implement unary REGLU/GEGLU/SWIGLU cuda ops

This commit is contained in:
Sigbjørn Skjæret
2025-06-13 01:11:57 +02:00
committed by Akarshan
parent bb2fda70ae
commit a1a7b6dfa9
3 changed files with 75 additions and 0 deletions

View File

@ -2246,6 +2246,15 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_UNARY_OP_EXP: case GGML_UNARY_OP_EXP:
ggml_cuda_op_exp(ctx, dst); ggml_cuda_op_exp(ctx, dst);
break; break;
case GGML_UNARY_OP_REGLU:
ggml_cuda_op_reglu(ctx, dst);
break;
case GGML_UNARY_OP_GEGLU:
ggml_cuda_op_geglu(ctx, dst);
break;
case GGML_UNARY_OP_SWIGLU:
ggml_cuda_op_swiglu(ctx, dst);
break;
default: default:
return false; return false;
} }
@ -3039,6 +3048,10 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_EXP: case GGML_UNARY_OP_EXP:
return ggml_is_contiguous(op->src[0]); return ggml_is_contiguous(op->src[0]);
case GGML_UNARY_OP_REGLU:
case GGML_UNARY_OP_GEGLU:
case GGML_UNARY_OP_SWIGLU:
return ggml_is_contiguous_1(op->src[0]);
default: default:
return false; return false;
} }

View File

@ -196,6 +196,62 @@ void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_log>(ctx, dst); ggml_cuda_op_unary<op_log>(ctx, dst);
} }
/* gated ops */
template <float (*op)(float), typename T>
static __global__ void unary_gated_op_kernel(const T * x, T * dst, const int k, const int n, const int o) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
// perform base op on first half of row and multiply with gate in second half
const int j = (i / n) * o + (i % n);
dst[i] = (T)(op((float)x[j]) * (float)x[j + n]);
}
template <float (*op)(float), typename T>
static void unary_gated_cuda(const T * x, T * dst, const int k, const int n, const int o, cudaStream_t stream) {
const int num_blocks = (k + CUDA_NEG_BLOCK_SIZE - 1) / CUDA_NEG_BLOCK_SIZE;
unary_gated_op_kernel<op><<<num_blocks, CUDA_NEG_BLOCK_SIZE, 0, stream>>>(x, dst, k, n, o);
}
template <float (*op)(float)>
void ggml_cuda_op_unary_gated(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const void * src0_d = src0->data;
void * dst_d = dst->data;
const int nc = src0->ne[0] / 2;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
GGML_ASSERT(src0->type == dst->type);
GGML_ASSERT(dst->ne[0] >= nc);
GGML_ASSERT(ggml_nrows(dst) >= ggml_nrows(src0));
if (src0->type == GGML_TYPE_F16) {
unary_gated_cuda<op>((const half *)src0_d, (half *)dst_d, ggml_nelements(dst), nc, src0->nb[1] / sizeof(half), stream);
} else {
unary_gated_cuda<op>((const float *)src0_d, (float *)dst_d, ggml_nelements(dst), nc, src0->nb[1] / sizeof(float), stream);
}
}
void ggml_cuda_op_reglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary_gated<op_relu>(ctx, dst);
}
void ggml_cuda_op_geglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary_gated<op_gelu>(ctx, dst);
}
void ggml_cuda_op_swiglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary_gated<op_silu>(ctx, dst);
}
/* silu_back */ /* silu_back */
static __device__ __forceinline__ float op_silu_back(float grad, float x) { static __device__ __forceinline__ float op_silu_back(float grad, float x) {

View File

@ -57,3 +57,9 @@ void ggml_cuda_op_sin(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst); void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst); void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_reglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_geglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_swiglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);