context : fix causal input for cache-less case

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-02-20 19:52:42 +02:00
parent b1554be1d7
commit ad870c49f4

View File

@ -48,6 +48,7 @@ llama_context::llama_context(
// the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
// this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
// ref: https://github.com/ggerganov/llama.cpp/pull/5021
// TODO: this padding is not needed for the cache-less context so we should probably move it to llama_context_kv_self
if (cparams.n_batch < GGML_KQ_MASK_PAD) {
LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
cparams.n_batch = GGML_KQ_MASK_PAD;
@ -2127,60 +2128,44 @@ void llama_context::input_set(const llama_ubatch & ubatch) {
}
if (inp_kq_mask) {
// NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
if (cparams.causal_attn) {
// TODO: need to use the batch directly to construct the masks
GGML_ABORT("TODO");
const int64_t n_kv = ubatch.n_tokens;
const int64_t n_tokens = ubatch.n_tokens;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
const int64_t n_seqs = ubatch.n_seqs;
//const int64_t n_kv = ubatch.n_tokens;
//const int64_t n_tokens = ubatch.n_tokens;
//const int64_t n_seq_tokens = ubatch.n_seq_tokens;
//const int64_t n_seqs = ubatch.n_seqs;
GGML_ASSERT(ggml_backend_buffer_is_host(inp_kq_mask->buffer));
float * data = (float *) inp_kq_mask->data;
//float * data = nullptr;
for (int h = 0; h < 1; ++h) {
for (int s1 = 0; s1 < n_seqs; ++s1) {
const llama_seq_id seq_id = ubatch.seq_id[s1][0];
//if (inp_kq_mask) {
// GGML_ASSERT(ggml_backend_buffer_is_host(inp_kq_mask->buffer));
// data = (float *) inp_kq_mask->data;
//}
for (int j = 0; j < n_seq_tokens; ++j) {
const int32_t tj = s1*n_seq_tokens + j;
//// For causal attention, use only the previous KV cells
//// of the correct sequence for each token of the ubatch.
//// It's assumed that if a token in the batch has multiple sequences, they are equivalent.
//for (int h = 0; h < 1; ++h) {
// for (int s = 0; s < n_seqs; ++s) {
// const llama_seq_id seq_id = ubatch.seq_id[s][0];
for (int s0 = 0; s0 < n_seqs; ++s0) {
for (int i = 0; i < n_seq_tokens; ++i) {
const int32_t ti = s0*n_seq_tokens + i;
float f = -INFINITY;
// for (int j = 0; j < n_seq_tokens; ++j) {
// const llama_pos pos = ubatch.pos[s*n_seq_tokens + j];
for (int s = 0; s < ubatch.n_seq_id[s0]; ++s) {
if (ubatch.seq_id[s0][s] == seq_id && ubatch.pos[ti] <= ubatch.pos[tj]) {
if (hparams.use_alibi) {
f = -std::abs(ubatch.pos[ti] - ubatch.pos[tj]);
} else {
f = 0.0f;
}
break;
}
}
// for (int i = 0; i < n_kv; ++i) {
// float f;
// if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
// f = -INFINITY;
// } else {
// if (hparams.use_alibi) {
// f = -std::abs(kv_self.cells[i].pos - pos);
// } else {
// f = 0.0f;
// }
// }
// if (data) {
// data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
// }
// }
// }
// }
// if (data) {
// for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
// for (int j = 0; j < n_kv; ++j) {
// data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
// }
// }
// }
//}
data[h*(n_kv*n_tokens) + tj*n_kv + ti] = f;
}
}
}
}
}
} else {
const int64_t n_tokens = ubatch.n_tokens;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;