server : support audio input (#13714)

* server : support audio input

* add audio support on webui
This commit is contained in:
Xuan-Son Nguyen
2025-05-23 11:03:47 +02:00
committed by GitHub
parent faaaff5f94
commit 9ecf3e66a3
12 changed files with 276 additions and 173 deletions

View File

@ -12,17 +12,7 @@ size_t mtmd_helper_get_n_tokens(const mtmd_input_chunks * chunks) {
size_t n_tokens = 0;
for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
auto chunk = mtmd_input_chunks_get(chunks, i);
auto chunk_type = mtmd_input_chunk_get_type(chunk);
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens_text;
mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
n_tokens += n_tokens_text;
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
n_tokens += mtmd_image_tokens_get_n_tokens(tokens_image);
} else {
GGML_ASSERT(false && "chunk type not supported");
}
n_tokens += mtmd_input_chunk_get_n_tokens(chunk);
}
return n_tokens;
}
@ -31,17 +21,7 @@ llama_pos mtmd_helper_get_n_pos(const mtmd_input_chunks * chunks) {
llama_pos n_pos = 0;
for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
auto chunk = mtmd_input_chunks_get(chunks, i);
auto chunk_type = mtmd_input_chunk_get_type(chunk);
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens_text;
mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
n_pos += n_tokens_text;
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
n_pos += mtmd_image_tokens_get_n_pos(tokens_image);
} else {
GGML_ASSERT(false && "chunk type not supported");
}
n_pos += mtmd_input_chunk_get_n_pos(chunk);
}
return n_pos;
}

View File

@ -751,6 +751,10 @@ const unsigned char * mtmd_bitmap_get_data(const mtmd_bitmap * bitmap) {
return bitmap->data.data();
}
size_t mtmd_bitmap_get_n_bytes(const mtmd_bitmap * bitmap) {
return bitmap->data.size();
}
bool mtmd_bitmap_is_audio(const mtmd_bitmap * bitmap) {
return bitmap->is_audio;
}

View File

@ -119,11 +119,12 @@ MTMD_API bool mtmd_support_audio(mtmd_context * ctx);
// the data is in float format (PCM F32)
MTMD_API mtmd_bitmap * mtmd_bitmap_init (uint32_t nx, uint32_t ny, const unsigned char * data);
MTMD_API mtmd_bitmap * mtmd_bitmap_init_from_audio(size_t n_samples, const float * data);
MTMD_API uint32_t mtmd_bitmap_get_nx (const mtmd_bitmap * bitmap);
MTMD_API uint32_t mtmd_bitmap_get_ny (const mtmd_bitmap * bitmap);
MTMD_API const unsigned char * mtmd_bitmap_get_data(const mtmd_bitmap * bitmap);
MTMD_API bool mtmd_bitmap_is_audio(const mtmd_bitmap * bitmap);
MTMD_API void mtmd_bitmap_free (mtmd_bitmap * bitmap);
MTMD_API uint32_t mtmd_bitmap_get_nx (const mtmd_bitmap * bitmap);
MTMD_API uint32_t mtmd_bitmap_get_ny (const mtmd_bitmap * bitmap);
MTMD_API const unsigned char * mtmd_bitmap_get_data (const mtmd_bitmap * bitmap);
MTMD_API size_t mtmd_bitmap_get_n_bytes(const mtmd_bitmap * bitmap);
MTMD_API bool mtmd_bitmap_is_audio (const mtmd_bitmap * bitmap);
MTMD_API void mtmd_bitmap_free (mtmd_bitmap * bitmap);
// bitmap ID is optional, but useful for KV cache tracking
// these getters/setters are dedicated functions, so you can for example calculate the hash of the image based on mtmd_bitmap_get_data()
MTMD_API const char * mtmd_bitmap_get_id(const mtmd_bitmap * bitmap);
@ -322,6 +323,7 @@ struct bitmap {
uint32_t nx() { return mtmd_bitmap_get_nx(ptr.get()); }
uint32_t ny() { return mtmd_bitmap_get_ny(ptr.get()); }
const unsigned char * data() { return mtmd_bitmap_get_data(ptr.get()); }
size_t n_bytes() { return mtmd_bitmap_get_n_bytes(ptr.get()); }
std::string id() { return mtmd_bitmap_get_id(ptr.get()); }
void set_id(const char * id) { mtmd_bitmap_set_id(ptr.get(), id); }
};

Binary file not shown.

View File

@ -1891,6 +1891,7 @@ struct server_context {
float slot_prompt_similarity = 0.0f;
common_chat_templates_ptr chat_templates;
oaicompat_parser_options oai_parser_opt;
~server_context() {
mtmd_free(mctx);
@ -2086,6 +2087,15 @@ struct server_context {
}
metrics.init();
oai_parser_opt = {
/* use_jinja */ params_base.use_jinja,
/* prefill_assistant */ params_base.prefill_assistant,
/* reasoning_format */ params_base.reasoning_format,
/* common_chat_templates */ chat_templates.get(),
/* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
/* allow_audio */ mctx ? mtmd_support_audio (mctx) : false,
};
}
server_slot * get_slot_by_id(int id) {
@ -4092,7 +4102,10 @@ int main(int argc, char ** argv) {
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
{ "total_slots", ctx_server.params_base.n_parallel },
{ "model_path", ctx_server.params_base.model.path },
{ "modalities", json{{"vision", ctx_server.mctx != nullptr}} }, // TODO: add more in the future
{ "modalities", json{
{"vision", ctx_server.oai_parser_opt.allow_image},
{"audio", ctx_server.oai_parser_opt.allow_audio},
} },
{ "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
{ "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
{ "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
@ -4183,10 +4196,10 @@ int main(int argc, char ** argv) {
for (auto & file : files) {
mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(file.data(), file.size()));
if (!bmp.ptr) {
throw std::runtime_error("Failed to load image");
throw std::runtime_error("Failed to load image or audio file");
}
// calculate bitmap hash (for KV caching)
std::string hash = fnv_hash(bmp.data(), bmp.nx()*bmp.ny()*3);
std::string hash = fnv_hash(bmp.data(), bmp.n_bytes());
bmp.set_id(hash.c_str());
bitmaps.entries.push_back(std::move(bmp));
}
@ -4418,7 +4431,7 @@ int main(int argc, char ** argv) {
OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
};
const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
const auto handle_chat_completions = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
LOG_DBG("request: %s\n", req.body.c_str());
if (ctx_server.params_base.embedding) {
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
@ -4427,13 +4440,9 @@ int main(int argc, char ** argv) {
auto body = json::parse(req.body);
std::vector<raw_buffer> files;
json data = oaicompat_completion_params_parse(
json data = oaicompat_chat_params_parse(
body,
params.use_jinja,
params.prefill_assistant,
params.reasoning_format,
ctx_server.chat_templates.get(),
ctx_server.mctx,
ctx_server.oai_parser_opt,
files);
handle_completions_impl(
@ -4446,16 +4455,12 @@ int main(int argc, char ** argv) {
};
// same with handle_chat_completions, but without inference part
const auto handle_apply_template = [&ctx_server, &params, &res_ok](const httplib::Request & req, httplib::Response & res) {
const auto handle_apply_template = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
auto body = json::parse(req.body);
std::vector<raw_buffer> files; // dummy, unused
json data = oaicompat_completion_params_parse(
json data = oaicompat_chat_params_parse(
body,
params.use_jinja,
params.prefill_assistant,
params.reasoning_format,
ctx_server.chat_templates.get(),
ctx_server.mctx,
ctx_server.oai_parser_opt,
files);
res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
};

View File

@ -30,6 +30,7 @@ def create_server():
("What is this:\n", "malformed", False, None),
("What is this:\n", "https://google.com/404", False, None), # non-existent image
("What is this:\n", "https://ggml.ai", False, None), # non-image data
# TODO @ngxson : test with multiple images, no images and with audio
]
)
def test_vision_chat_completion(prompt, image_url, success, re_content):

View File

@ -536,6 +536,7 @@ static bool server_sent_event(httplib::DataSink & sink, const char * event, cons
// OAI utils
//
// used by /completions endpoint
static json oaicompat_completion_params_parse(const json & body) {
json llama_params;
@ -580,13 +581,19 @@ static json oaicompat_completion_params_parse(const json & body) {
return llama_params;
}
static json oaicompat_completion_params_parse(
struct oaicompat_parser_options {
bool use_jinja;
bool prefill_assistant;
common_reasoning_format reasoning_format;
common_chat_templates * tmpls;
bool allow_image;
bool allow_audio;
};
// used by /chat/completions endpoint
static json oaicompat_chat_params_parse(
const json & body, /* openai api json semantics */
bool use_jinja,
bool prefill_assistant,
common_reasoning_format reasoning_format,
const struct common_chat_templates * tmpls,
bool allow_non_text,
const oaicompat_parser_options & opt,
std::vector<raw_buffer> & out_files)
{
json llama_params;
@ -598,11 +605,11 @@ static json oaicompat_completion_params_parse(
if (stream) {
throw std::runtime_error("Cannot use tools with stream");
}
if (!use_jinja) {
if (!opt.use_jinja) {
throw std::runtime_error("tools param requires --jinja flag");
}
}
if (!use_jinja) {
if (!opt.use_jinja) {
if (body.contains("tool_choice") && !body.at("tool_choice").is_null()) {
throw std::runtime_error("Unsupported param: tool_choice");
}
@ -667,12 +674,12 @@ static json oaicompat_completion_params_parse(
for (auto & p : content) {
std::string type = json_value(p, "type", std::string());
json image_url = json_value(p, "image_url", json::object());
if (type == "image_url") {
if (!allow_non_text) {
throw std::runtime_error("image input is not supported by this server");
if (!opt.allow_image) {
throw std::runtime_error("image input is not supported - hint: if this is unexpected, you may need to provide the mmproj");
}
json image_url = json_value(p, "image_url", json::object());
std::string url = json_value(image_url, "url", std::string());
if (string_starts_with(url, "http")) {
// download remote image
@ -712,6 +719,29 @@ static json oaicompat_completion_params_parse(
p["type"] = "text";
p["text"] = mtmd_default_marker();
p.erase("image_url");
} else if (type == "input_audio") {
if (!opt.allow_audio) {
throw std::runtime_error("audio input is not supported - hint: if this is unexpected, you may need to provide the mmproj");
}
json input_audio = json_value(p, "input_audio", json::object());
std::string data = json_value(input_audio, "data", std::string());
std::string format = json_value(input_audio, "format", std::string());
// while we also support flac, we don't allow it here so we matches the OAI spec
if (format != "wav" && format != "mp3") {
throw std::runtime_error("input_audio.format must be either 'wav' or 'mp3'");
}
auto decoded_data = base64_decode(data); // expected to be base64 encoded
out_files.push_back(decoded_data);
// replace this chunk with a marker
p["type"] = "text";
p["text"] = mtmd_default_marker();
p.erase("input_audio");
} else if (type != "text") {
throw std::runtime_error("unsupported content[].type");
}
}
}
@ -723,9 +753,9 @@ static json oaicompat_completion_params_parse(
inputs.json_schema = json_schema.is_null() ? "" : json_schema.dump();
inputs.grammar = grammar;
inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
inputs.use_jinja = use_jinja;
inputs.use_jinja = opt.use_jinja;
inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false);
inputs.extract_reasoning = reasoning_format != COMMON_REASONING_FORMAT_NONE;
inputs.extract_reasoning = opt.reasoning_format != COMMON_REASONING_FORMAT_NONE;
inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
if (!inputs.tools.empty() && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE && body.contains("grammar")) {
throw std::runtime_error("Cannot use custom grammar constraints with tools.");
@ -733,7 +763,7 @@ static json oaicompat_completion_params_parse(
// if the assistant message appears at the end of list, we do not add end-of-turn token
// for ex. this can be useful to modify the reasoning process in reasoning models
bool prefill_assistant_message = !inputs.messages.empty() && inputs.messages.back().role == "assistant" && prefill_assistant;
bool prefill_assistant_message = !inputs.messages.empty() && inputs.messages.back().role == "assistant" && opt.prefill_assistant;
common_chat_msg last_message;
if (prefill_assistant_message) {
last_message = inputs.messages.back();
@ -749,7 +779,7 @@ static json oaicompat_completion_params_parse(
}
// Apply chat template to the list of messages
auto chat_params = common_chat_templates_apply(tmpls, inputs);
auto chat_params = common_chat_templates_apply(opt.tmpls, inputs);
/* Append assistant prefilled message */
if (prefill_assistant_message) {
@ -1040,7 +1070,7 @@ struct server_tokens {
private: // disallow accessing these members directly, risking out-of-sync
// map a **start** position in tokens to the image chunk
std::unordered_map<llama_pos, mtmd::input_chunk_ptr> map_pos_to_image;
std::unordered_map<llama_pos, mtmd::input_chunk_ptr> map_pos_to_media;
// list of tokens
// it can include LLAMA_TOKEN_NULL, which is used to indicate a token that is not a text token
@ -1051,7 +1081,7 @@ private: // disallow accessing these members directly, risking out-of-sync
// for ex. with input of 5 text tokens and 2 images:
// [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1]
// pos 0 1 2 3 4 5 6 7 8 9
// map_pos_to_image will contain: {5, img0}, {8, img1}
// map_pos_to_media will contain: {5, img0}, {8, img1}
public:
server_tokens() = default;
@ -1090,15 +1120,15 @@ public:
}
oss << "\n";
oss << "image pos: ";
for (const auto & it : map_pos_to_image) {
for (const auto & it : map_pos_to_media) {
oss << it.first << ", ";
}
return oss.str();
}
const mtmd::input_chunk_ptr & find_chunk(llama_pos pos) const {
auto it = map_pos_to_image.find(pos);
if (it != map_pos_to_image.end()) {
auto it = map_pos_to_media.find(pos);
if (it != map_pos_to_media.end()) {
return it->second;
} else {
throw std::runtime_error("Chunk not found");
@ -1115,16 +1145,15 @@ public:
// will create a copy of the chunk if it contains non-text data
void push_back(const mtmd_input_chunk * chunk) {
auto type = mtmd_input_chunk_get_type(chunk);
if (type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
if (type == MTMD_INPUT_CHUNK_TYPE_IMAGE || type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
GGML_ASSERT(has_mtmd);
auto img_tokens = mtmd_input_chunk_get_tokens_image(chunk);
const int n_pos = mtmd_image_tokens_get_n_pos(img_tokens);
const int n_pos = mtmd_input_chunk_get_n_pos(chunk);
llama_pos start_pos = tokens.size();
for (int i = 0; i < n_pos; ++i) {
tokens.emplace_back(LLAMA_TOKEN_NULL);
}
mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk));
map_pos_to_image[start_pos] = std::move(new_chunk);
map_pos_to_media[start_pos] = std::move(new_chunk);
} else if (type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens;
auto text_tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
@ -1169,6 +1198,9 @@ public:
void keep_first(size_t n) {
GGML_ASSERT(n <= tokens.size());
if (has_mtmd) {
if (n == tokens.size()) {
return; // nothing to do
}
// we throw an error if we try to remove a token in the middle of an image
// for ex. with input of 5 text tokens and 2 images:
// [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1]
@ -1183,10 +1215,10 @@ public:
}
}
// remove all image chunks that are not used anymore
for (auto it = map_pos_to_image.begin(); it != map_pos_to_image.end(); ) {
for (auto it = map_pos_to_media.begin(); it != map_pos_to_media.end(); ) {
llama_pos pos = it->first;
if (pos >= (llama_pos)n) {
it = map_pos_to_image.erase(it);
it = map_pos_to_media.erase(it);
} else {
++it;
}
@ -1217,14 +1249,12 @@ public:
const auto & a_chunk = find_chunk(i);
const auto & b_chunk = b.find_chunk(i);
GGML_ASSERT(a_chunk && b_chunk);
const auto * a_img = mtmd_input_chunk_get_tokens_image(a_chunk.get());
const auto * b_img = mtmd_input_chunk_get_tokens_image(b_chunk.get());
std::string ai_id = mtmd_image_tokens_get_id(a_img);
std::string bi_id = mtmd_image_tokens_get_id(b_img);
size_t a_pos = mtmd_image_tokens_get_n_pos(a_img);
size_t b_pos = mtmd_image_tokens_get_n_pos(b_img);
std::string ai_id = mtmd_input_chunk_get_id(a_chunk.get());
std::string bi_id = mtmd_input_chunk_get_id(b_chunk.get());
size_t a_pos = mtmd_input_chunk_get_n_pos(a_chunk.get());
size_t b_pos = mtmd_input_chunk_get_n_pos(b_chunk.get());
if (ai_id == bi_id && a_pos == b_pos) {
GGML_ASSERT(a_pos > 0 && "Invalid image token"); // should never happen
GGML_ASSERT(a_pos > 0 && "Invalid media chunk"); // should never happen
i += a_pos - 1; // will be +1 by the for loop
continue;
} else {
@ -1250,8 +1280,7 @@ public:
if (t == LLAMA_TOKEN_NULL) {
try {
const auto & chunk = find_chunk(i);
const auto * img_tokens = mtmd_input_chunk_get_tokens_image(chunk.get());
size_t n_pos = mtmd_image_tokens_get_n_pos(img_tokens);
size_t n_pos = mtmd_input_chunk_get_n_pos(chunk.get());
i += n_pos - 1; // will be +1 by the for loop
} catch (const std::exception & e) {
return false;
@ -1270,22 +1299,21 @@ public:
llama_pos n_past,
int32_t seq_id,
llama_pos & n_pos_out) {
auto it = map_pos_to_image.find(n_past);
if (it == map_pos_to_image.end()) {
throw std::runtime_error("Chunk not found");
}
SRV_INF("%s\n", "processing image...");
auto & chunk = find_chunk(n_past);
const char * name = mtmd_input_chunk_get_type(chunk.get()) == MTMD_INPUT_CHUNK_TYPE_IMAGE
? "image" : "audio";
SRV_INF("processing %s...\n", name);
int32_t n_batch = llama_n_batch(ctx);
int64_t t0 = ggml_time_ms();
llama_pos new_n_past = n_past;
int32_t result = mtmd_helper_eval_chunk_single(mctx, ctx,
it->second.get(), // chunk
chunk.get(),
n_past,
seq_id,
n_batch,
true, // logits last
&new_n_past);
SRV_INF("image processed in %" PRId64 " ms\n", ggml_time_ms() - t0);
SRV_INF("%s processed in %" PRId64 " ms\n", name, ggml_time_ms() - t0);
if (result != 0) {
LOG_ERR("mtmd_helper_eval failed with status %d", result);
n_pos_out = n_past;

View File

@ -1,4 +1,8 @@
import { DocumentTextIcon, XMarkIcon } from '@heroicons/react/24/outline';
import {
DocumentTextIcon,
SpeakerWaveIcon,
XMarkIcon,
} from '@heroicons/react/24/outline';
import { MessageExtra } from '../utils/types';
import { useState } from 'react';
import { classNames } from '../utils/misc';
@ -66,7 +70,11 @@ export default function ChatInputExtraContextItem({
className="w-14 h-14 flex items-center justify-center"
aria-description="Document icon"
>
<DocumentTextIcon className="h-8 w-14 text-base-content/50" />
{item.type === 'audioFile' ? (
<SpeakerWaveIcon className="h-8 w-8 text-gray-500" />
) : (
<DocumentTextIcon className="h-8 w-8 text-gray-500" />
)}
</div>
<div className="text-xs pr-4">
@ -98,6 +106,19 @@ export default function ChatInputExtraContextItem({
src={showingItem.base64Url}
alt={`Preview image for ${showingItem.name}`}
/>
) : showingItem.type === 'audioFile' ? (
<audio
controls
className="w-full"
aria-description={`Audio file ${showingItem.name}`}
>
<source
src={`data:${showingItem.mimeType};base64,${showingItem.base64Data}`}
type={showingItem.mimeType}
aria-description={`Audio file ${showingItem.name}`}
/>
Your browser does not support the audio element.
</audio>
) : (
<div className="overflow-x-auto">
<pre className="whitespace-pre-wrap break-words text-sm">

View File

@ -278,6 +278,13 @@ export default function ChatScreen() {
function ServerInfo() {
const { serverProps } = useAppContext();
const modalities = [];
if (serverProps?.modalities?.audio) {
modalities.push('audio');
}
if (serverProps?.modalities?.vision) {
modalities.push('vision');
}
return (
<div
className="card card-sm shadow-sm border-1 border-base-content/20 text-base-content/70 mb-6"
@ -291,6 +298,13 @@ function ServerInfo() {
<br />
<b>Build</b>: {serverProps?.build_info}
<br />
{modalities.length > 0 ? (
<>
<b>Supported modalities:</b> {modalities.join(', ')}
</>
) : (
''
)}
</p>
</div>
</div>

View File

@ -11,6 +11,7 @@ pdfjs.GlobalWorkerOptions.workerSrc = pdfjsWorkerSrc;
// This file handles uploading extra context items (a.k.a files)
// It allows processing these kinds of files:
// - image files (converted to base64)
// - audio files (converted to base64)
// - text files (including code files)
// - pdf (converted to text)
@ -41,96 +42,73 @@ export function useChatExtraContext(): ChatExtraContextApi {
const isSupportVision = serverProps?.modalities?.vision;
const onFileAdded = (files: File[]) => {
for (const file of files) {
const mimeType = file.type;
console.debug({ mimeType, file });
if (file.size > 10 * 1024 * 1024) {
toast.error('File is too large. Maximum size is 10MB.');
break;
}
if (mimeType.startsWith('image/')) {
if (!isSupportVision) {
toast.error('Multimodal is not supported by this server or model.');
const onFileAdded = async (files: File[]) => {
try {
for (const file of files) {
const mimeType = file.type;
if (file.size > 10 * 1024 * 1024) {
toast.error('File is too large. Maximum size is 10MB.');
break;
}
const reader = new FileReader();
reader.onload = async (event) => {
if (event.target?.result) {
let base64Url = event.target.result as string;
if (mimeType === 'image/svg+xml') {
// Convert SVG to PNG
base64Url = await svgBase64UrlToPngDataURL(base64Url);
}
if (mimeType.startsWith('image/')) {
if (!isSupportVision) {
toast.error('Multimodal is not supported by this server or model.');
break;
}
addItems([
{
let base64Url = await getFileAsBase64(file);
if (mimeType === 'image/svg+xml') {
// Convert SVG to PNG
base64Url = await svgBase64UrlToPngDataURL(base64Url);
}
addItems([
{
type: 'imageFile',
name: file.name,
base64Url,
},
]);
} else if (mimeType.startsWith('video/')) {
toast.error('Video files are not supported yet.');
break;
} else if (mimeType.startsWith('audio/')) {
if (!/mpeg|wav/.test(mimeType)) {
toast.error('Only mp3 and wav audio files are supported.');
break;
}
// plain base64, not a data URL
const base64Data = await getFileAsBase64(file, false);
addItems([
{
type: 'audioFile',
name: file.name,
mimeType,
base64Data,
},
]);
} else if (mimeType.startsWith('application/pdf')) {
if (config.pdfAsImage && !isSupportVision) {
toast(
'Multimodal is not supported, PDF will be converted to text instead of image.'
);
break;
}
if (config.pdfAsImage && isSupportVision) {
// Convert PDF to images
const base64Urls = await convertPDFToImage(file);
addItems(
base64Urls.map((base64Url) => ({
type: 'imageFile',
name: file.name,
base64Url,
},
]);
}
};
reader.readAsDataURL(file);
} else if (
mimeType.startsWith('video/') ||
mimeType.startsWith('audio/')
) {
toast.error('Video and audio files are not supported yet.');
break;
} else if (mimeType.startsWith('application/pdf')) {
if (config.pdfAsImage && !isSupportVision) {
toast(
'Multimodal is not supported, PDF will be converted to text instead of image.'
);
break;
}
const promise =
config.pdfAsImage && isSupportVision
? convertPDFToImage(file).then((base64Urls) => {
addItems(
base64Urls.map((base64Url) => ({
type: 'imageFile',
name: file.name,
base64Url,
}))
);
})
: convertPDFToText(file).then((content) => {
if (isSupportVision) {
toast.success(
'PDF file converted to text. You can also convert it to image, see in Settings.'
);
}
addItems([
{
type: 'textFile',
name: file.name,
content,
},
]);
});
promise.catch((error) => {
console.error(error);
toast.error('Failed to parse PDF file.');
});
break;
} else {
// Because there can be many text file types (like code file), we will not check the mime type
// and will just check if the file is not binary.
const reader = new FileReader();
reader.onload = (event) => {
if (event.target?.result) {
const content = event.target.result as string;
if (!isLikelyNotBinary(content)) {
toast.error('File is binary. Please upload a text file.');
return;
}
}))
);
} else {
// Convert PDF to text
const content = await convertPDFToText(file);
addItems([
{
type: 'textFile',
@ -138,10 +116,40 @@ export function useChatExtraContext(): ChatExtraContextApi {
content,
},
]);
if (isSupportVision) {
toast.success(
'PDF file converted to text. You can also convert it to image, see in Settings.'
);
}
}
};
reader.readAsText(file);
break;
} else {
// Because there can be many text file types (like code file), we will not check the mime type
// and will just check if the file is not binary.
const reader = new FileReader();
reader.onload = (event) => {
if (event.target?.result) {
const content = event.target.result as string;
if (!isLikelyNotBinary(content)) {
toast.error('File is binary. Please upload a text file.');
return;
}
addItems([
{
type: 'textFile',
name: file.name,
content,
},
]);
}
};
reader.readAsText(file);
}
}
} catch (error) {
const message = error instanceof Error ? error.message : String(error);
const errorMessage = `Error processing file: ${message}`;
toast.error(errorMessage);
}
};
@ -154,6 +162,25 @@ export function useChatExtraContext(): ChatExtraContextApi {
};
}
async function getFileAsBase64(file: File, outputUrl = true): Promise<string> {
return new Promise((resolve, reject) => {
const reader = new FileReader();
reader.onload = (event) => {
if (event.target?.result) {
let result = event.target.result as string;
if (!outputUrl) {
// remove base64 url prefix and correct characters
result = result.substring(result.indexOf(',') + 1);
}
resolve(result);
} else {
reject(new Error('Failed to read file.'));
}
};
reader.readAsDataURL(file);
});
}
async function getFileAsBuffer(file: File): Promise<ArrayBuffer> {
return new Promise((resolve, reject) => {
const reader = new FileReader();

View File

@ -89,6 +89,14 @@ export function normalizeMsgsForAPI(messages: Readonly<Message[]>) {
type: 'image_url',
image_url: { url: extra.base64Url },
});
} else if (extra.type === 'audioFile') {
contentArr.push({
type: 'input_audio',
input_audio: {
data: extra.base64Data,
format: /wav/.test(extra.mimeType) ? 'wav' : 'mp3',
},
});
} else {
throw new Error('Unknown extra type');
}

View File

@ -51,6 +51,7 @@ export interface Message {
export type MessageExtra =
| MessageExtraTextFile
| MessageExtraImageFile
| MessageExtraAudioFile
| MessageExtraContext;
export interface MessageExtraTextFile {
@ -65,6 +66,13 @@ export interface MessageExtraImageFile {
base64Url: string;
}
export interface MessageExtraAudioFile {
type: 'audioFile';
name: string;
base64Data: string;
mimeType: string;
}
export interface MessageExtraContext {
type: 'context';
name: string;
@ -79,6 +87,10 @@ export type APIMessageContentPart =
| {
type: 'image_url';
image_url: { url: string };
}
| {
type: 'input_audio';
input_audio: { data: string; format: 'wav' | 'mp3' };
};
export type APIMessage = {
@ -120,6 +132,7 @@ export interface LlamaCppServerProps {
n_ctx: number;
modalities?: {
vision: boolean;
audio: boolean;
};
// TODO: support params
}