOAT_TYPE( b16[l]) * sccache[ix][v_im][1], qs_u32_0[l+2] - hmk_0[l+2],
|
||||
fma(FLOAT_TYPE( b32[l]) * sccache[ix][v_im][2], qs_u32_2[l ] - hmk_1[l ],
|
||||
fma(FLOAT_TYPE( b48[l]) * sccache[ix][v_im][3], qs_u32_2[l+2] - hmk_1[l+2],
|
||||
fma(FLOAT_TYPE( b64[l]) * sccache[ix][v_im][4], qs_u32_4[l ] - hmk_2[l ],
|
||||
fma(FLOAT_TYPE( b80[l]) * sccache[ix][v_im][5], qs_u32_4[l+2] - hmk_2[l+2],
|
||||
fma(FLOAT_TYPE( b96[l]) * sccache[ix][v_im][6], qs_u32_6[l ] - hmk_3[l ],
|
||||
fma(FLOAT_TYPE(b112[l]) * sccache[ix][v_im][7], qs_u32_6[l+2] - hmk_3[l+2], sum))))))));
|
||||
}
|
||||
temp[j][n] = fma(d, sum, temp[j][n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
uint a_offset, b_offset, d_offset;
|
||||
get_offsets(a_offset, b_offset, d_offset);
|
||||
@@ -14,76 +82,37 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
// 16 threads are used to process each block
|
||||
const uint it_size = gl_WorkGroupSize.x/16;
|
||||
const uint tid = gl_LocalInvocationID.x;
|
||||
const uint itid = tid%16; // 0...16
|
||||
const uint ix = tid/16;
|
||||
const uint itid = tid%16; // 0...15
|
||||
const uint ix = tid/16;
|
||||
const uint itid8 = itid%8;
|
||||
|
||||
const uint step = 8;
|
||||
const uint v_im = itid/8; // 0 or 1. 0 computes 0..., 1 computes 128...
|
||||
const uint v_im4 = v_im*4;
|
||||
const uint v_in = itid - 8*v_im; // 0...7
|
||||
|
||||
const uint v_im = itid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
||||
const uint v_in = itid - step*v_im; // 0...15 or 0...7
|
||||
|
||||
const uint8_t m = uint8_t(1 << (4 * v_im));
|
||||
const uint32_t m = 0x01010101 << (4 * v_im);
|
||||
uint32_t hm_m[4];
|
||||
[[unroll]] for (uint j = 0; j < 4; ++j)
|
||||
hm_m[j] = m << j;
|
||||
|
||||
const uint l0 = 2*v_in; // 0...15
|
||||
const uint q_offset = 32*v_im + l0;
|
||||
const uint y_offset = 128*v_im + l0;
|
||||
|
||||
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
|
||||
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||
temp[j][i] = FLOAT_TYPE(0);
|
||||
}
|
||||
}
|
||||
|
||||
const uint s_shift = 4 * v_im;
|
||||
const uint s_shift = v_im4 + 2*(itid8/4);
|
||||
|
||||
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
||||
const uint y_idx = i * QUANT_K + y_offset;
|
||||
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
|
||||
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
|
||||
|
||||
uint16_t s0_16 = data_a_packed16[ib0 + i].scales[0];
|
||||
uint16_t s2_16 = data_a_packed16[ib0 + i].scales[1];
|
||||
uint16_t s4_16 = data_a_packed16[ib0 + i].scales[2];
|
||||
uint16_t s6_16 = data_a_packed16[ib0 + i].scales[3];
|
||||
uint16_t s8_16 = data_a_packed16[ib0 + i].scales[4];
|
||||
uint16_t s10_16 = data_a_packed16[ib0 + i].scales[5];
|
||||
u8vec2 s0 = unpack8(s0_16);
|
||||
u8vec2 s2 = unpack8(s2_16);
|
||||
u8vec2 s4 = unpack8(s4_16);
|
||||
u8vec2 s6 = unpack8(s6_16);
|
||||
u8vec2 s8 = unpack8(s8_16);
|
||||
u8vec2 s10 = unpack8(s10_16);
|
||||
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
|
||||
vec2 b0 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0]);
|
||||
vec2 b16 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8]);
|
||||
vec2 b32 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16]);
|
||||
vec2 b48 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24]);
|
||||
vec2 b64 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32]);
|
||||
vec2 b80 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40]);
|
||||
vec2 b96 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48]);
|
||||
vec2 b112 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56]);
|
||||
|
||||
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
|
||||
[[unroll]] for (int l = 0; l < 2; ++l) {
|
||||
sum = fma(FLOAT_TYPE(b0[l]) * FLOAT_TYPE(int8_t(((s0[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b32[l]) * FLOAT_TYPE(int8_t(((s2[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b64[l]) * FLOAT_TYPE(int8_t(((s4[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b96[l]) * FLOAT_TYPE(int8_t(((s6[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 3)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b16[l]) * FLOAT_TYPE(int8_t(((s0[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 0)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b48[l]) * FLOAT_TYPE(int8_t(((s2[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 1)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b80[l]) * FLOAT_TYPE(int8_t(((s4[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b112[l]) * FLOAT_TYPE(int8_t(((s6[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum))))))));
|
||||
}
|
||||
temp[j][n] = fma(d, sum, temp[j][n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
const uint nbr_par_th = num_blocks_per_row%it_size;
|
||||
const uint nbr_all_th = num_blocks_per_row - nbr_par_th;
|
||||
uint i0 = 0;
|
||||
[[unroll]] for (; i0 < nbr_all_th; i0 += it_size)
|
||||
calc_superblock(a_offset, b_offset, ix, itid8, v_im, v_im4, v_in, hm_m, q_offset, y_offset, s_shift, i0 + ix, num_blocks_per_row, first_row, num_rows, true);
|
||||
calc_superblock(a_offset, b_offset, ix, itid8, v_im, v_im4, v_in, hm_m, q_offset, y_offset, s_shift, i0 + ix, num_blocks_per_row, first_row, num_rows, false);
|
||||
|
||||
reduce_result(temp, d_offset, first_row, num_rows, tid);
|
||||
}
|
||||
|
Reference in New Issue
Block a user