kv-cache : use ggml_set_rows (#14285)

* kv-cache : use ggml_set_rows

ggml-ci

* graph : separate k and v indices

ggml-ci

* cont : remove redundant ifs

ggml-ci

* kv-cache : improve find_slot impl

* kv-cache : bounds-check when accessing slot_info indices

* kv-cache : add comments

ggml-ci

* ggml : add TODOs for adding GGML_OP_SET_ROWS support in the backends

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-07-03 10:53:35 +03:00
committed by GitHub
parent 9067487c44
commit a70c8a0c4b
13 changed files with 451 additions and 143 deletions

View File

@ -156,6 +156,13 @@ llama_kv_cache_unified::llama_kv_cache_unified(
const char * LLAMA_KV_CACHE_DEBUG = getenv("LLAMA_KV_CACHE_DEBUG");
debug = LLAMA_KV_CACHE_DEBUG ? atoi(LLAMA_KV_CACHE_DEBUG) : 0;
const char * LLAMA_SET_ROWS = getenv("LLAMA_SET_ROWS");
supports_set_rows = LLAMA_SET_ROWS ? atoi(LLAMA_SET_ROWS) : 0;
if (!supports_set_rows) {
LLAMA_LOG_WARN("%s: LLAMA_SET_ROWS=0, using old ggml_cpy() method for backwards compatibility\n", __func__);
}
}
void llama_kv_cache_unified::clear(bool data) {
@ -353,13 +360,13 @@ llama_memory_context_ptr llama_kv_cache_unified::init_batch(
ubatches.push_back(std::move(ubatch)); // NOLINT
}
auto heads = prepare(ubatches);
if (heads.empty()) {
auto sinfos = prepare(ubatches);
if (sinfos.empty()) {
break;
}
return std::make_unique<llama_kv_cache_unified_context>(
this, std::move(heads), std::move(ubatches));
this, std::move(sinfos), std::move(ubatches));
} while (false);
return std::make_unique<llama_kv_cache_unified_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
@ -402,12 +409,13 @@ llama_memory_context_ptr llama_kv_cache_unified::init_update(llama_context * lct
return std::make_unique<llama_kv_cache_unified_context>(this, lctx, do_shift, std::move(dinfo));
}
llama_kv_cache_unified::ubatch_heads llama_kv_cache_unified::prepare(const std::vector<llama_ubatch> & ubatches) {
llama_kv_cache_unified::ubatch_heads res;
llama_kv_cache_unified::slot_info_vec_t llama_kv_cache_unified::prepare(const std::vector<llama_ubatch> & ubatches) {
llama_kv_cache_unified::slot_info_vec_t res;
struct state {
uint32_t head_old; // old position of the head, before placing the ubatch
uint32_t head_new; // new position of the head, after placing the ubatch
slot_info sinfo; // slot info for the ubatch
llama_kv_cells_unified cells; // copy of the old cells, before placing the ubatch
};
@ -418,26 +426,29 @@ llama_kv_cache_unified::ubatch_heads llama_kv_cache_unified::prepare(const std::
bool success = true;
for (const auto & ubatch : ubatches) {
// non-continuous slots require support for ggml_set_rows()
const bool cont = supports_set_rows ? false : true;
// only find a suitable slot for the ubatch. don't modify the cells yet
const int32_t head_new = find_slot(ubatch);
if (head_new < 0) {
const auto sinfo_new = find_slot(ubatch, cont);
if (sinfo_new.empty()) {
success = false;
break;
}
// remeber the position that we found
res.push_back(head_new);
res.push_back(sinfo_new);
// store the old state of the cells in the recovery stack
states.push_back({head, (uint32_t) head_new, cells.cp(head_new, ubatch.n_tokens)});
states.push_back({head, sinfo_new, cells.cp(sinfo_new.idxs)});
// now emplace the ubatch
apply_ubatch(head_new, ubatch);
apply_ubatch(sinfo_new, ubatch);
}
// iterate backwards and restore the cells to their original state
for (auto it = states.rbegin(); it != states.rend(); ++it) {
cells.set(it->head_new, it->cells);
cells.set(it->sinfo.idxs, it->cells);
head = it->head_old;
}
@ -539,7 +550,7 @@ bool llama_kv_cache_unified::update(llama_context * lctx, bool do_shift, const d
return updated;
}
int32_t llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch) const {
llama_kv_cache_unified::slot_info llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch, bool cont) const {
const uint32_t n_tokens = ubatch.n_tokens;
uint32_t head_cur = this->head;
@ -552,7 +563,7 @@ int32_t llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch) const {
if (n_tokens > cells.size()) {
LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %u\n", __func__, n_tokens, cells.size());
return -1;
return { };
}
if (debug > 0) {
@ -615,15 +626,26 @@ int32_t llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch) const {
uint32_t n_tested = 0;
// for continuous slots, we test that all tokens in the ubatch fit, starting from the current head
// for non-continuous slots, we test the tokens one by one
const uint32_t n_test = cont ? n_tokens : 1;
slot_info res;
auto & idxs = res.idxs;
idxs.reserve(n_tokens);
while (true) {
if (head_cur + n_tokens > cells.size()) {
if (head_cur + n_test > cells.size()) {
n_tested += cells.size() - head_cur;
head_cur = 0;
continue;
}
bool found = true;
for (uint32_t i = 0; i < n_tokens; i++) {
for (uint32_t i = 0; i < n_test; i++) {
const auto idx = head_cur;
//const llama_pos pos = ubatch.pos[i];
//const llama_seq_id seq_id = ubatch.seq_id[i][0];
@ -633,19 +655,19 @@ int32_t llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch) const {
// - (disabled) mask causally, if the sequence is the same as the one we are inserting
// - mask SWA, using current max pos for that sequence in the cache
// always insert in the cell with minimum pos
bool can_use = cells.is_empty(head_cur + i);
bool can_use = cells.is_empty(idx);
if (!can_use && cells.seq_count(head_cur + i) == 1) {
const llama_pos pos_cell = cells.pos_get(head_cur + i);
if (!can_use && cells.seq_count(idx) == 1) {
const llama_pos pos_cell = cells.pos_get(idx);
// (disabled) causal mask
// note: it's better to purge any "future" tokens beforehand
//if (cells.seq_has(head_cur + i, seq_id)) {
//if (cells.seq_has(idx, seq_id)) {
// can_use = pos_cell >= pos;
//}
if (!can_use) {
const llama_seq_id seq_id_cell = cells.seq_get(head_cur + i);
const llama_seq_id seq_id_cell = cells.seq_get(idx);
// SWA mask
if (is_masked_swa(pos_cell, cells.seq_pos_max(seq_id_cell) + 1)) {
@ -654,28 +676,39 @@ int32_t llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch) const {
}
}
if (!can_use) {
found = false;
head_cur += i + 1;
n_tested += i + 1;
head_cur++;
n_tested++;
if (can_use) {
idxs.push_back(idx);
} else {
break;
}
}
if (found) {
if (idxs.size() == n_tokens) {
break;
}
if (cont) {
idxs.clear();
}
if (n_tested >= cells.size()) {
//LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
return -1;
return { };
}
}
return head_cur;
// we didn't find a suitable slot - return empty result
if (idxs.size() < n_tokens) {
res.clear();
}
return res;
}
void llama_kv_cache_unified::apply_ubatch(uint32_t head_cur, const llama_ubatch & ubatch) {
void llama_kv_cache_unified::apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch) {
// keep track of the max sequence position that we would overwrite with this ubatch
// for non-SWA cache, this would be always empty
llama_seq_id seq_pos_max_rm[LLAMA_MAX_SEQ];
@ -683,22 +716,26 @@ void llama_kv_cache_unified::apply_ubatch(uint32_t head_cur, const llama_ubatch
seq_pos_max_rm[s] = -1;
}
for (uint32_t i = 0; i < ubatch.n_tokens; ++i) {
if (!cells.is_empty(head_cur + i)) {
assert(cells.seq_count(head_cur + i) == 1);
assert(ubatch.n_tokens == sinfo.idxs.size());
const llama_seq_id seq_id = cells.seq_get(head_cur + i);
const llama_pos pos = cells.pos_get(head_cur + i);
for (uint32_t i = 0; i < ubatch.n_tokens; ++i) {
const auto idx = sinfo.idxs.at(i);
if (!cells.is_empty(idx)) {
assert(cells.seq_count(idx) == 1);
const llama_seq_id seq_id = cells.seq_get(idx);
const llama_pos pos = cells.pos_get(idx);
seq_pos_max_rm[seq_id] = std::max(seq_pos_max_rm[seq_id], pos);
cells.rm(head_cur + i);
cells.rm(idx);
}
cells.pos_set(head_cur + i, ubatch.pos[i]);
cells.pos_set(idx, ubatch.pos[i]);
for (int32_t s = 0; s < ubatch.n_seq_id[i]; s++) {
cells.seq_add(head_cur + i, ubatch.seq_id[i][s]);
cells.seq_add(idx, ubatch.seq_id[i][s]);
}
}
@ -719,7 +756,7 @@ void llama_kv_cache_unified::apply_ubatch(uint32_t head_cur, const llama_ubatch
}
// move the head at the end of the slot
head = head_cur + ubatch.n_tokens;
head = sinfo.idxs.back() + 1;
}
bool llama_kv_cache_unified::get_can_shift() const {
@ -772,47 +809,133 @@ ggml_tensor * llama_kv_cache_unified::get_v(ggml_context * ctx, int32_t il, uint
0);
}
ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il, uint32_t head_cur) const {
ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const {
const int32_t ikv = map_layer_ids.at(il);
auto * k = layers[ikv].k;
const int64_t n_embd_k_gqa = k->ne[0];
const int64_t n_tokens = k_cur->ne[2];
k_cur = ggml_reshape_2d(ctx, k_cur, k->ne[0], n_tokens);
if (k_idxs && supports_set_rows) {
return ggml_set_rows(ctx, k, k_cur, k_idxs);
}
// TODO: fallback to old ggml_cpy() method for backwards compatibility
// will be removed when ggml_set_rows() is adopted by all backends
ggml_tensor * k_view = ggml_view_1d(ctx, k,
n_tokens*hparams.n_embd_k_gqa(il),
ggml_row_size(k->type, hparams.n_embd_k_gqa(il))*head_cur);
n_tokens*n_embd_k_gqa,
ggml_row_size(k->type, n_embd_k_gqa)*sinfo.head());
return ggml_cpy(ctx, k_cur, k_view);
}
ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il, uint32_t head_cur) const {
ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il, const slot_info & sinfo) const {
const int32_t ikv = map_layer_ids.at(il);
auto * v = layers[ikv].v;
const int64_t n_embd_v_gqa = v->ne[0];
const int64_t n_tokens = v_cur->ne[2];
v_cur = ggml_reshape_2d(ctx, v_cur, hparams.n_embd_v_gqa(il), n_tokens);
v_cur = ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens);
if (v_idxs && supports_set_rows) {
if (!v_trans) {
return ggml_set_rows(ctx, v, v_cur, v_idxs);
}
// the row becomes a single element
ggml_tensor * v_view = ggml_reshape_3d(ctx, v, 1, v->ne[1], v->ne[0]);
// note: the V cache is transposed when not using flash attention
v_cur = ggml_permute(ctx, ggml_reshape_3d(ctx, v_cur, v_cur->ne[0], 1, v_cur->ne[1]), 2, 0, 1, 3);
// note: we can be more explicit here at the cost of extra cont
// however, above we take advantage that a row of single element is always continuous regardless of the row stride
//v_cur = ggml_transpose(ctx, v_cur);
//v_cur = ggml_cont_3d(ctx, v_cur, 1, v_cur->ne[0], v_cur->ne[1]);
// we broadcast the KV indices n_embd_v_gqa times
// v [1, n_kv, n_embd_v_gqa]
// v_cur [1, n_tokens, n_embd_v_gqa]
// v_idxs [n_tokens, 1, 1]
return ggml_set_rows(ctx, v_view, v_cur, v_idxs);
}
// TODO: fallback to old ggml_cpy() method for backwards compatibility
// will be removed when ggml_set_rows() is adopted by all backends
ggml_tensor * v_view = nullptr;
if (!v_trans) {
v_view = ggml_view_1d(ctx, v,
n_tokens*hparams.n_embd_v_gqa(il),
ggml_row_size(v->type, hparams.n_embd_v_gqa(il))*head_cur);
n_tokens*n_embd_v_gqa,
ggml_row_size(v->type, n_embd_v_gqa)*sinfo.head());
} else {
// note: the V cache is transposed when not using flash attention
v_view = ggml_view_2d(ctx, v, n_tokens, hparams.n_embd_v_gqa(il),
(v->ne[1])*ggml_element_size(v),
(head_cur)*ggml_element_size(v));
v_cur = ggml_transpose(ctx, v_cur);
v_view = ggml_view_2d(ctx, v, n_tokens, n_embd_v_gqa,
(v->ne[1] )*ggml_element_size(v),
(sinfo.head())*ggml_element_size(v));
}
return ggml_cpy(ctx, v_cur, v_view);
}
ggml_tensor * llama_kv_cache_unified::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
const uint32_t n_tokens = ubatch.n_tokens;
ggml_tensor * k_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
ggml_set_input(k_idxs);
return k_idxs;
}
ggml_tensor * llama_kv_cache_unified::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
const uint32_t n_tokens = ubatch.n_tokens;
ggml_tensor * v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
ggml_set_input(v_idxs);
return v_idxs;
}
void llama_kv_cache_unified::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const {
if (!supports_set_rows) {
return;
}
const uint32_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
int64_t * data = (int64_t *) dst->data;
for (int64_t i = 0; i < n_tokens; ++i) {
data[i] = sinfo.idxs.at(i);
}
}
void llama_kv_cache_unified::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const {
if (!supports_set_rows) {
return;
}
const uint32_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
int64_t * data = (int64_t *) dst->data;
for (int64_t i = 0; i < n_tokens; ++i) {
data[i] = sinfo.idxs.at(i);
}
}
void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
const uint32_t n_tokens = ubatch->n_tokens;
@ -1552,13 +1675,15 @@ bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell
ubatch.seq_id[i] = &dest_seq_id;
}
const auto head_cur = find_slot(ubatch);
if (head_cur < 0) {
const auto sinfo = find_slot(ubatch, true);
if (sinfo.empty()) {
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
return false;
}
apply_ubatch(head_cur, ubatch);
apply_ubatch(sinfo, ubatch);
const auto head_cur = sinfo.head();
// keep the head at the old position because we will read the KV data into it in state_read_data()
head = head_cur;
@ -1744,7 +1869,11 @@ llama_kv_cache_unified_context::llama_kv_cache_unified_context(llama_memory_stat
llama_kv_cache_unified_context::llama_kv_cache_unified_context(
llama_kv_cache_unified * kv) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv) {
n_kv = kv->get_size();
head = 0;
// create a dummy slot info - the actual data is irrelevant. we just need to build the graph
sinfos.resize(1);
sinfos[0].idxs.resize(1);
sinfos[0].idxs[0] = 0;
}
llama_kv_cache_unified_context::llama_kv_cache_unified_context(
@ -1759,8 +1888,8 @@ llama_kv_cache_unified_context::llama_kv_cache_unified_context(
llama_kv_cache_unified_context::llama_kv_cache_unified_context(
llama_kv_cache_unified * kv,
llama_kv_cache_unified::ubatch_heads heads,
std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), heads(std::move(heads)), ubatches(std::move(ubatches)) {
llama_kv_cache_unified::slot_info_vec_t sinfos,
std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), sinfos(std::move(sinfos)), ubatches(std::move(ubatches)) {
}
llama_kv_cache_unified_context::~llama_kv_cache_unified_context() = default;
@ -1768,7 +1897,7 @@ llama_kv_cache_unified_context::~llama_kv_cache_unified_context() = default;
bool llama_kv_cache_unified_context::next() {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
if (++i_next >= ubatches.size()) {
if (++i_cur >= ubatches.size()) {
return false;
}
@ -1785,10 +1914,9 @@ bool llama_kv_cache_unified_context::apply() {
return true;
}
kv->apply_ubatch(heads[i_next], ubatches[i_next]);
kv->apply_ubatch(sinfos[i_cur], ubatches[i_cur]);
n_kv = kv->get_n_kv();
head = heads[i_next];
return true;
}
@ -1800,7 +1928,7 @@ llama_memory_status llama_kv_cache_unified_context::get_status() const {
const llama_ubatch & llama_kv_cache_unified_context::get_ubatch() const {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
return ubatches[i_next];
return ubatches[i_cur];
}
uint32_t llama_kv_cache_unified_context::get_n_kv() const {
@ -1815,18 +1943,34 @@ ggml_tensor * llama_kv_cache_unified_context::get_v(ggml_context * ctx, int32_t
return kv->get_v(ctx, il, n_kv);
}
ggml_tensor * llama_kv_cache_unified_context::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il) const {
return kv->cpy_k(ctx, k_cur, il, head);
ggml_tensor * llama_kv_cache_unified_context::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il) const {
return kv->cpy_k(ctx, k_cur, k_idxs, il, sinfos[i_cur]);
}
ggml_tensor * llama_kv_cache_unified_context::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il) const {
return kv->cpy_v(ctx, v_cur, il, head);
ggml_tensor * llama_kv_cache_unified_context::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il) const {
return kv->cpy_v(ctx, v_cur, v_idxs, il, sinfos[i_cur]);
}
ggml_tensor * llama_kv_cache_unified_context::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
return kv->build_input_k_idxs(ctx, ubatch);
}
ggml_tensor * llama_kv_cache_unified_context::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
return kv->build_input_v_idxs(ctx, ubatch);
}
void llama_kv_cache_unified_context::set_input_k_shift(ggml_tensor * dst) const {
kv->set_input_k_shift(dst);
}
void llama_kv_cache_unified_context::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
kv->set_input_k_idxs(dst, ubatch, sinfos[i_cur]);
}
void llama_kv_cache_unified_context::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
kv->set_input_v_idxs(dst, ubatch, sinfos[i_cur]);
}
void llama_kv_cache_unified_context::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
kv->set_input_kq_mask(dst, ubatch, causal_attn);
}