ggml : implement REGLU/GEGLU/SWIGLU ops (#14158)

* implement unary REGLU/GEGLU/SWIGLU cpu ops

* relax constraints

* duplicate shape of source

* fix ggml_vec_geglu_f16

* special case gated ops

* implement unary REGLU/GEGLU/SWIGLU cuda ops

* tighten constraints again

* refactor into GGML_GLU_OP

* metal : add glu kernels

ggml-ci

* add CUDA_GLU_BLOCK_SIZE [no ci]

* more constraints and use 64bit ints

ggml-ci

* 64bit multiplication [no ci]

* implement swapped variants (cpu/cuda)

* update comment [no ci]

ggml-ci

* Vulkan: Add GLU ops and shaders

* SYCL: Implement fused kernel GEGLU, SWIGLU and REGLU for single up+gate

* ggml : implement GLU for split up/gate (#14181)

* implement GLU for split up/gate

* add tests for ggml_glu_split

* Vulkan: Implement glu_split logic and shader support

* add split to logging [no ci]

* SYCL: refactor element_size ops and add split up and gate support to gated kernels

* SYCL: switch GEGLU to use tanh approximation

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>

* GGML: increase OP count in assertion

* Refactor: Optimize SYCL element-wise operations with unary function inlining

This commit refactors the SYCL element-wise operations to improve performance by:

- Inlining unary operations (sgn, abs, elu, gelu, silu, etc.) to reduce kernel launch overhead.
- Introducing helper functions `op_xxx` for each unary operation to encapsulate the logic.
- Replacing direct kernel calls with calls to these inlined functions.
- Using `__dpct_inline__` to encourage compiler inlining.
- Minor code cleanup and consistency improvements.

The changes aim to reduce kernel launch overhead and improve the overall efficiency of element-wise operations on SYCL devices.

* vulkan: Increase workgroup size for GLU, for performance (#14345)

* vulkan: Increase workgroup size for GLU, for performance

* vulkan: change GLU shaders to do one element per invocation rather than one row per workgroup

* merge fix

* metal : add support for split and swap

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
This commit is contained in:
Sigbjørn Skjæret
2025-06-29 11:04:10 +02:00
committed by GitHub
parent bd9c981d72
commit a0535ffa0d
26 changed files with 2126 additions and 1153 deletions

View File

@@ -560,12 +560,20 @@ ggml_tensor * llm_graph_context::build_ffn(
switch (type_op) {
case LLM_FFN_SILU:
{
if (gate && type_gate == LLM_FFN_PAR) {
cur = ggml_swiglu_split(ctx0, cur, tmp);
cb(cur, "ffn_swiglu", il);
type_gate = LLM_FFN_SEQ;
} else {
cur = ggml_silu(ctx0, cur);
cb(cur, "ffn_silu", il);
} break;
case LLM_FFN_GELU:
{
if (gate && type_gate == LLM_FFN_PAR) {
cur = ggml_geglu_split(ctx0, cur, tmp);
cb(cur, "ffn_geglu", il);
type_gate = LLM_FFN_SEQ;
} else {
cur = ggml_gelu(ctx0, cur);
cb(cur, "ffn_gelu", il);
if (act_scales != NULL) {
@@ -574,7 +582,11 @@ ggml_tensor * llm_graph_context::build_ffn(
}
} break;
case LLM_FFN_RELU:
{
if (gate && type_gate == LLM_FFN_PAR) {
cur = ggml_reglu_split(ctx0, cur, tmp);
cb(cur, "ffn_reglu", il);
type_gate = LLM_FFN_SEQ;
} else {
cur = ggml_relu(ctx0, cur);
cb(cur, "ffn_relu", il);
} break;
@@ -588,32 +600,19 @@ ggml_tensor * llm_graph_context::build_ffn(
} break;
case LLM_FFN_SWIGLU:
{
// Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
int64_t split_point = cur->ne[0] / 2;
// TODO: these conts should not be needed, see https://github.com/ggml-org/llama.cpp/pull/14090#discussion_r2137437217
ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
x0 = ggml_silu(ctx0, x0);
cb(cur, "ffn_silu", il);
cur = ggml_mul(ctx0, x0, x1);
cb(cur, "ffn_mul", il);
cur = ggml_swiglu(ctx0, cur);
cb(cur, "ffn_swiglu", il);
} break;
case LLM_FFN_GEGLU:
{
// Split into two equal parts
int64_t split_point = cur->ne[0] / 2;
// TODO: these conts should not be needed, see https://github.com/ggml-org/llama.cpp/pull/14090#discussion_r2137437217
ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
x0 = ggml_gelu(ctx0, x0);
cb(x0, "ffn_gelu", il);
cur = ggml_mul(ctx0, x0, x1);
cur = ggml_geglu(ctx0, cur);
cb(cur, "ffn_geglu", il);
} break;
case LLM_FFN_REGLU:
{
cur = ggml_reglu(ctx0, cur);
cb(cur, "ffn_reglu", il);
} break;
}
if (gate && type_gate == LLM_FFN_PAR) {
@@ -743,12 +742,18 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
switch (type_op) {
case LLM_FFN_SILU:
{
if (gate_exps) {
cur = ggml_swiglu_split(ctx0, cur, up);
cb(cur, "ffn_moe_swiglu", il);
} else {
cur = ggml_silu(ctx0, cur);
cb(cur, "ffn_moe_silu", il);
} break;
case LLM_FFN_GELU:
{
if (gate_exps) {
cur = ggml_geglu_split(ctx0, cur, up);
cb(cur, "ffn_moe_geglu", il);
} else {
cur = ggml_gelu(ctx0, cur);
cb(cur, "ffn_moe_gelu", il);
} break;
@@ -756,11 +761,6 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
GGML_ABORT("fatal error");
}
if (gate_exps) {
cur = ggml_mul(ctx0, cur, up); // [n_ff, n_expert_used, n_tokens]
cb(cur, "ffn_moe_gate_par", il);
}
experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
cb(experts, "ffn_moe_down", il);